基于界面电位检测的新型电化学检测系统研究及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
界面现象研究一直是科学研究的核心领域,它为电化学、胶体科学、材料科学、界面科学以及生物物理学等学科的发展奠定了理论基础。界面电位检测是实现界面现象研究的重要途径,开发高效的界面电位检测技术具有重要意义。
     本论文基于界面电位检测,设计了一种新型的电化学检测系统。通过对其检测原理的理论研究和实验验证,提出了零流电位法和安培法两种检测模式,并重点探讨了它们在材料pH响应性质研究中的应用。本研究已取得以下几项成果。
     (1)将某种固体电极串联在伏安仪的工作电极和辅助电极之间,与参比电极一起浸入溶液中,构建了一种新型电化学检测系统。通过对其检测原理的理论研究与实验验证,发现电流仅在电极内部流通,遵守欧姆定律,电流值取决于电极的电子学性质、外加电位和“固/液”界面的界面电位。当采用不同的控制电位检测技术,如线性扫描电位法、方波伏安法、脉冲伏安法、安培法时,可以得到不同的电流-电位曲线。在这些曲线上,外加电位和电流分别是物理输入信号和输出信号;界面电位是与电极表面和溶液化学性质有关的化学参数,是一个待测的隐藏变量。可以根据电流-电位曲线随溶液组分的变化关系,实现对界面电位的检测和对“固/液”界面界面现象的研究。基于检测相同电流时外加电位的变化,和检测相同电位时电流变化,提出了零流电位法和安培法两种典型的检测模式。
     (2)在新型电化学检测系统中,采用线性扫描电位,记录I-E(电流-电位)曲线。将I-E曲线上电流为零时的扫描电位定义为零流电位,将检测零流电位的技术称之为零流电位法。通过检测多种非特征吸附界面的界面电位对方法进行了实验验证和性能分析。结果表明:与开路电位法相比,本方法具有精确度高,稳定性好,检测灵敏快速等优点。使用零流电位法考察聚苯胺膜pH响应性质和羧基化多壁碳纳米管表面酸碱性质,结果满意。零流电位法为开发新型电位型pH传感器提供了新思路。
     (3)在新型电化学检测系统中,固定施加电位,记录I-t曲线,考察电流随溶液组分的变化,提出了安培检测模式。采用安培检测模式,考察聚苯胺膜的pH响应性质,开发了一种聚苯胺膜安培型pH传感器,设计了一种聚苯胺膜pH可控电流方向分子开关。与传统安培检测相比,该安培检测模式实际上是采用安培检测技术来实现对界面电位的检测,具有较高的稳定性、选择性、准确度、灵敏度以及较短的响应时间。该研究模式为安培传感器和电化学pH分子开关的开发提供了新的研究思路。
The solid/solution interface widely occurs in nature,and deals with our vital processes. daily livings,industry,and interdisciplinary research and engineering.Understanding of interface phenomena at the solid/solution interface is of paramount importance for interpreting some problems in electrochemistry,colloid science,surface science,and biophysics,and has been a topic of intensive research.Measurement of interface potential at the interface region is a significant avenue to study the interface phenomena.It is of imporatance to develop some highly effective techniques for measuring interface potential at the solid/solution interface.
     In this dissertation,a new electrochemical measurement system is proposed for measuring the interface potential at the solid/solution interface.Based on the distinct measurement principle of the system,two topic measurement modes containing zero current potentiometry and amperometric techniques are developed.By using these two modes,the pH sensitive property of the polyaniline film and the surface acid-base property of carboxylic MWNTs are investigated,respectively.The chief contributions of the author are as follows:
     1) A solid electrode is connected in series between the terminal points of the working electrode and the counter electrode of a potentiostat.The electrode and a reference electrode are immersed in the electrolyte solution,thereby establishing a new electrochemical system. The theoretical and experimental studies show that the distinct connection excludes the possibility of the current passing through the interface of the electrode and solution and the electrolyte solution.The circuit current only flows inside the electrode,and its value rests with the electronic property of the electrode,the applied potential controlled by the potentiostat and the interface potential at the interface of the electrode/solution.When different controlled-potential techniques such as linear sweep voltammetry,square wave voltammetry,different pulse voltammetry and amperometry,are used in the new electrochemical measurement system,various current-potential curves and current-time curves are recorded.In these profiles,the potential and current are the input and output parameters,respectively.They are two detectable physical data in nature.Meanwhile.the interface potential depends strongly on the properties of the sensing surface and the solution composition.It is a latent chemical variable whose information can be drawn from the profiles by measuring the shift of the potential or current with the change of the solution composition. Based on measuring the potential shift at the same current level and the variation of the current at the same potential level,two new measurement modes,zero current potentiometry and amperometric measurement are proposed for the study of the interface phenomena at the solid/solution.
     2) With the new electrochemical system,a linear sweep potential is applied:the resulting curve I-E of current versus potential is recorded.In the curve I-E,the applied potential when the current is zero is defined as zero current potential E_(zcp),which can be used as a key parameter for indicating interface potential at the sensor/solution interface.The corresponding technique to measure zero current potential is named as zero current potentiometry.The measurement principle and the performance of the proposed approach are discussed on the examples of measuring the interface potential at several interfaces without specific adsorption.Zero current potentiometry offers rapidity,high stability,and high accuracy compared to open circuit potentiometry.Zero current potentiometry has been used for investigating the pH sensitivity of the polyaniline film and surface acid-base property of the carboxylic groups terminated MWNTs.The results are consitent with the literatuers.These studies may provide a promising way for the development of the new potentiometric pH sensors.
     3) A new amperometric mode is proposed based on the use of the amperometric technique in the new electrochemical system.When the applied potential is fixed,the curve of current versus time is recorded.The relationship of the current and the solution compostion provides the therotical basis for the amperometric mode in investigating interface phenemena. The pH sensitive property of the polyaniline film has been investigated using the new amperometric mode,and the result is in agreement with the previous reports.Based on this work,a polyaniline film based amperometric pH sensor has been developed,and a polyaniline film pH switch of current direction has been designed.Different from the classic amperometric measurements based on the study of the redox reactions at the electrode,the new mode actually employ the amperometric technique to measure the interface potential variation.The new mode exhiblits high stability,accuracy,selectivity,sensitivity and a short time.This study may offer an effective means of the development of amperometric sensors and the design of the electrochemical molecular switches.
引文
[1]胡英,吕瑞东,刘国杰等,物理化学(下),北京,高等教育出版社,1999
    [2]Kolb D.M.,An Atomistic View of Electrochemistry,Surface Science,2002,500,722-740
    [3]Attard P.,Recent Advances in the Electric Double Layer in Colloid Science,Current Opinion in Colloid & Interface Science,2001,6,366-371
    [4]Somorjai G.A.,Modern Surface Science and Surface Technologies:An Introduction,Chemistry Review,1996,96,1223-1235
    [5]Kallay N.,Dojnovi Z.,Cop A.,Surface Potential at the Hematite-water Interface,Journal of Colloid and Interface Science,2005,286,610-614
    [6]Boguta A.,Wrobel D.,Bartczak A.,Swietlik R.,Stachowiak Z.,Ion R.M.,Characterization of Interfacial Effects in Organic Macrocycles Langmuir and Langmuir-Blodgett Layers Studied by Surface Potential and FTIR spectroscopy Examination,Materials Science and Engineering B,2004,113,99-105
    [7]Poortinga A.T.,Bos R.,Norde W.,Busscher H.J.,Electric Double Layer Interactions in Bacterial Adhesion to Surfaces,Surface Science Reports,2002,47,1-32
    [8]Castner D.G.,Ratner B.D.,Biomedical Surface Science:Foundations to Frontiers,Surface Science,2002,500,28-60
    [9]翁优灵,沙爱民,多普勒电泳光散射zeta电位分析新技术,中国测试技术,2005,31,37-42
    [10]Wilson W.W.,Wade M.M.,Holman S.C.,Champlin F.R.,Status of Methods for Assessing Bacterial Cell Surface Charge Properties Based on Zeta Potential Measurements,Journal of Microbiological Methods,2001,43,153-164
    [11]Kaya A.,Yukselen Y.,Zeta Potential of Soils with Surfactants and Its Relevance to Electrokinetic Remediation.Journal of Hazardous Materials,2005,20,119-126
    [12]Bakker E.,Electrochemical Sensors,Analytical Chemistry,2004,76,3285-3298
    [13]Wang J.,Electroanalysis and Biosensors,Analytical Chemistry,1999,328R-332R
    [14]查全性,电极过程动力学导论,科学出版社,2002
    [15]胡英,吕瑞东,刘国杰等,物理化学(中),北京,高等教育出版社,1999
    [16]朱明华,仪器分析,高等教育出版社,2000,第三版,p107-195
    [17]李启隆,电分析化学,北京师范大学出版社,1999,第一版,p421-427
    [18] Ross J.W., Solid-state and Liquid Memebrance Ion-selective Electrodes. In Ion-selectrode, RA Durst, Ed., NBS Spec. Publ. 314, National Bureau of Standarda,Washington DC, 1969, p57-88
    [19] Affolter H., Sigel E., A Simple System for the Measurement of Ion Activities with Solvent Polymeric Membrane Electrodes, Analytical Biochemistry, 1979, 97, 315-319
    [20] Thomas R.C., Simon W., Oehme M., Lithium Accumulation by Snail Neurones Measured by a New Li~+-sensitive Microelectrode, Nature, 1975, 258, 754-756
    [21] Coetzee J. F., Deshmukh B. K., Liao C. C., Application of Potentiometric Ion Sensors In the Characterization of Nonaqueous Solvents, Chemistry Review, 1990, 90, 827-835
    [22] Bakker E., Pretsch E., Potentiometry at Trace Levels, Trends in Analytical Chemistry,2001,20,11-19
    [23] Pretsch E., The New Wave of Ion-Selective Electrodes, Trends in Analytical Chemistry,2007,26,46-51
    [24] Bakker E., Telting-Diaz M., Electrochemical Sensors, Analytical Chemistry, 2002, 74,2781-2800
    [25] Bakker E., Meyerhoff M. E., Ionophore-Based Membrane Electrodes: New Analytical Concepts and Non-Classical Response Mechanisms, Analytica Chimica Acta, 2000, 416,121-137
    [26] Bocheska M., Chojnacki J., Biernat J. F., Sulphonamides As Ionophores for Ion-selective Electrodes. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2004, 5,689-694
    [27] Peyre V., Baillet S., Letellier P., Ion-Selective Electrode for Dodecyldimethylamine Oxide: A "Twice-Nernstian" Slope for the Determination of a Neutral Component,Analytical Chemistry, 2000, 72, 2377-2382
    [28] Perez-Marin L., Lopez-Valdivia H., Avila-Perez P., Macedo-Miranda G.,Gutierrez-Lozano O., De la Torres-Orozco J., Carapia-Morales L., Otazo-Sanchez E.,Alonso Chamaro J., Response Mechanism of a Neutral Carrier Hg(II) Poymeric Membrane, Analyst, 2001, 126, 501-504
    [29] Koseoglu S. S., Lai C. Z., Ferguson C, B(?)hlmann P., Response Mechanism of Ion-Selective Electrodes Based on a Guanidine Ionophore: An Apparently Two-Thirds Nernstian Response Slope, Electroanalysis, 2007, 20, 331-339
    [30] Amemiya S., B(?)hlmann P., Umezawa Y., A Phase Boundary Potential Model for Apparently "Twice-Nernstian" Responses of Liquid Membrane Ion-Selective Electrodes,Analytical Chemistry, 1998, 70, 445-454
    [31] Buehlmann P., Umezawa Y., Rondinini S., Vertova A., Pigliucci A., Bertesago L.,Lifetime of Ion-Selective Electrodes Based on Charged Ionophores, Analytical Chemistry,2000,72,1843-1852.
    [32] Buehlmann P., Hayakawa M., Ohshiro T., Amemiya S., Umezawa Y., Influence of Natural, Electrically Neutral Lipids on the Potentiometric Responses of Cation-Selective Polymeric Membrane Electrodes, Analytical Chemistry, 2001, 73, 3199-3205
    [33] Mi Y., Bakker E., Determination of Complex Formation Constants of Lipophilic Neutral Ionophores in Solvent Polymeric Membranes with Segmented Sandwich Membranes,Analytical Chemistry, 1999, 71, 5279-5287
    [34] Qin Y., Mi Y., Bakker E., Determination of Complex Formation Constants of Neutral Alkali and Alkaline Earth Metal Ionophores in Poly(vinyl chloride) Sensing Membranes Plasticized with Bis(2-ethylhexyl)sebacate and o-nitrophenyloctylether, Analytica Chimica Acta, 2000,421, 207-220
    [35] Qin, Y.; Bakker, E. Quantification of the Concentration of Ionic Impurities in Polymeric Sensing Membranes with the Segmented Sandwich Technique, Analytical Chemistry,2001,73,4262-4267
    [36] Endley B. D., Gyurcsanyi R. E., Buck R. P., Lindner E., A Chronoamperometric Method To Estimate Changes in the Membrane Composition of Ion-Selective Membranes,Analytical Chemistry, 2001, 73, 4599-4606
    [37] Mikhelson K. N., Bobacka J., Lewenstam A., Ivaska A., Potentiometric Performance and Interfacial Kinetics of Neutral Ionophore Based ISE Membranes in Interfering Ion Solutions Before and After Contact with Primary Ions, Electroanalysis, 2001, 13, 876-881
    [38] Zwickl T., Sokalski E., Pretsch E., Steady-State Model Calculations Predicting the Influence of Key Parameters on the Lower Detection Limit and Ruggedness of Solvent Polymeric Membrane Ion-Selective Electrodes, Electroanalysis, 1999, 11, 673-680
    [39] Sokalski T., Ceresa A., Zwickl T., Pretsch E., Large Improvement of the Lower Detection Limit of Ion-Selective Polymer Membrane Electrodes, Journal of the American Chemical Society, 1997, 119,11347-11348
    [40] Lindner E., Gyurcsanyi R.E., Buck R.P., Tailored Transport Through Ion-Selective Membranes for Improved Detection Limits and Selectivity Coefficients, Electroanalysis,1999,11,695-702
    [41] Heng L. Y., Hall E. A. H., Producing "Self-Plasticizing" Ion-Selective Membranes,Analytical Chemistry, 2000, 72, 42-51
    [42] Heng L. Y., Hall E. A. H., One-Step Synthesis of K~+-Selective Methacrylic-Acrylic Copolymers Containing Grafted Ionophore and Requiring No Plasticizer, Electroanalysis 2000, 12, 178-186
    [43] Malinowska E., Gawart L., Parzuchowski P., Rokicki G., Brzozka Z., Novel Approach of Immobilization of Calixarene Type Ionophore In 'Self-Plasticized' Polymeric Membrane, Analytica Chimica Acta, 2000, 421, 93-101
    [44]Yuan R., Chai Y. Q., Liu D., Gao D., Li J. Z., Yu R. Q., Schiff Base Complexes of Cobalt(II) As Neutral Carriers for Highly Selective Iodide Electrodes, Analytical Chemistry, 1993, 65, 2572- 2575
    [45] Xu L., Yuan R., Chai Y. Q., Wang X. L., A Novel Salicylate-Selective Electrode Based on a Sn(IV) Complex of Salicylal-imino Acid Schiff Base, Analytical and Bioanalytical Chemistry, 2005, 381, 781-787
    [46] Li Z.Q.,Wu Z.Y., Yuan R., Ying M., Shen G. L., Yu R.Q., Thiocyanate-Selective PVC Membrane Electrodes Based on Mn(II) Complex of N,N-bis- (4-phenylazosalicylidene) o-phenylene diamine as a Neutral Carrier, Electrochimica Acta, 1999, 44, 2543-2548
    [47] Ganjali M. R., Poursaberi T., Basiripour F., Salavati-Niassari M., Yousefi M.,Shamsipur M., Highly Selective Thiocyanate Poly(vinyl chloride) Membrane Electrode Based on a Cadmium-Schiff s Base Complex, Fresenius'Journal of Analytical Chemistry,2001,370,1091-1095
    [48] Bakker E., Malinowska E., Meyerhof M. E., Anion-Selective Membrane Electrodes Based on Metalloporphyrins: The Influence of Lipophilic Anionic and Cationic Sites on Potentiometric Selectivity, Talanta, 1994, 41, 881-890
    [49] Chaniotakis N. A., Park S. B., Meyerhof M.E., Salicylate-selective membrane electrode based on Tin(IV)-tetraphenylporphyrin, Analytical Chemistry, 1989, 61,566-570
    [50] Badr L. H. A., Meyerhoff M. E., Metalloporphyrin-Based Polymer Membrane Electrode with High Selectivity for 2-hydroxybenzhydroxamate, Analytica Chimica Acta, 1996, 321,11-19
    [51] Hutchins R. S., Bansal P., Molina P., Alajarin M., Vodal A., Bachas L. G.,Salicylate-Selective Electrode Based on a Biomimetic Guanidinium Ionophore, Analytical Chemistry, 1997, 69,1273-1278
    [52] Fibbioli M., Morf W. E., Badertscher M., de Rooij N. F., Pretsch E., Potential Drifts of Solid-Contacted Ion-Selective Electrodes Due to Zero-Current Ion Fluxes Through the Sensor Membrane, Electroanalysis, 2000, 12,1286-1292
    [53] Nagels L. J., Poels I., Solid State Potentiometric Detection Systems for LC, CE, and TAS Methods, Trends in Analytical Chemistry, 2000, 19, 410-417
    [54] Quan D. P., Quang C. X., Duan L. T., Viet P. H., A Conductive Polypyrrole Based Ammonium Ion Selective Electrode, Environmental Monitoring and Assessment, 2001, 70,153-165.
    [55] Bobacka J., Lahtinen T., Nordman J., Haggstrom S., Rissanen K., Lewenstam A., Ivaska A., All-Solid-State Ag~+-ISE Based on [2.2.2] p,p,p-Cyclophane, Electroanalysis, 2001, 13,723-726
    [56] Bobacka J., Lewenstam A., Ivaska A., Equilibrium Potential of Potentiometric Ion Sensors Under Steady-State Current by Using Current-Reversal Chronopotentiometry,Journal of Electroanalytical Chemistry, 2001, 509, 27-30
    [57] Blaz T., Migdalski J., Lewenstam A., Polypyrrole-Calcion Film As a Membrane and Solid-Contact In an Indicator Electrode for Potentiometric Titrations, Talanta 2000, 52,319-328
    [58] Michalska A., Nadrzycka U., Maksymiuk K., The Modelled and Observed Transition From Redox to Ionic Potentiometric Sensitivity of Poly(pyrrole), Electrochimica Acta,2001,46,4113-4123
    [59] Yoon H. J., Shin J. H., Lee S. D., Nam H., Cha G. S., Strong T. D., Brown R. B.,Solid-state Ion Sensors with a Liquid Junction-Free Polymer Membrane-Based Reference Electrode for Blood Analysis, Sensors and Actuators B, 2000, 64, 8-14
    [60]Fu B.,Bakker E.,Yun J.,Yang V.C.,Meyerhoff M.E.,Response Mechanism of Polymer Membrane-Based Potentiometric Polyion Sensors,Analytical Chemistry,1994,66,2250-2259
    [61]Fu B.,Bakker E.,Yang V.C.,Meyerhoff M.E.,Extraction Thermodynamics of Polyanions into Plasticized Polymer Membranes Doped with Lipophilic Ion Exchangers:A Potentiometric Study,Macromolecules,1995,28,5834-5840
    [62]Lutze O.,Rob B.,Cammann K.,Gran's Plot Titration and Flow Injection Titration of Sulfate in Ground and Drinking Water with a Barium Ion-Selective Electrode,Fresenius'Journal of Analytical Chemistry,1994,350,630-632
    [63]Mathison S.,Bakker E.,Renewable pH Cross-Sensitive Potentiometric Heparin Sensors with Incorporated Electrically Charged H~+ Ionophores,Analytical Chemistry 1999,71,4614-4621
    [64]Saleh M.B.,Neutral Bidentate Organophosphorus Compounds as Novel Ionophores for Potentiometric Membrane Sensors for Barium(Ⅱ),Fresenius' Journal of Analytical Chemistry,2000,367,530-534
    [65]Espadas-Torre C.,Bakker E.,Barker S.,Meyerhoff M.E.,Influence of Nonionic Surfactants on the Potentiometric Response of Hydrogen Ion-Selective Polymeric Membrane Electrodes,Analytical Chemistry,1996,68,1623-1631
    [66]Malinowska E.,Meyerhoff M.E.,Influence of Nonionic Surfactants on the Potentiometric Response of Ion-Selective Polymeric Membrane Electrodes Designed for Blood Electrolyte Measurements,Analytical Chemistry,1998,70,1477-1488
    [67]Ito T.,Radecka H.,Tohda K.,Odashima K.,Umezawa Y.,On the Mechanism of Unexpected Potentiometric Response to Neutral Phenols by Liquid Membranes Based on Quaternary Ammonium Salts-Systematic Experimental and Theoretical Approaches,Journal of the American Chemical Society,1998,120,3049-3059
    [68]Bergveld P.,Development of an Ion-Sensitive Solid-state Device for Neurophysiological Measurements,IEEE Transaction Biomedical Engineering,1970,BME-17,70-71
    [69]Sch(o|¨)ning M.J.,Poghossian A.,Recent Advances in Biologically Sensitive Field-Effect Transistors,Analyst,2002,127,1137-1151
    [70]黄德培,方培生,离子敏感器件及其应用,北京,科学出版社,1987
    [71]彭承琳,生物医学传感器原理及应用,北京,高等教育出版社,2000
    [72]张彩霞,马小芬,申霖,邓家春,华玉林,印寿根,离子敏场效应晶体管(ISFET)的研究进展,材料导报,2007,21,9-12
    [73]罗细亮,徐静娟,陈洪渊,场效应晶体管生物传感器,分析化学,2004,32,1395-1400
    [74]van Hal R.E.G.,Eijkel J.C.T.,Bergveld P.,A General Model to Describe the Electrostatic Potenital at Electrolyte Oxide Interfaces,Advances in Colloid and Interface Science,1996,69,31-62
    [75]Martinoia S.,Massobrio G.,Lorenzelli L.,Modeling ISFET Microsensor and ISFET-Based Microsystems:a Review,Sensors and Actuators B,2005,105,14-27
    [76]Bergveld P.,Thirty Years of ISFETOLOGY What Happened in the Past 30 Years and What May Happen in the Next 30 Years,Sensors and Actuators B,2003,88,1-20
    [77]Dzyadevivh S.V.,Korpan Y.I.,Arkhipova V.N.,Alesina M.Y.,Martelet C.,Elskaya A.V.,Soldatkin A.P.,Application of Enzyme Field-Effect Transistors for Determination of Glucose Concentrations in Blood Serum,Biosensors and Bioelectronics,1999,14,283-287
    [78]Zhang A.,Hou Y.,Jaffrezic-Renault N.,Wan J.,Soldatkin A.P.,Chovelon J.M.,Mixed Urease/amphiphile LB Films and Their Application for Biosensor Development,Bioelectrochemistry,2002,56,157-158
    [79]Poghossian A.,Yoshinobu T.,Simonis A.,Ecken H.,L(u|¨)th H.,Sch(o|¨)ning M.J.Penicillin Detection by Means of Field-Effect Based Sensors:EnFET,Capacitive EIS Sensor or LAPS? Sensors and Actuators B,2001,78,237-242
    [80]Volotovsky V.,Kim N.,Cyanide Determination by an ISFET-based Peroxidase Biosensor,Biosensors and Bioelectronics,1998,13,1029-1033
    [81]Korpan Y.I.,Volotovsky V.,Martelet C.,Jaffrezic-Renault N.,Nazarenko E.A.,Elskaya A.V.,Soldatkin A.P.,A Novel Enzyme Biosensor for Steroidal Glycoalkaloids Detection Based on pH-sensitive Field Effect Transistors,Bioelectrochemistry,2002,55,9-11
    [82]Kharitonov A.B.,Zayats M.,Lichtenstein A.,Katz E.,Willner I.,Enzyme Monolayer-Functionalized Field-Effect Transistors for Biosensor Applications,Sensors and Actuators B, 2000, 70, 222-231
    [83] Schasfoort R. B. M., Bergveld P., Kooyman R. P. H., Greve J., Possibilities and Limitations of Direct Detection of Protein Charges by Means of an Immunological Field-Effect Transistor, Analytica Chimica Acta, 1990, 238, 323-329
    [84] Starodub N. F., Dzantiev B. B., Starodub V. M., Zherdev A. V., Immunosensor for the Determination of the Herbicide Simazine Based on an Ion-Selective Field-Effect Transistor, Analytica Chimica Acta, 2000,424, 37-43
    [85] Selvanayagam Z. E., Neuzil P., Sridhar U., Singh M., Ho L. C., An ISFET-based Immunosensor for the Detection of β-Bungarotoxin, Biosensors and Bioelectronics, 2002,17,821-826
    [86] Schutz S., Schoning M. J., Schroth P., Malkoc(?), Weibecher B., Kordo P., L(?)th H.,Hummel H. E., An Insect-Based BioFET as a Bioelectronic Nose, Sensors and Actuators B,2000, 65,291-295
    [87] Schroth P., L(?)th H., Hummel H. E., Schutz S., Schoning M. J., Characterising an Insect Antenna as a Receptor for a Biosensor by Means of Impedance Spectroscopy,Electrochimica Acta, 2001, 47, 293-297
    [88] Schoning M. J., Schutz S., Schroth P., Weipbecher B, Steffen A, Kordo2P, Hummel H E,L(?)th H. A BioFET on the Basis of Intact Insect Antennae, Sensors and Actuators B, 1998,47: 235-238
    [89] Schroth P., Schoning M. J., Luth H., Weibecher B., Hummel H. E., Schutz S., Extending the Capabilities of an Antenna/chip Biosensor by Employing Various Insect Species,Sensors and Actuators B, 2001, 78, 1-5
    [90] Lehmann M., Baumann W., Brischwein M., Ehret R., Kraus M., Schwinde A.,Bitzenhofer M., Freund I., Wolf B., Non-Invasive Measurement of Cell Membrane Associated Proton Gradients by Ion-Sensitive Field Effect Transistor Arrays for Microphysiological and Bioelectronical Applications, Biosensors and Bioelectronics,2000, 15, 117-124
    [91] Schubnell D., Lehmann M., Baumann W., Rott F. G., Wolf B., Beck C. F., An ISFET-Algal (Chlamydomonas) Hybrid Provides a System for Eco-toxicological Tests,Biosensors and Bioelectronics, 1999, 14, 465-472
    [92] Baumann W. H., Lehmann M., Schwinde A., Ehret R., Brischwein M., Wolf B.,Microelectronic Sensor System for Microphysiological Application on Living Cells,Sensors and Actuators B, 1999, 55, 77-89
    [93] Yeung C. K., Ingebrandt S., Krause M., Offenh A., Knoll W., Validation of the Use of Field Effect Transistors for Extracellular Signal Recording in Pharmacological Bioassays,Journal of Pharmacological and Toxicological Methods, 2001,45, 207-214
    [94] Reshetilov A. N., Donova M. V., Dovbnya D. V., Boronin A. M., Leathers T. D., Greene R. V., FET-microbial Sensor for Xylose Detection Based on Gluconobacter oxydans Cells Biosensors and Bioelectronics, 1996, 11,401-408
    [95] Kitagawa Y., Tamiya E., Karube I., Microbial-FET Alcohol Sensor, Analytical Letter,1987,20,81-96
    [96] Souteyrand E., Cloarec J. P., Martin J. R., Wilson C., Lawrence I., Mikkelsen S.,Lawrence M. F., Direct Detection of the Hybridization of Synthetic Homo-Oligomer DNA Sequences by Field Effect, Journal of Physical Chemistry B, 1997, 101, 2980-2985
    [97] Chi L. L., Chou J. C., Chung W. Y., Sun T. P., Hsiung S. K., Study on Extended Gate Field Effect Transistor with Tin Oxide Sensing Membrane, Materials Chemistry and Physics, 2000, 63, 19-23
    [98] Liu J., Liang L., Li G., Han R., Chen K. M., Increased Neurogenesis in The Dentate Gyrus After Transient Global Ischemia in Gerbils, Biosensors and Bioelectronics, 1998,13,1023-1028
    [99] Flounders A. W., Singh A. K., Volponi J. V., Carichner S. C., Wally K., Simonian A. S.,Wild J. R., Schoeniger J. S., Development of Sensors for Direct Detection of Organophosphates: Part II: Sol-Gel Modified Field Effect Transistor with Immobilized Organophosphate Hydrolase, Biosensors and Bioelectronics, 1999, 14, 715-722
    [100] Soldatkin A. P., Volotovsky V., El'skaya A. V., Jaffrezic-Renault N., Martelet C.,Improvement of Urease Based Biosensor Characteristics Using Additional Layers of Charged Polymers, Analytica Chimica Acta, 2000, 403, 25-29
    [101] Martinoia S., Rosso N., Grattarola M., Lorenzelli L., Margesin B., Zen M.,Development of ISFET Array-based Microsystems for Bioelectrochemical Measurements of Cell Populations, Biosensors and Bioelectronics, 2001, 16, 1043-1050
    [102] Hitzmann B., Ritzka A., Ulber R., Scheper J., Sch(?)gerl K., Computational Neural Networks for the Evaluation of Biosensor FIA Measurements, Analytica Chimica Acta,1997,348,135-141
    [103] Tobias-atona E., Pecs M., Multienzyme-Modified Ion-Sensitive Field-Effect Transistor for Sucrose Measurement, Sensors and Actuators B, 1995, 28, 17-20
    [104] Kullick T., Bock U., Schubert J., Scheper T., Schiigerl K., Application of Enzyme-Field Effect Transistor Sensor Arrays as Detectors in a Flow-Injection Analysis System for Simultaneous Monitoring of Medium Components. Part II. Monitoring of Cultivation Processes, Analytica Chimica Acta, 1995, 300, 25-31
    [105] van der Wal P. D., Sudholter E. J. R., Reinhoudt D. N., Design and Properties of a Flow-Injection Analysis Cell Using Potassium-Selective Ion-Sensitive Field-Effect Transistors as Detection Elements, Analytica Chimica Acta, 1991, 245, 159-166
    [106] Hitzmann B., Ritzka A., Ulber R., Scheper J., Schiigerl K., Computational Neural Networks for the Evaluation of Biosensor FIA Measurements, Analytica Chimica Acta,1997,348,135-141
    [1]朱明华,仪器分析,高等教育出版社,2000,第三版,p107-195
    [2]Wang J.,Analytical Electrochemistry,Wiley-VCH,2000,Second Edition,p1-5
    [3]李启隆,电分析化学,北京师范大学出版社,1999,第一版,p1-3
    [4]查全性,电极过程动力学导论,科学出版社,2002,第三版,p53
    [5]Kolb D.M.,An Atomistic View of Electrochemistry,Surface Science,2002,500,722-740
    [6]Attard P.,Recent Advances in the Electric Double Layer in Colloid Science,Current Opinion in Colloid & Interface Science,2001,6,366-371
    [7]Somorjai G.A.,Modern Surface Science and Surface Technologies:An Introduction,Chemistry Review,1996,96,1223-1235
    [8]Kallay N.,Dojnovi Z.,Cop A.,Surface Potential at the Hematite-water Interface,Journal of Colloid and Interface Science,2005,286,610-614
    [9]Boguta A.,Wrobel D.,Bartczak A.,Swietlik R.,Stachowiak Z.,Ion R.M.,Characterization of Interfacial Effects in Organic Macrocycles Langmuir and Langmuir-Blodgett Layers Studied by Surface Potential and FTIR spectroscopy Examination,Materials Science and Engineering B,2004,113,99-105
    [10]Poortinga A.T.,Bos R.,Norde W.,Busscher H.J.,Electric Double Layer Interactions in Bacterial Adhesion to Surfaces,Surface Science Reports,2002,47,1-32
    [11]Castner D.G.,Ratner B.D.,Biomedical Surface Science:Foundations to Frontiers,Surface Science,2002,500,28-60
    [12]Kallay N.,Preocanin T.,Markovic J.,Kovacevio D.,Adsorption of Organic Acids on Metal Oxides:Application of the Surface Potential Measurements,Colloids and Surfaces A:Physicochem.Eng.Aspects,2007,306,40-48
    [13]Cai K.,Frant M.,Bossert J.,Hildebrand G.,Liefeith K.,Jandt K.D.,Surface Functionalized Titanium Thin Films:Zeta-Potential,Protein Adsorption and Cell Proliferation,Colloids and Surfaces B:Biointerfaces,2006,50,1-8
    [14]Charcosset C.,Fiaty K.,Pen-in B.,Couturier R.,Ma(?)sterrena B.,Key Roles of Enzyme Positions and Membrane Surface Potentials in the Properties of Biomimetic Membranes,Archives of Biochemistry and Biophysics,2004,424,235-245
    [15]Husain A.,Fakhraldeenb A.,In-situ Surface Potential Characterization of Cathodically Polarized Coating, Desalination, 2003, 158,29-34
    [16] Yadav A. P., Katayama H., Noda K., Masuda H., Nishikata A., Tsuru T., Surface Potential Distribution Over a Zinc/Steel Galvanic Couple Corroding Under Thin Layer of Electrolyte, Electrochimica Acta, 2007, 52, 3121-3129
    [17] Martin M. E. D., Cerro R. L. J., Surface Potentials and Ionization Equilibrium In Y-type Deposition of Multiple Langmuir-Blodgett films: Effect of pH and counterionsm, Journal of Colloid and Interface Science, 2005, 285, 686-693
    [18] Taylor D. M., Bayes G. F., The Surface Potential of Langmuir Monolayers, Materials Science and Engineering C, 1999, 8-9, 65-71
    [19] Mullne R., Schlick H., Winkler B., Stelzer F., Tasch S., Fellner B., Leising G., Surface Potentials of Polyanline LB Films, Synthetic Metals, 1999, 101, 658-689
    [20] Oliveira Jr. O. N., Bonardi C., The Surface Potential of Langmuir Monolayers Revisited,Langmuir, 1997, 13, 5920-5924
    [21] L(?) J., Delamarche E., Eng L., Bennewitz R., Meyer E., Guntherodt H. J., Kelvin Probe Force Microscopy on Surfaces: Investigation of the Surface Potential of Self-Assembled Monolayers on Gold, Langmuir, 1999, 15, 8184-8188
    [22] Hayashi K., Saito N., Sugimura H., Takai O., Nakagiri N., Surface Potential Contrasts Between Silicon Surfaces Covered and Uncovered with an Organosilane Self-Assembled Monolayer, Ultramicroscopy, 2002, 91, 151-156
    [23] Sugimura H., Hayashi K., Saito N., Nakagiri N., Takai O., Surface Potential Microscopy for Organized Molecular Systems, Applied Surface Science, 2002, 188,403-410
    [24] Maynard S. J., Riddell J. W., Menown I. B. A., Allen J., Anderson J. M., Khan M. M.,Adgey A. A., Body Surface Potential Mapping Improves Detection of ST Segment Alteration During Percutaneous Coronary Intervention, International Journal of Cardiology, 2004, 93, 203-210
    [25] Avila A., Gregory B. W., Clark B. K., Standard J. M., Cotton T. M., Image Potential Surface States Localized at Chemisorbed Dielectric-Metal Interfaces, Langmuir, 2002, 18,4709-4719
    [26] Wang Joseph, Analytical Electrochemstry, 2001, A JOHN WILEY & SONS, INC.,Publicatiohn, New York, p18-22
    [27] Bakker E., Electrochemical Sensors, Analytical Chemistry, 2004, 76, 3285-3298
    
    [28] Wilson W. W., Wade M. M., Holman S. C., Champlin F. R., Status of Methods for Assessing Bacterial Cell Surface Charge Properties Based on Zeta Potential Measurements, Journal of Microbiological Methods, 2001, 43, 153-164
    [29] George M., Parak W. J., Gaub H. E., Highly Integrated Surface Potential Sensors,Sensors and Actuators B, 2000, 69, 266-275
    [30] Kallay N., Preocanin T., Ivsic T. J., Determination of Surface Potentials From the Electrode Potentials of a Single-Crystal Electrode, Journal of Colloid and Interface Science, 2007, 309, 21-27.
    [31] Preocanin T., Janusz W., Kallay N., Evaluation of Equilibrium Parameters of the Anatase/aqueous Electrolyte Solution Interface by Introducing Surface Potential Data,Colloids and Surfaces A: Physicochem. Eng. Aspects, 2007, 297, 30-37
    [32] Park S., Boo H., Kim Y., Han J. H., Kim H. Ch., Chung T. D., pH-Sensitive Solid-State Electrode Based on Electrodeposited Nanoporous Platinum, Analytical Chemistry, 2005,77, 7695-7701
    
    [33] Bockris J. O. M., Reddy A. K. N., Modern Electrochemistry, Plenum: New York, 1973.
    [34] Martinoia S., Massobrio G., Lorenzelli L., Modeling ISFET Microsensor and ISFET-Based Microsystems: a Review, Sensors and Actuators B, 2005, 105, 14-27
    [35] Bergveld P., Thirty Years of ISFETOLOGY What Happened in the Past 30 Years and What May Happen in the Next 30 Years, Sensors and Actuators B, 2003, 88, 1-20
    [36] Poghossian A., Yoshinobu T., Simonis A., Ecken H., L(?)th H., Sch(?)ning M. J., Penicillin Detection by Means of Field-Effect Based Sensors: EnFET, Capacitive EIS Sensor or LAPS, Sensors and Actuators B, 2001, 78, 237-242
    [37] Gassenbauer Y., Schafranek R., Klein A., Zafeiratos S., H(?)vecker M., Knop-Gericke A.,Schlogl R., Surface Potential Changes of Semiconducting Oxides Monitored by High-pressure Photoelectron Spectroscopy: Importance of Electron Concentration at the Surface, Solid State Ionics, 2006, 177, 3123-3127
    [38] Watanabe A., Nishiok S., Shirouzu Y., Yamada K., Naitoh M., Nishigaki S., Direct Observation of Surface Potential Change Due to Hydrogen Termination of CVD Diamond Surface by Metastable-Induced Electron Spectroscopy, Surface Science, 2006, 600, 3659-3662
    [39]Liu Y.,Yan E.C.Y.,Zhao X.L.,Eisenthal K.B.,Surface Potential of Charged Liposomes Determined Second Harmonic Generation,Langmuir,2001,17,2063-2066
    [40]Yan E.C.Y.,Liu Y.,Eisenthal K.B.,New Method for Determination of Surface Potential of Microscopic Particles by Second Harmonic Generation,Journal of Physical Chemisry B,1998,102,6331-6336
    [41]Dominget A.,Farkas J.,Szunerits S.,Characterization of Post-Copper CMP Surface with Scanning Probe Microscopy:Part Ⅱ:Surface Potential Measurements with Scanning Kelvin Probe Force Microscopy,Microelectronic Engineering,2006,83,2355-2358
    [42]Doukkali A.,Ledain S.,Guasch C.,Bonnet J.,Surface Potential Mapping of Biased PN Junction with Kelvin Probe Force Microscopy:Application to Cross-Section Devices,Applied Surface Science,2004,235,507-512
    [43]Bhushan B.,Goldade A.V.,Kelvin Probe Microscopy Measurements of Surface Potential Change under Wear at Low Loads,Wear,2000,244,104-117
    [44]Katanoa Y.,Doia T.,Ohnob H.,Yoha K.,Surface Potential Analysis on Doping Superlattice by Electrostatic Force Microscope,Applied Surface Science,2002,188,399-402
    [45]Leveque G.,Bonnet J.,Tahraoui A.,Girard P.,Observation of Surface Potential at Nanometer Scale by Electrostatic Force Microscopy(EFM) with Large Signals,Materials Science and Engineering B,1998,51,197-201
    [46]张治安,邓梅根,胡永达,杨邦朝,电化学电容器的特点及应用,电子元件与材料,2003,22,1-5
    [47]袁定胜,胡向春,刘应亮,杨创涛,超级电容器用炭材料的研究进展,电池,2007,37,466-468
    [48]文建国,周震涛,阮湘元,徐勇军,苏亚玲,金属氧化物电极材料赝电容特性研究.电子元件与材料,2007,26,55-61
    [49]Sivakumar C.,Nian J.N.,Teng H.,Poly(o-toluidine) for Carbon Fabric Electrode Modification to Enhance the Electrochemical Capacitance and Conductivity,Journal of Power Sources,2005,144,295-301
    [50]Shan Y.,Gao L.,Formation and Characterization of Multi-walled Carbon Nanotubes/Co_3O_4 Nanocomposites for Supercapacitors, Materials Chemistry and Physics,2007,103,206-210
    [51] Morishita T., Soneda Y., Hatori H., Inagaki M., Carbon-Coated Tungsten and Olybdenum Carbides for Electrode of Electrochemical Capacitor, Electrochimica Acta,2007, 5, 2478-2484
    [52] Gonzalez J., Molina A., Charge-Potential and Capacitance-Potential Curves Corresponding to Reversible Redox Monolayers, Journal of Electroanalytical Chemistry,2003,557,157-165
    [53] Frackowiaka E., Beguinb F., Electrochemical Storage of Energy in Carbon Nanotubes and Nanostructured Carbons, Carbon, 2002,40,1775-1787
    [54] Frackowiaka E., Beguinb F., Carbon Materials for the Electrochemical Storage of Energy in Capacitors, Carbon, 2001, 39, 937-950
    [1] Talaie A., Conducting Polymer Based pH Detector: A New Outlook to pH Sensing Technology, Polymer, 1997, 38, 1145-1150
    
    [2] Mazeikiene R., Tomkute V., Kuodis Z., Niaura G., Malinauskas A., Raman Spectroelectrochemical Study of Polyaniline and Sulfonated Polyaniline in Solutions of Different pH, Vibrational Spectroscopy, 2007,44, 201-208
    [3] Lindfors T., Ivaska A., pH Sensitivity of Polyaniline and Its Substituted Derivatives,Journal of Electroanalytical Chemistry, 2002, 531,43-52
    [4] Lubert K. H., Dunsch L., The Influence of Protons on the Impedance of Polyaniline Films,Electrochimica Acta, 1998,43, 813-822
    [5] Hamdani K., Cheng K. L., Polyaniline pH Electrodes, Microchemical Journal, 1999, 61,198-217
    [6] Slim C., Ktari N., Cakara D., Kanoufi F., Combellas C., Polyaniline Films Based Ultramicroelectrodes Sensitive to pH, Journal of Electroanalytical Chemistry, 2008, 612,53-62
    [7] Kikas T., Ivaska A., Potentiometric Measurements in Sequential Injection Analysis Lab-on-valve (SIA-LOV) Flow-system, Talanta, 2007, 71, 160-164
    [8] Jin Z., Su Y., Duan Y., An Improved Optical pH Sensor Based on Polyaniline, Sensors and Actuators B, 2000, 71, 118-122
    [9] Lindfors T., Ivaska A., Raman Based pH Measurements with Polyaniline, Journal of Electroanalytical Chemistry, 2005, 580, 320-329
    [10] Lindfors T., Ervel€a S., Ivaska A., Polyaniline as pH-sensitive Component in Plasticized PVC Membranes, Journal of Electroanalytical Chemistry, 2003, 560, 69-78
    
    [11] Leopold S., Herranen M., Carlsson J. O., Nyholm L., In Situ pH Measurement of the Self-oscillating Cu(II)/lactate System Using An Electropolymerised Polyaniline Film as A Micro pH Sensor, Journal of Electroanalytical Chemistry, 2003, 547, 45-52
    
    [12] Karyakin A. A., Vuki M., Lukachova L. V., Karyakina E. E., Orlov A. V., Karpachova G.P., Wang J., Processible Polyaniline as An Advancepotentiometirc pH Transducer,Application to biosensors, Analytical Chemistry, 1999, 71, 2534-2540
    
    [13] Miao Y. Q., Chen J. R., Fang K. M., New Technology for the Detection of pH, Journal of Biochemical and Biophysical Methods, 2005, 63, 1-9
    [14] Yu R. Q., Zhang Z. R., Shen G. L., Potentiometric Sensors: Aspects of the Recent Development, Sensors and Actuators B, 2000, 65, 150-153
    [15] Prestsch E., The New Wave of Ion-selective Electrodes, Trends in Analytical Chemistry,2007,26,46-51
    [16] Bakker E., Prestsch E., Potentiometry at Trace Levels, Trends in Analytical Chemistry,2001,20, 11-19
    [17] Ismail A. B. M., Harada T., Yoshinobu T., Iwasaki H., Schoning M. J., L(?)th H.,Investigation of Pulsed Laser-deposited Al_2O_3 as A High pH-sensitive Layer for LAPS-based Biosensing Applications, Sensors and Actuators B, 2000, 71, 169-172
    [18] Bergveld P., Thirty Years of ISFETOLOGY: What Happened in the Past 30 years and What May Happen in the Next 30 years, Sensors and Actuators B, 2003, 88, 1 -20
    [19] CaneC., Gracia I., Merlos A., Microtechnologies for pH ISFET Chemical Sensors,Microelectronics Journa, 1997, 28, 389-405
    [20] Park S., Boo H. L., Kim Y. M., Han J. H., Kim H. C., Chung T. D., pH-sensitive Solid-state Electrode Based on Electrodeposited Nanoporous Platinum, Analytical Chemistry, 2005, 77, 7695-7701
    [21] Bezbaruah A. N., Zhang T. C., Fabrication of Anodically Electrodeposited Iridium, Oxide Film pH Microelectrodes for Microenvironmental Studies, Analytical Chemistry, 2002, 74,5726-5733
    [22] Adhikari B., Majumdar S., Polymers in Sensor Applications, Progress in Polymer Science, 2004, 29, 699-766
    [23] Deore B. A., Hachey S., Freund M., Electroactivity of Electrochemcially Synthesized Poly (Aniline Boronic Acid) as A Function of pH: Role of Self-doping, Chemistry of Materials, 2004, 16, 1427-1432
    [24] Kaempgen M., Roth S., Transparent and Flexible Carbon Nanotube/polyaniline pH Sensors, Journal of Electroanalytical Chemistry, 2006, 586, 72-76
    [25] Hickman J. J., Ofer D., Laibinis P. E., Whitesides G. M., Wrighton M. S., Molecular Self-assembly of Two-terminal, Voltammetric Microsensors with Internal References,Science, 1991, 252, 688-691
    [26] Beulen M. W. J., Van Veggel F. C. J. M., Reinhoudt D. N., Coupling of Acid-base and Redox Functions in Mixed Sulfide Monolayers on Gold, Chemical Communications, 1999,6, 503-404
    [27] Lahav M., Katz E., Willner I., A Covalently Linked Quinoneferrocene Monolayer-electrode: A pH Sensor with An Internal Reference, Electroanalysis, 1998, 10,1159-1162
    [28] Wildgoose G. G., Pandurangappa M., Lawrence N. S., Jiang L., Jones T. G. J., Compton R.G., Anthraquinone-derivatised Carbon Powder: Reagentless Voltammetric pH Electrodes, Talanta, 2003, 60, 887-893
    [29] Mizutani F., Yabuki S., Sato Y., Voltammetric Enzyme Sensor for Urea Using Mercaptohydroquinone-modified Gold Electrode as The Base Transducer, Biosensors and Bioelectronics, 1997, 12, 321-328
    [30] Vostiar I., Tkac J., Sturdik E., Gemeiner P., Amperometric Urea Biosensor Based on Urease and Electropolymerized Toluidine Blue Dye as A pH-sensitive Redox Probe,Bioelectrochemistry, 2002, 56, 113-115
    [31] Cheng Q., Brajter-Toth A., Permselectivity, Sensitivity, and Amperometric pH Sensing at Thioctic Acid Monolayer Microelectrodes, Analytical Chemistry, 1996, 68, 4180-4185
    [32] Rubinstein I., Voltammetric pH Measurements with Surface-modified Electrodes and A Voltammetric Internal Reference, Analytical Chemistry, 1984, 56, 1135-1137
    [33] Hickman J. J., Ofer D., Laibinis P. E., Whitesides G. M., Wrighton M. S., Molecular Self-assembly of Two-terminal, Voltammetric Microsensors with Internal References,Science, 1991,252, 688-691
    [34] Liu Y. L., Zhao M. Q., Bergbreiter D. E., Crooks R. M., pH-Switchable, Ultrathin Permselective Membranes Prepared from Multilayer Polymer Composites, Journal of the American Chemical Society, 1997, 119, 8720-8721
    [35] Cui Y., Wei Q. Q., Park H. K., Lieber C. M., Nanowire Nanosensors for Highly Sensitive and Selective Detection of Biological and Chemical Species, Science, 2001, 293,1289-1292
    [36] Robinson K. L., Lawrence N. S., Redox-sensitive Copolymer: A Single-component pH Sensor, Analytical Chemistry, 2006, 78, 2450-2455
    [37] Samec Z., Mare(?)ek V., Koryta J., Khalil M. W., Investigation of Ion Transfer Across the Interface Between Two Immiscnble Electrolyte Solutions by Cyclic Voltammetry, Journal of Electroanalytical Chemistry, 1977, 83, 393-397
    [38] Long R., Bakker E., Spectral Imaging and Electrochemical Study on the Response Mechanism of Ionophore-Based Polymeric Membrane Amperometric pH Sesors,Electroanalysis, 2003, 15, 1261-1269
    [39] Van Hal R. E. G., Eijkel J. C. T., Bergveld P., A General Model to Describe the Electrostatic Potential at Electrolyte Oxide Interfaces, Advances in Colloid and Interface Science, 1996,69,31-62
    [40] Umezawa Y., Handbook of Ion-Selective Electrode: Selectivity Coefficients, CRC Press,Boca Raton, FL, 1990
    [41] Turner R. B., Transitioning Analytical Instrumentation from the Laboratory to Harsh Envirnments, Pure and Applied Chemistry, 2002, 74, 2312-2322
    [42] Feringa B. L., Molecular Switches, Wiley-VCH, Weinheim, Germany, 2001
    [43] Shiraishi Y., Tokitoh Y., Nishimura G., Hirai T., A Molecular Switch with pH-controlled Absolutely Switchable Dual-mode Fluorescence, Organic Letters, 2005, 7, 2611-2614
    [44] Koo C. K., Lam B., Leung S. K., Lam M. H. W., Wong W. Y., A "Molecular pivot-hinge"Based on the pH-regulated Intramolecular Switching of Pt-Pt and Π-Π interactions,Journal of the American Chemical Society, 2006, 128, 16434-16435
    
    [45] Goldfarb N. E., Lam M. T., Bose A. K., Patel A. M., Duckworth A. J., Dunn B. M.,Electrostatic Switches That Mediate the pH-dependent Conformational Change of"Short" Recombinant Human Pseudocathepsin D, Biochemistry, 2005, 44, 15725-15733
    [46] Fabbrizzi L., Licchelli M., Rospo C., Sacchi D., Zema M., Searching for New Fluorescence Switches: Naphthalene-containing Metal Complexes Whose Emission Can Be Controlled by pH Variations, Inorganica Chimica Acta, 2000, 300-302, 453-461
    [47] Mccoy C. P., Soft Matter pH Sensing: From Luminescent Lanthanide pH Switches in Solution to Sensing in Hydrogels, Chemistry of Materials, 2006, 18, 4336-4343
    [48] Lee S. B., Martin C. R., pH-switchable, Ion-permselective Gold Nanotubule Membrane Based on Chemisorbed Cysteine, Analytical Chemistry, 2001, 73, 768-775
    [49] Hanakam F., Gerisch G., Lotz S., Alt T., Seelig A., Binding of Hisactophilin I and II to Lipid Membranes Is Controlled by a pH-dependent Myristoyl-Histidine Switch,Biochemistry, 1996, 35, 11036-11044
    [50] Schnarr N. A., Kennan A. J., pH-switchable Strand Orientation in Peptide Assemblies,Organic Letters, 2005, 7, 395-398
    [51] Ceccacci F., Mancini G., Sferrazza A., Villani Claudio., pH Variation as The Switch for Chiral Recognition in A Biomembrane Model, Journal of the American Chemical Society,2005, 127, 13762-13763
    [52] Zimenkov Y., Dublin S. N., Ni R., Tu R. S., Breedveld V., Apkarian R. P., Conticello V. P.,Rational Design of A Reversible pH-responsive Switch for Peptide Self-assembly, Journal of the American Chemical Society, 2006, 128, 6770-6771
    [53] Yasutomi S., Morita T., Kimura S., pH-controlled Switching of Photocurrent Direction by Self-assembled Monolayer of Helical Peptides, Journal of the American Chemical Society,2005, 127, 14564-14565
    [54] Mulller J., Glahe F., Freisinger E., Lippert B., A Major, pH-induced Stereochemical Switch of Pairs of Trans-oriented Ligands in Complexes of Trans-a2PtII (a=NH3,CH3NH2), Inorganic Chemistry, 1999, 38, 3160-3166
    [55] Xu H., Stampp S. P., Rudkevich D. M., A pH Switch in Supramolecular Polymeric Capsules, Organic Letters, 2003, 5, 4583-4586
    [56] Tien P., Chau, L. K., Shieh Y. Y., Lin W. C., Wei G. T., Anion-exchange Material with pH-switchable Surface Charge Prepared by Sol-gel Processing of An Organofunctional Silicon Alkoxide, Chemistry of Materials, 2001, 13, 1124-1130
    [57] Ramirez P., Mafe S., Alcaraz A., Cervera J., Modeling of pH-switchable Ion Transport and Selectivity in Nanopore Membranes with Fixed Charges, Journal of Physical Chemistry B, 2003, 107, 13178-13187
    [58] Fattakhova-Rohlfmg D., Wark M., Rathousky J., Ion-permselective pH-switchable Mesoporous Silica thin Layers, Chemistry of Materials, 2007, 19, 1640-1647
    [59] Liu Y. L., Zhao M. Q., Bergbreiter D. E., Crooks R. M., pH-switchable, Ultrathin Permselective Membranes Prepared from Multilayer Polymer Composites, Journal of the American Chemical Society, 1997, 119, 8720-8721
    [60] Gao W., Song J. E, Polyaniline Film Based Amperometric pH Sensor Using a Novel Electrochemical Measurement System, Electroanalysis, 2009, Doi: 10.1002/elan.200804500
    [1] Iijima S., Helical Mictrotubules of Grahitic Carbon, Nature, 1991, 354, 56-58
    [2] Ajayan P. M., Nanotubes From Carbon, Chemistry Review, 1999, 99,1787-1799
    
    [3] De Heer W. A., Chatelain A., Ugarte D., A Carbon Nanotube Field-Emission Electron Source, Science, 1995,270,1179-1180
    [4] Fan S. S., Chapline M. G., Franklin N. R., Tombler T. W., Cassell A. M., Dai H. J.,Self-Oriented Regular Arrays of Carbon Nanotubes and Their Field Emission Properties,Science, 1999,283,512-514
    [5] Collins P. G., Zettl A., Bando H., Thess A., Smalley R. E., Nanotube Nanodevice, Science,1997,278,100-103
    [6] Tans S. J., Verschueren A. R. M., Dekker C., Room-temperature Transistor Based on Single Carbon Nanotube, Nature, 1998, 393,49-52
    [7] White C. T., Todorov T. N., Carbon Nanotubes as Long Ballistic Conductors, Nature,1998,393,240-242
    
    [8] Menon M., Srivastava D., Carbon Nanotube T-Junctions: Nanoscale Metal-Semiconductor-Metal Contact Device, Physics Review Letter, 1997, 79, 4453-4456
    [9] Tans S. J., Devoret M. H., Dai H., Thess A., Smalley R. E., Geerligs L. J., Dekker C.,Individual Single-wall Nanotubes as Quantum Wire, Nature, 1997, 386, 474-477
    [10] Chen G., Lakshmi B. B., Fisher E. R., Martin C. R., Carbon Nanotubules Membranes For Electrochemical Energy Storage and Production, Nature, 1998, 393, 346-349
    
    [11] Szleifera I., Yerushalmi-Rozenb R., Polymers and Carbon Nanotubes-Dimensionality,Interactions and Nanotechnology, Polymer, 46 (2005) 7803-7818
    
    [12] Liu P., Modifications of Carbon Nanotubes with Polymers, European Polymer Journal,2005,41,2693-2703
    [13] Hrapovic S., Liu Y. L., Male K. B., John H., Luong T., Electrochemical Biosensing Platforms Using Platinum Nanoparticles and Carbon Nanotubes, Analycal Chemistry,2004,76, 1083-1088
    [14] Wang J., Liu G. D., Jan M. R., Ultrasensitive Electrical Biosensing of Proteins and DNA:Carbon-Nanotube Derived Amplification of the Recognition and Transduction Events,Jouranl of Americal Chemistry Society, 2004, 126, 3010-3011
    [15] Kong J., Franklin N. R., Zhou C., Chapline M. G., Peng S., Cho K., Dai H., Nanotube Molecular Wires As Chemical Sensors, Science, 2000, 287, 622-625
    [16] Sun Y. P., Fu K. F., Lin Y., Huang W. J., Functionalized Carbon Nanotubes: Properties and Applications, Accounts of Chemical Research, 2002, 35, 1096-1104
    [17] Holzinger M., Vostrowsky O., Hirsch A., Hennrich F., Kappes M., Weiss R., Jellen F.,Sidewall Functionalization of Carbon Nanotubes. Angewandte Chemie International Edition, 2001,40,4002-4005
    [18] Tsang S. C., Harris P. J. F., Green M. L. H., Thinning and Opening of Carbon Nanotubes by Oxidation Using Carbon Dioxide, Nature, 1993, 362, 520-522
    [19] Ajayan P. M., Ebbesen T. W., Lchihashi T. E., Iijima S., Tanigaki K., Hiura H., Opening Carbon Nanotubes with Oxygen and Implications for Filling, Nature, 1993, 362, 522-525
    [20] Yang D. Q., Rochette J. F., Edward S., Functionalization of Multiwalled Carbon Nanotubes by Mild Aqueous Sonication, Jouranl of Physical Chemistry B, 2005, 109,7788-7794
    [21] Zhang M. N., Yan Y. M., Gong K. P., Mao L. Q., Guo Z. X., Chen Y., Electrostatic Layer-by-Layer Assembled Carbon Nanotube Multilayer Film and Its Electrocatalytic Activity for O_2 Reduction, Langmuir, 2004, 20, 8781-8785
    [22] Jiang K. Y., Eitan A., Schadler L. S., Ajayan P. M., Siegel R. W., Grobert N., Mayne M.,Reyes M., Terrones H., Terrones M., Selective Attachment of Gold Nanoparticles to Nitrogen-Doped Carbon Nanotubes, Nano Letter, 2003, 3, 275-277
    [23] Yim T. J., Liu J. W., Lu Y., Kane R. S., Dordick J. S., Highly Active and Stable DNAzyme-Carbon Nanotube Hybrids, Journal of Americal Chemical Society, 2005, 127,12200-12201
    [24] Yang Y. L., Zhang J., Nan X. L., Liu Z. F., Toward the Chemistry of Carboxylic Single-Walled Carbon Nanotubes by Chemical Force Microscopy, Journal of Physical Chemistry B, 2002, 106, 4139-4144
    [25] Luo L. Q., Cheng Z. L., Yang X. R., Wang Er. K., Study on Surface Acid-Base Property of Carboxylic Acid-Terminater Self-Assembled Monolayers by Cyclic Voltammetry and Electrochemical Impedance Spectroscopy, Chinese Journal of Chemistry, 2000, 18,863-867
    [26]Hu K.,Bard A.J.,Characterization of Adsorption of Sodium Dodecyl Sulfate on Charge-Regulated Substrates by Atomic Force Microscopy Force Measurements,Langmuir,1997,13,5418-5425
    [27]Nkosi D.,Ozoemena K.I.,Influence of solution pH on the electron transport of the self-assembled nanoarrays of single-walled carbon nanotube- cobalt tetra-aminophthalocyanine on gold electrodes:Electrocatalytic detection of epinephrine,Electrochimica Acta,2008,53,2844-2851
    [28]Zhao W.,Song C.H.,Pehrsson P.E.,Water-Soluble and Optically pH-Sensitive Single-Walled Carbon Nanotubes from Surface Modification,Journal of Americal Chemistry Society,2002,124,12418-12419
    [29]Luo H.X.,Shi Z.J.,Li N.Q.,Gu Z.N.,Zhuang Q.K.,Electrocatalytic Behavior of Single-Wall Carbon Nanotube Film on a Glassy Carbon Electrode,Analycal Chemistry,2001,73,915-920
    [30]Xu Z.,Chen X.,Qu X.H.,Jia J.B.,Dong S.J.,Single-Wall Carbon Nanotube-Based Voltammetric Sensor and Biosensor,Biosensors and Bioelectronics,2004,20,579-584
    [31]Lee K.,Kwon J.H.,Moon S.L.,Cho W.S.,Ju B.K.,Lee Y.H.,pH Sensitive Multawalled Carbon Nanotubes,Materials Letters,2007,61,3201-3203
    [32]Van Hal R.E.G.,Eijkel J.C.T.,Bergveld P.,A General Model to Describe the Electrostatic Potential at Electrolyte Oxide Interfaces,Advamces in Colloid amd Interface Scoemce,1996,69,31-62
    [33]Abiman P.,Crossley A.,Wildgoose G.G.,Jones J.H.,Compton R.G.,Investigating the Thermodynamic Causes Behind the Anomalously Large Shifts in pK_a Values of Benzoic Acid-Modified Graphite and Glassy Carbon Surfaces,Langmuir,2007,23,7847-7852
    [34]邱军,王国建,屈泽华,苌璐,氧化处理方法与多壁碳纳米管表面羧基含量的关系,新型炭材料,2006,21,269-272
    [35]Chen J.,Hamon M.A.,Hu H.,Chen Y.S.,Rao A.J.,Eklund P.C.,Haddon R.C.,Solution Properties of Single-Walled Carbon Nanotubes,Science,1998,282,95-98
    [36]Martinez M.T.,Callejas M.A.,Benito A.M.,Cochet M.,Seeger T.,Anson A.,Schreiber J.,Gordon C.,Marhic C.,Chauvet O.,Fierro J.L.G.,Maser W.K.,Sensitivity of Single Wall Carbon Nanotubes to Oxidative Processing: Structural Modification,Intercalation and Functionalisation, Carbon, 2003,41, 2247-2256
    [37] Saito T., Matsushige K., Tanaka K., Chemical Treatment and Modification of Multi-Walled Carbon Nanotubes, Physica B, 2002, 323, 280-283
    [38] Monthioux M., Smith B. W., Burteaux B., Claye A., Fischer J. E., Luzzi D. E.,Sensitivity of Single-Walled Carbon Nanotubes to Chemical Processing: An Electron Microscopy Investigation, Carbon, 2001, 39, 1251-1272
    [39] Shinichi N., Masako Y., Kaori H., et al. Effect of Oxidation on Single-Wall Carbon Nanotubes, Chemical Physics Letters, 2000, 328, 374-380
    [40] Monthioux M., Smith B. W., Burteaux B., Claye A., Fischer J. E., Luzzi D. E.,Sensitivity of Single-Wall Carbon Nanotubes to Chemical Processing: An Electron Microscopy Investigation, Carbon, 2001, 39, 771-785
    [41] Mercedes A., Pilar A. C., Delgado J. L., Garcia H., Langa F., Synthesis and Photochemistry of Soluble, Pentyl Estermodified Single Wall Carbon Nanotube,Chemical Physics Letters, 2004, 386, 342-345
    [42] Hu H., Bhowmik P., Zhao B., Hamon, M. A., Itkis, M. E., Haddon, R. C., Determination of the Acidic Sites of Purified Single-Walled Carbon Nanotubes by Acid-Base Titration,Chemical Physics Letters, 2001, 345, 25-28

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700