营养补剂对大鼠不同时相糖原储备及股直肌部分有氧酶活性的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:观察营养补剂对大鼠三周递增负荷训练后体内糖原储备及股直肌中部分有氧代谢酶活性的变化。对比分析不同组别相关指标的差异,探索该营养补剂对大鼠糖原储备不同时相的影响,以及对股直肌中部分有氧氧化酶活性的影响。
     方法:将90只SD雄性大鼠随机分为安静组(C)、运动组(S)和运动加营养组(T),且S、T组依据运动后0h、1h、6h和24h的宰杀时相,再各自随机平均分为4小组。S组和T组进行三周跑台训练,每周训练六天,每天训练一次。第一周训练时间为40min,第二周50min,第三周60min。第一天训练速度为20mmin,随后隔日递增一次,最终增至38m/min。S、T组每日训练前、后15min分别进行一次灌胃,T组服用营养补剂,S、C组服用等量的水。三周后处死,取材测试。
     结果:(1)主效应时相、补剂对不同组间大鼠肝、肌糖原、血糖、INS和股直肌中SDH、MDH的影响差异均具有显著性。(2)S组和T组运动后6h和24h肝、肌糖原含量分别与组内运动后前一时相差异均具有显著性。S组和T组运动后1h血糖与运动后0h相比差异具有显著性。S组和T组运动后24hINS水平与运动后Oh、1h和6h差异均都具有显著性。S组和T组运动后6h SDH和MDH活性与运动后0h差异具有显著性,S组和T组运动后24h SDH和MDH活性与运动后6h差异具有显著性。(3)运动后6h和24h,T组肌糖原与S组差异具有显著性;运动后0h和6h,T组肝糖原与S组差异具有显著性;运动后1h和6h,T组血糖与S组差异具有显著性;运动后1h和24h,T组INS与S组差异具有显著性;运动后0h,T组SDH和MDH与S组差异具有显著性。
     结论:(1)营养补剂可明显促进运动后INS的分泌,维持血糖浓度的恒定,提高运动后肝、肌糖原恢复合成的能力。(2)营养补剂可显著提高T组运动后肝、肌糖原合成及血糖浓度,其中,运动后6h肝、肌糖原合成及血糖浓度恢复能力显著好于S组。(3)营养补剂可明显降低运动后0h胞浆中SDH的活性,并可明显增加运动后OhMDH的活性,从而提高能量供应水平。
Objective:The study observes the effects of nutrition supplement on energy material storage and some rectus femoris aerobic metabolism enzyme level in rats after three weeks incremental exercise. The goal is to probe how the nutrition to promote the different groups with the related data.
     Method:90SD male rats were random organized into control group (C), exercise group (S), and exercise and nutrition group (T). Then, the group S and T were random organized into 4 groups each other in average, according to the kill time of rats, which ordered after exercise 0 hour, after exercise 1 hour, after exercise 6 hours and after exercise 24 hours. They have no differences of weight among all the groups. Among them, group S and T were taken treadmill exercise for 3 weeks. They trained 6 days per week which had a rest on Sunday, and one time every day in the morning. They trained 40 min at the first week, and then the time was added to 50 min at the second week,60 min at the last week. The speed of running on the first day was 20 m/min, then, it was increased every two days, and reached 38 m/min in the end. Group T was taken nutrition supplement 15 min before the exercise and 15min after. Group S was the same all, but the supplement was water. Besides, group C was taken the equal water as group S. They were all put to death with 2% sedative pentobarbital sodium after 3 weeks, took the blood, liver and rectus femoris of rats to test liver glycogen, muscle glycogen, glucose, INS, SDH and MDH, and used SPSS13.0 to dispose statistics.
     Results:(1)Univariated general linear model analysis showed that the main effect nutrition supplement on the liver and muscle Glycogen storage and the level of blood Glucose, serum Insulin, rectus femoris Succinate Dehydrogenas and Malate Dehydrogenase was significant difference between the two groups (P<0.01). (2) One-Way ANOVA showed that the Muscle Glycogen at 6 and 24 hour after exercise was significantly higher than it at the next time within group S and T (P<0.01). The Liver Glycogen at 6 and 24 hour after exercise was significantly higher than it at the next time within group S and T (P<0.01). The Blood Glucose at 1 hour after exercise was significantly higher than it after exercise instantly of group S and T (P<0.01), the Blood Glucose at 6 and 24 hour after exercise was significantly higher than it at 1 hour after exercise of group S and T. The Insulin at 24 hour after exercise was significantly higher than it after exercise instantly and at 1 hour and 6 hour after exercise of group S and T (P<0.01). The rectus femoris Succinate Dehydrogenas at 6 hour after exercise was significantly higher than it after exercise instantly of group S and T. The rectus femoris Malate Dehydrogenase at 6 hour after exercise was significantly higher than it after exercise instantly of group T (P<0.05). (3) T test indicated that the level of Liver Glycogen of group T was significantly higher than that of group S at 6 and 24 hour after exercise (P<0.05). The level of Liver Glycogen of group T was significantly higher than that of group S, after exercise instantly and at 6 hour after exercise (P<0.05). The level of Blood Glucose of group T was significantly higher than that of group S at 1 and 6 hour after exercise (P<0.05). The level of Insulin of group T was significantly higher than that of group S at 1 and 24 hour after exercise (P<0.05). The level of rectus femoris Succinate Dehydrogenas and Malate Dehydrogenase of group T was significantly higher than that of group S after exercise instantly (P<0.05).
     Conclusion:(1) Taking nutrition supplements of the rats can significantly enhance the capacity of the liver and muscle glycogen recovery, can improve the serum level of insulin secretion after exercise, and can slower decline the level of blood glucose to maintain it density. (2) Taking nutrition supplements of the rats can significantly enhance the capacity of the liver and muscle glycogen and blood glucose recovery at 6 hour after exercise. (3) Taking nutrition supplements of the rats can significantly disease the level of rectus femoris Succinate Dehydrogenas in cytoplasm and increase the level of rectus femoris Malate Dehydrogenase to enhance the energy supply after exercise instantly.
引文
[1]冯炜权,冯美云,谢敏豪,等.当前运动生化与营养的几个问题-运动生物化学动态之四[J].北京体育大学学报,2001,Vol.24(1):64-68
    [2]熊正英,李娟,等.某些运动补剂影响运动能力的研究进展.商洛师范专科学校学报,2004,Vol.18(2):1-4
    [3]魏守刚,杨则宜,高红.不同运动训练方式和补剂对大鼠肌糖原生物合成的影响.中国运动医学杂志,2003,Vol.22(1):35-40
    [4]苏德苹.补糖对运动能力的影响.中国临床康复,2006,Vol.(36):125-127
    [5]崔友琼,戴亏秀.补糖与运动能力.体育世界,2008,Vol.6:116-118
    [6]刘振玉.营养补充是最好的恢复手段[J].天津体育学院学报,1995,Vol.10(1):53-56
    [7]田中,袁箭峰.肌糖原研究综述[J].山东体育科技,1997,Vol.19(4):37-39
    [8]薛鹏.补糖对机体运动能力的影响.淮北煤炭师范学院学报,2006,Vol.27(3):47-50
    [9]魏守刚.肌糖原生物合成的几种影响因素研究.北京体育大学博士论文,2001:Vol.21-22,56
    [10]张杰,张洁.运动中激素对糖代谢的调节.洛阳师专学报.1996,Vol.15(5):101-—103
    [11]李璟.刺五加皂甙对大鼠运动后糖代谢及相关激素的影响.北京体育大学硕士学位论文,2005
    [12]李良鸣,等.运动后前糖原和大糖原的恢复规律及其机制研究[J].体育科学,2005,Vol.25(7):25-30
    [13]Goodyear LJ, Hirshman MF, King PS,et al. Skeletal muscle plasma membrane glucose transport and glucose transporter after exercise. J Appl Physiol.1990, Vol.68:193~198
    [14]Price TB, Perseghin G, Duleba A, et al. NMR studies of muscle glycogen synthesis in insulin-resistant offspring of parents with non-insulin-dependent diabetes mellitus immediately after glycogen-depleting exercise. Proc Natl Acad Sci USA.1996, Vol.93:5329~5334
    [15]王亚坤,孙文敬,刘敬泽.D-核糖对大鼠负载游泳后胰岛素、去甲肾上腺素、肾上腺素的影响及其抗疲劳、抗缺氧能力研究.食品科学[J],2008,Vol.29(11):591-596
    [16]熊正英,张婧.迷迭香提取物及大强度耐力训练对大鼠体内糖储备的影响[J].中国运动医学杂志,2004,Vol.23(4):431-433
    [17]周亮.补糖和刺五加调节大鼠运动后糖原恢复的机理研究,北京体育大学博士论文,2006
    [18]叶国鸿,汪正毅,许建生,等.运动与血脂的研究进展[J].北京体育大学学报,2004,Vol.27(7):933-935
    [19]吴昊,黎健冰,冯美云.耐力训练对正常大鼠与糖尿病大鼠糖代谢的影响[J].成都体育学院学报,2004,Vol.30(4):63-67
    [20]JYRI L, MARKKU K, PEKKA K. Blood ketone bodies in congestive heart failure, JAM Coll. Cardiol.1996, Vol.28:665~672
    [21]童涛.有氧耐力训练对不同周龄小鼠骨骼肌代谢酶活性的影响.武汉体育学院硕士论文集,2007
    [22]赵杰修,田野,等.跑台运动和营养补充对大鼠骨骼肌能量代谢酶的影响[J].体育科学,2007,Vol.27(1):67-71
    [23]Wu Y, Liu C, Chen Q. Effect of acupunct on enzymology of motor neuron anterior horn of experimental spinal cord injury in rats [J]. Zhonhguo Zhong Xi Yi Jie he za zhi 1999, Vol.19(10): 740-742
    [24]Wang GL, Jiang BH, Semenza GL. Effeet of altered redox states on expression and DNA binding activity of hypoxia inducible factor 1. Biomchem Biophys Res Conunun,1995, Vol.21(2): 550~556
    [25]毛杉杉,潘同斌,王瑞元.高住低训对大鼠骨骼肌SDH与LDH活性的影响.中国运动医学杂志,2005,Vol.24(5):551-554
    [26]蔡明春,黄庆愿,高任琪,等.缺氧及缺氧复合运动大鼠心肌酶适应性变化.中国运动医学杂志,2006,Vol.25(5):585-588
    [27]田振军,熊正英.过度训练对大鼠心肌局部CK、AST及其同工酶和SOD、LDH活性影响的研究[J].北京体育大学学报,1999,Vol.12:30-33
    [28]马先英,荆兆清.黄芪多糖对大鼠力竭运动后不同时相能量代谢相关酶的影响.成都体育学院学报,2008,Vol.3(34):62-65
    [29]杨奎生,等.大白鼠不同速度跑乳酸拐点和某些酶活性变化,国家体委科研所学报,1990,3(1)
    [30]OLFERT I M, BREEN E C, MATHIEU-COSTELLO O, et al. Skeletal Musele Capillarity and Angiogenic mRNA Levels after Exercise Training in Normoxia and Chronic Hypoxia [J]. J Appl Physiol,2001,91:1176~1184
    [31]吴玲.运动与生物膜结构和功能关系的研究进展[J].中国运动医学杂志.1996,Vol.14(3):152-156
    [32]林琦,江邦景.持续性长时运动与补糖.福建师范大学学报,2000,Vol.16(3):97-100.
    [33]MARK A, FEBBRAIO, JUSTIN K, et al. Pre-exercise carbohydrate ingestion, glucose kinetics, and muscle glycogen use:effect of the glycemic index [J]. J Appl Physiol,2000,89: 1845-1851
    [34]陈吉棣.营养与体能和健康的研究进展[J].体育科学,1998,Vol.18(3):65-69
    [35]鲍勃·默里.液体补充.美国运动医学会的见解[J].体育科学,2000,Vol.20(3):88-91
    [36]伊木清,周丽丽,郑书勤,等.自行车运动员补糖的研究[J].中国运动医学杂志,1999,Vol.18(1):76-78
    [37]顾明杰.果糖对耐久性运动能力的影响[J].体育科学,1996,Vol.11(4):221-224
    [38]王镜岩.生物化学(第三版)[M].北京:高等教育出版社,2002
    [39]路正社,熊正英.支链氨基酸对运动能力影响的研究进展.和田师范专科学校学报,2005,Vol.25(37):1-2
    [40]Tarnopolsky MA. Protein metabolism in strength and endurance activities. In:D.R. Lamb and R. Murray (eds.) Perspectives in Exercise Science and Sports Medicine, Vol.12, The Metabolic Basis of Performance in Exercise and Sports. Cooper Publishing Group,1999, pp. 125~157
    [41]夏志,陈元武,舒宗礼.支链氨基酸对运动影响的研究(综述).安徽体育科技,2005,Vol.26(6):60-62
    [42]黄金丽,欧明毫.支链氨基酸对赛艇运动员极限运动血葡萄糖异生的影响.天津体育学院学报,2006,Vol.21(4):297-298
    [43]Blomstrand E. Effect of sustained exercise on plasma amino acids concentration and on 5-HT mentabolism in six different brain regions in the rat.Acta Physiol Scan,1989, Vol.136
    [44]贺洪,等.运动中补充支链氨基酸对肌肉代谢的影响.中国运动医学杂志,2004,Vol.23(4):461-464
    [45]夏志,等.支链氨基酸与运动的关系.首都体育学院学报,2006,Vol.18(2):125-127
    [46]马晓东.支链氨基酸的抗疲劳作用[J].冰雪运动,2004,Vol.2(2):45-46
    [47]王先远.补充支链氨基酸对运动大鼠心肌、骨骼肌代谢的影响[J].中国运动医学杂志,2002,Vol.21(1):98-99
    [48]夏澜英,谷氨酰胺对运动大鼠心肌和大脑抗氧化作用那个的试验研究.兰州大学硕士论文,2007
    [49]Newsholme EA. Biochemical control logic and metabolism of glutamine [J]. Nutrition.1994, Vol.10(2):178~179
    [50]Bowtell JL, Gelly K, Jackman ML, et al. Effect of oral glutamine on whole body carbohydrate storage during recovery from exhaustive exercise. J Appl Physiol.1999, Vol.86(6): 1770~1777
    [51]彭莉.谷氨酰胺代谢与运动[J].中国体育科技,2001,Vol.37(4):36
    [52]Varnier M, Leese GP, Thompson J, Rennie MJ. Stimulatory effect of glutamine on glycogen accumulation in human sketetal muscle. Am J Physiol.1995, Vol.269(2 Pt 1):E309~E315
    [53]熊正英,战旗.谷氨酰胺与运动能力的研究进展.西安体育学院学报,2001,Vol.18(4):30-32
    [54]何斌.维生素在糖、脂肪、氨基酸代谢中的作用.西藏科技,1999,Vol.87:42-43
    [55]Yokoshiki H, Sunagawa M, Seki T, et al. ATP-sensitive K+ channels in pancreatic cardiac, and vascular smooth muscle cells. Am J Physiol,1998, Vol.274(Pt 1):C25~3
    [56]孙常义,王明辉,等.四君子汤对运动后不同类型肌纤维作用的细胞化学变化[J].吉林大学学报.2006,Vol.32(4):618-620
    [57]应瑞春,刘英学,等.红毛五加多糖对解除运动后大鼠骨骼肌疲劳作用的组织化学研究[J].西安体育学院学报,2006,Vol.23(2):70-83
    [58]张玉亮,张贞良,等.平衡阴阳口服液杭疲劳、抗应激的实验研究[J].海军医学杂志,2002,Vol.23(1):6-8
    [59]余谦,等.中药复方补剂和清剂杭体力性疲劳作用的研究[J].中国运动医学杂志,1999,18(4):300-305
    [60]岳春林,张宗豪.蒙古黄茂对持续运动大鼠糖代谢的影响[J].苏州大学学报,2006,Vol.22(2):86-88
    [61]REN J M, BARUCCIN, MARSHALL B A, et al. Transgenic M ice Over expressing GLUT-1 Protein in Muscle Exhibit Increased Muscle Glycogenesis After Exercise[J]. Am J Physiol Endocrinol Metab,2000, Vol.278(4):E588~E592
    [62]Tan MH, Bonen A, Watson-wright W, et al. Muscle glycogen repletion after exercise in trained normal and diabetic rats. J Appl Physiol,1984, Vol.57:1404~1408
    [63]Hickner RC, Fisher JS, Hansen PA, et al. Muscle glycogen accumulation after endurance exercise in trained and untrained individuals. J Appl Physiol,1997, Vol.83:897~903
    [64]Krzentowski G, Pirnay F, Luyckx AS, et al. Metabolic adaptation in post-exercise recovery [J]. Clim Physiol.1982, Vol. (2):277~288
    [65]魏守刚,孙廷萱.糖与耐力运动.山东体育科技.1996,Vol.18(1):58-60
    [66]张昌颖,主编B生物化学[M],第2版.北京:人民卫生出版社,1978:536-538
    [67]Maehlum S, Felig P, Wahren J, et al. Splanchnic glucose and muscle glycogen metabolism after glucose feeding during postexercise recovery[J]. Am J Physiol,1978, Vol.235:E255~E260
    [68]Dentowski A, Opaszowski BH, Blachnio D, et al. Effect of creatine supplementation on the performance in supramaximal intermittent execrise. Biology Sport 1997, Vol.14:291~298
    [69]Hue L, Gaussin V, Krause U, et al. Anabolic response to cell swelling in the liver. In:Zahnd GR, wollheim CB, eds. Contributions of Physiology to the understanding of diabetes. Spinger, 1997:10~23
    [70]Lavoinne A, Baquet A, Hue L. Stimulation of glycogen synthesis and lipogenesls by glutamine in isolated rat nepotoeytes. Bioehem J 1987, Vol.248:429~437
    [71]Meijer AJ, Baquet A, Gustafson L, et al. Mechanism of activation of liver glycogen synthase by swelling. J Biol Chem 1992, Vol.267:5823~5828
    [72]Mouterde O, Claeyssens S, Chedevllle A, et al. Glutamine is a good substrate for glycogen synthesis in isolated hepatoeytes from 72-h starved rat.Biochem J 1992,Vol.288:795~799
    [73]RYDER J W, KAWANO Y, GALU SKA D, et al. Post exercise Glucose Up take and Glycogen Synthesis in Skeletal Muscle From GLU T4-deficient Mice [J]. FA SEB J,1999, Vol.13(15):2246~2256
    [74]肖明珠,郭庆芳.动物运动性疲劳方法学研究之——不同刺激方法对大鼠跑台运动疲劳及恢复期糖代谢的影响[J].中国运动医学杂志,1998,Vol.17(4):334-338
    [75]ANTHONY T G, ANTHONY J C, LEWITL M S, et al. Time Course Changes in TGFBP-1 After Treadmill Exercise and Post exercise Food Intake in Rats[J]. Am J Physiol Endocrinol Metab,2001, Vol.280(4):E650~E656
    [76]Campbell RJ, Jasmin BJ, Michel RN Succinatedehy drogenase activity with in synaptic and extrasy naptic comparement soffunctionaly-oveloaded rat skeletal muscle fibers [J] Pflugers A rch, 1996, Vol.431(5):797~799
    [77]高和,李燕玉,沈丽英,等.耐力运动锻炼对正常及肺气肿大鼠膈肌、腓肠肌和心肌氧化性能的影响[J].中国运动医学杂志,2000,Vol.19(3)
    [78]王茂叶.间歇性低氧训练对小鼠机体细胞色素氧化酶和琥珀酸脱氮酶的影响[J].天津体育学院学报,2005,Vol.20(6):26-28
    [79]汪艳,刘春断,易有荣,等.缺氧缺糖心肌细胞城琥珀酸脱氢酶的定量分析[J].湖北医科大学学报,1997,Vol.18(3):223-224
    [80]吕福东,温祥云,陈铁军,等.性心肌缺血早期超微结构和琥珀酸脱氢酶变化的定童分析[J].首都医学院学报,1994,Vol.15(4):284-286
    [81]王世香.复方壮阳中药对大鼠股四头肌能量代谢的影响:[硕士学位论文].曲阜:曲阜师范大学,2007
    [82]任超学,闫巧珍,黄海,阮凌.两种低氧模式对大鼠骨骼肌SDH和CCO的影响.中国体育科技,2009,Vol.45(2):112-116
    [83]李开刚,陆绍中,冯连世,等.不同强度耐力训练后大鼠骨骼肌酶活性适应性变化的研究[J].中国运动医学杂志,2002,Vol.21(2):166-169
    [84]王荣辉,邢文华,刘桂华,等.模拟不同海拔高度低氧训练对大鼠腓肠肌LDH和MDH活性的影响[J].体育科学1998,Vol.18(5):15-18
    [85]曹强军.复方中药制剂对运动训练大鼠股四头肌糖代谢相关酶活性影响的研究:[硕士学位论文].曲阜:曲阜师范大学,2009
    [86]卡尔森,张增明译.生物化学精华[M].上海:上海科学普及出版社,1989,88-242

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700