脂联素基因启动子的单核苷酸多态性(SNPs)、低脂联素血症和糖尿病之间的关联性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
[背景]脂联素是一种由3T3-L1脂肪细胞分泌的脂泌素。应用不同方法,脂联素被四个机构所确认,所以脂联素又被称为:ACRP30、adipoQ、APM1和GBP28。脂联素在结构上属于C1Q家族,由244个氨基酸组成,包括4个域。N端信号肽含有18个氨基酸,用于组成不同的寡聚体;可变域含有23个氨基酸,是最大的区分各物种的氨基酸序列;胶原域含有66个氨基酸,在结构上与胶原类似;C端球状域含有137个氨基酸,是与效应物结合的受体。[目的]本研究旨在揭示:1、导致低脂联素血症的环境因素和遗传因素;2、从低脂联素血症到糖尿病的机制;3、低脂联素血症引起的糖尿病的诊断和治疗。[方法]共有186名汉族个体被纳入到本研究之中,包括81名男性和105名女性,在延边生活至少5年。检测了他们的总胆固醇(TC)、甘油三酯(TG)、高密度脂蛋白胆固醇(HDL-C)、低密度脂蛋白胆固醇(LDL-C)、空腹血浆葡萄糖(FPG)、空腹血浆胰岛素(FPI)、血浆脂联素(PA)。利用PCR和测序筛选单核苷酸多态性(SNP)。ANOVA和回归用于分析数据间的关系。[结果]PA和位于脂联素基因启动子上的2个SNP:-11426A>G和11377C>G及其构成的基因型和单倍型之间没有统计学意义。PA与体重指数(BMI)成反比(b=-0.17)。FPI与PA成正比(b=1.19)。HDL-C与PA成正比(b=0.03)。60%的低脂联素血症患者患有糖尿病,同时69%的糖尿病患者是由低脂联素血症引起。FPI在单纯低脂联素血症组和低脂联素血症引起的糖尿病组明显低于正常组(p=0.021和p<0.001)。胰岛素抵抗指数(HOMA-IR)在其它原因引起的糖尿病组明显高于正常组(p<0.001)。但是HOMA-IR在低脂联素血症引起的糖尿病组和正常组之间没有统计学意义(p=0.093)。[结论]1、肥胖可以降低血浆脂联素水平;2、脂联素可以刺激高密度脂蛋白和胰岛素分泌并且低胰岛素血症是低脂联素血症引起的糖尿病的直接原因;3、FPG≥7.0 mmol/l和PA<4.68μg/ml可以作为在延边汉族人中低脂联素血症引起的糖尿病的诊断标准以及低脂联素血症引起的糖尿病的相应的治疗途径。
This study was going to investigate: 1. Environmental and genetic factors leading to hypoadiponectinemia; 2. Mechanism from hypoadiponectinemia to diabetes; 3. Diagnosis and treatment of hypoadiponectinemia-derived diabetes. A total of 186 subjects were involved in this study, including 81 men and 105 women. They were all Chinese and lived in Yanbian for at least 5 years. Total cholesterol (TC), triglyceride (TG), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), Fasting plasma glucose (FPG), fasting plasma insulin (FPI), and plasma adiponectin (PA) were measured. PCR and sequencing were used for screening of single nucleotide polymorphisms (SNPs). ANOVA and regression were used for analysis of relations of data. No significant difference of PA between genotypes or haplotypes of SNPs of -11426A>G and -11377C>G which are on the promoter of adipoctin gene. PA was inversely proportional to body mass index (BMI) (b = -0.17). FPI was directly proportional to PA (b = 1.19). HDL-C is directly proportional to PA (b = 0.03). 60% of hypoadiponectinemia patients suffered from diabetes and 69% of diabetic patients were hypoadiponectinemia-derived diabetic patients. FPI in simple hypoadiponectinemia group and in hypoadiponectinemia-derived diabetic group was significantly lower than in normal group (p = 0.021 and p < 0.001 respectively). Homeostasis model assessment of insulin resistance (HOMA-IR) in other cause-derived diabetic group was significantly higher than in normal group (p < 0.001). But there was no significant difference of HOMA-IR between hypoadiponectinemia-derived diabetic group and normal group (p = 0.093). Following conclusions had been drawn: 1. Obesity could decrease adiponectnemia. 2. Adiponectin could stimulate HDL and insulin secretion and the hypoinsulinemia was the direct cause of hypoadiponectinemia-derived diabetes. 3. FPG≥7.0 mmol/l and PA < 4.68μg/ml could be the diagnosis criterion of hypoadiponectinemia-derived diabetes in Yanbian Chinese and the relative ways to treat the hypoadiponectinemia-derived diabetes.
引文
American Diabetes Association. (2006). Diagnosis and classification of diabetes mellitus. Diabetes Care 29: S43-S48.
    Balagopal, P., George, D., Yarandi, H., Funanage, V., and Bayne, E. (2005). Reversal of obesity-related hypoadiponectinemia by lifestyle intervention: a controlled, randomized study in obese adolescents. J. Clin. Endocrinol. Metab. 90: 6192-6197.
    Daimon, M., Oizumi, T., Saitoh, T., Kameda, VV., Hrata, A., Yamaguchi, H., Ohnuma, H., Igarashi, M., Tominaga, M., and Kato, T. (2003). Decreased serum levels of adiponectin are a risk factor for the progression to type 2 diabetes in the Japanese population: The Funagata study. Diabetes Care 26: 2015-2020.
    Duncan, B.B., Schmidt, M.I., Pankow, J.S., Bang, H., Couper, D., Ballantyne, C.M., Hoogeveen, R.C., and Heiss, G. (2004). Adiponectin and the development of type 2 diabetes: The atherosclerosis risk, in communities study. Diabetes 53: 2473-2478.
    Gaunt, T.R., Rodriguez, S., and Day, I.N.M. (2007). Cubic exact solutions for the estimation of pairwise haplotype frequencies: implications for linkage disequilibrium analyses and a web tool 'CubeX'. BMC Bioinformatics 8: 428-436.
    Hanley, A.J.G., Bowden, D., Wagenknecht, L.E., Balasubramanyam, A., Laugfeld, C., Saad, M.F., Rotter, J.I., Guo, X., Chen, Y-D.I., Bryer-Ash, M., Norris, J.M., and Haffner, S.M. (2007). Associations of adiponectin with body fat distribution and insulin sensitivity in nondiabetic Hispanics and African-Americans. J. Clin. Endocrinol. Metab. 92: 2665-2671.
    Hara, K., Boutin, P., Mori, Y., Tobe, K., Dina, C., Yasuda, K., Yamauchi, T., Otabe, S., Okada, T., Eto, K., Kadowaki ,H., Hagura, R., Akanuma, Y., Yazaki, Y., Ngai, R., Taniyama, M., Matsubara, K., Yoda, M., Nakano, Y., Kimura, S., Tomita, M., Kimura, S., Ito, C., Froguel, P., and Kasowaki, T. (2002). Genetic variation in the gene encoding adiponectin is associated with an increased risk of type 2 diabetes in the Japanese population. Diabetes 51: 536-540.
    Hjelmes(?)th, J., Flyvbjerg, A., Jenssen, T., Frystyk, J., Ueland, T., Hagen, M., and Hartmann, A. (2006). Hypoadiponectinemia is associated with insulin resistance and glucose intolerance after renal transplantation: impact of immunosuppressive and antihypertensive drug therapy. Clin. J. Am. Soc. Nephrol. 1: 575-582.
    
    Hotta, K., Funahashi, T., Arita, Y., Takahashi, M., Matsuda, M., Okamoto, Y., Iwahashi, H., Kuriyama, H., Ouchi, N., Maeda, K., Nishida, M., Kihara, S., Sakai, N., Nakajima, T., Hasegawa, K., Muraguchi, M., Ohmoto, Y., Nakamura, T., Yamashita, S., Hanafusa, T., and Matsuzawa, Y. (2000). Plasma concentrations of a novel, adipose-specific protein, adiponectin, in type 2 diabetic patients. Arterioscler. Thromb. Vasc. Biol. 20: 1595-1599.
    Hu, E., Liang, P., and Spiegelman, B.M. (1996). AdipoQ is a novel adipose-specific gene dysregulated in obesity. J. Biol. Chem. 271: 10697-10703.
    Iglseder, B., Mackevics, V., Stadlmayer, A., Tasch, G., Ladurner, G., and Paulweber, B. (2005). Plasma adiponectin levels and sonographic phenotypes of subclinical carotid artery atherosclerosis. Stroke 36: 2577-2582.
    Iwaki, M., Matsuda, M., Maeda, N., Funahashi, T., Matsuzawa, Y., Makishima, M., and Shimomura, I. (2003) Induction of adiponectin, a fat-derived antidiabetic and antiatherogenic factor, by nuclear receptors. Diabetes 52: 1655-1663.
    Kissebah, A.H., Sonnenberg, G.E., Myklebust, J., Goldstein, M., Broman, K., James, R.G., Marks, J.A., Krakower, G.R., Jacob, H.J., Weber, J., Martin, L., Blangero, J., and Comuzzie, A.G. (2000). Quantitative trait loci on chromosomes 3 and 17 influence phenotypes of the metabolic syndrome. Proc. Natl. Acad. Sci. USA 97: 14478-14483.
    Kondo, H., Shimomura, I., Matsukawa, Y., Kumada, M., Takahashi, M., Matsuda, M., Ouchi, N., Kihara, S., Kawamoto, T., Sumitsuji, S., Funahashi, T., and Matsuzawa, Y. (2002). Association of adiponectin mutation with type 2 diabetes: A candidate gene for the insulin resistance syndrome. Diabetes 51: 2325-2328.
    Krakoff, J., Funahashi, T., Stehouwer, C.D.A., Schalkwijk, C.G., Tanaka, S., Matsuzawa, Y., Kobes, S., Tataranni, P.A., Hanson, R.L., Knowler, W.C., and Lindsay, R.S. (2003). Inflammatory markers, adiponectin, and risk of type 2 diabetes in the Pima Indian. Diabetes Care 26: 1745-1751.
    Lindsay, R.S., Funahashi, T., Hanson, R.L., Matsuzawa, Y., Tanaka, S., Tataranni, P., Knowler, W.C., and Krakoff, J. (2002). Adiponectin and development of type 2 diabetes in the Pima Indian population. Lancet 360: 57-58.
    Maeda, K., Okubo, K., Shimomura, I., Funahashi, T., Matsuzawa, Y., and Matsubara, K. (1996). cDNA cloning and expression of a novel adipose-specific collagen-like factor, apM1 (adipose most abundant gene transcript 1). Biochem. Biophys. Res. Commun. 221: 286-289.
    Maeda, N., Takahashi, M., Funahashi, T., Kihara, S., Nishizawa, H., Kishida, K., Nagaretani, H., Matsuda, M., Komuro, R., Ouchi, N., Kuriyama, H., Hotta, K., Nakamura, T., Shimomura, I., and Matsuzawa, Y. (2001). PPARγ ligands increase expression and plasma concentrations of adiponectin, an adipose-derived protein. Diabetes 50: 2094-2099.
    Menzaghi, C., Ercolino, T., Paola, R.D., Berg, A.H., Waaram, J.H., Scherer, P.E., Trischitta, V., and Doria, A. (2002). A haplotype at the adiponectin locus is associated with obesity and other features of the insulin resistance syndrome. Diabetes 51: 2306-2312.
    Nakano, Y., Tobe, T., Choi-Miura, N.H., Mazda, T., and Tomita, M. (1996). Isolation and characterization of GBP28, a novel gelatin-binding protein purified from human plasma. J. Biochem. 120: 803-812.
    Richards, A.A., Stephens, T., Charlton, H.K., Jones, A., Macdonald, G.A., Prins, J.B., and Whitehead, J.P. (2006). Adiponectin multimerization is dependent on conserved lysines in the collagenous domain: Evidence for regulation of multimerization by alterations in posttranslational modifications. Mol. Endocrinol. 20: 1673-1687.
    Scherer, P.E., William, S., Fogliano, M., Baldini, G., Lodish, H.F., and Fogliano, M. (1995). A novel serum protein similar to C1q, produced exclusively in adipocytes. J. Biol. Chem. 270: 26746-26749.
    Schwarz, P.E.H., Towers, G.W., Fischer, S., Govindarajalu, S., Schulze, J., Bornstein, S.R., Hanefeld, M., and Vasseur, F. (2006). Hypoadiponectinemia is associated with progression toward type 2 diabetes and genetic variation in the AdipoQ gene promoter. Diabetes Care 29: 1645-1650.
    Snehalatha, C., Mukesh, B., Simon, M., Viswanathan, V., Haffner, S.M., and Ramachandran, A. (2003). Plasma adiponectin is an independent predictor of type 2 diabetes in Asian Indians. Diabetes Care 26: 3226-3229.
    Soliman, P.T., Wu, D., Tortolero-Luna, G., Schmeler, K.M., Slomovitz, B.M., Bray, M.S., Gershenson, D.M., and Lu, K.H. (2006). Association between adiponectin, insulin resistance, and endometrial cancer. Cancer 106: 2376-2381.
    Spranger, J., Kroke, A., M(o|¨)hlig, M., Bergmann, M., Ristow, M., Boeing, H., and Pfeiffer, A. (2003) Adiponectin and protection against type 2 diabetes mellitus. Lancet 361: 226-228.
    Stumvoll, M., Tschritter, O., Fritsche, A., Staiger, H., Renn, W., Weisser, M., Machicao, F., and Haring, H. (2002). Association of the T-G polymorphism in adiponectin (exon 2) with obesity and insulin sensitivity: Interaction with family history of type 2 diabetes. Diabetes 51: 37-41.
    Takahashi, M., Arita, Y., Yamagata, K., Matsukawa, Y., Okutomi, K., Horie, M., Shimomura, I., Hotta, K., Kuriyama, H., Kihara, S., Nakamura, T., Yamashita, S., Funahashi, T., and Matsuzawa, Y. (2000). Genomic structure and mutations in adipose-specific gene, adiponectin. Intl. J. Obes. 24: 861-868.
    Virsaladze, D., Adamia, N., Charkviani, N., Skhirtladze, M., and Lomtadze, I. (2007) Plasma adipocytokine levels in obese and insulin resistant postmenopausal females with type 2 diabetes. Georgian Med. News 142: 25-28.
    Waki, H., Yamauchi, T., Kamon, J., Ito, Y., Uchida, S., Kita, S., Hara, K., Hada, Y., Vasseur, F., Froguel, P., Kimura, S., Nagai, R., and Kadowaki, T. (2003). Impaired multimerization of human adiponectin mutants associated with diabetes. J. Biol. Chem. 278: 40352-40363.
    Weyer, C., Funahashi, T., Tanaka, S., Hotta, K., Matsuzawa, Y., Pratley, R.E., and Tataranni, P.A. (2001). Hypoadiponectinemia in obesity and type 2 diabetes: close association with insulin resistance and hyperinsulinemia. J. Clin. Endocrinol. Metab. 86: 1930-1935.
    Wong, G.W., Wang, J., Hug, C., Tsao, T.S., and Lodish, H.F. (2004). A family of Acrp30/adiponectin structural and functional paralogs. Proc. Natl. Acad. Sci. USA 101: 10302-10307.
    Woo, J.G., Dolan, L.M., Deka, R., Kaushal, R.D., Shen, Y., Pal, P., Daniels, S.R., and Martin, L.J. (2006). Interactions between noncontiguous haplotypes in the adiponectin gene ACDC are associated with Plasma adiponectin. Diabetes 55: 523-529.
    Yamamoto, Y., Hirose, H., Sairo, I., Nishikai, K., and Saruta, T. (2004). Adiponectin, an adipocyte-derived protein, predicts future insulin-resistance: Two-year follow-up study in Japanese population. J. Clin. Endocrinol. Metab. 89: 87-90.
    Yamauchi T, Kamon J, Waki H, Murakami K, Motojima K, Komeda K, Ide T, Kubota N, Terauchi Y, Tobe K, Miki H, Tsuchida A, Akanuma Y, Nagai R, Kimura S, Kadowaki T. (2001). The mechanisms by which both heterozygous peroxisome proliferator-activated receptor gamma (PPARgamma) deficiency and PPARgamma agonist improve insulin resistance. J. Biol. Chem. 276: 41245-41254.
    Yatagai, T. (2003). Hypoadiponectinemia is associated with visceral fat accumulation and insulin resistance in Japanese men with type 2 diabetes mellitus. Metabolism 52: 1274-1278.
    Yoda-Murakami, M., Taniguchi, M., Takahashi, K., Kawamata, S., Saito, K., Choi-Miura, N.H., and Tomita, M. (2001). Change in expression of GBP28/adiponectin in carbon tetrachloride-administrated mouse liver. Biochem. Biophys. Res. Commun. 285: 372-377.
    Yu, J.G., Javorschi, S., Hevener, A.L., Kruszynska, Y.T., Norman, R.A., Sinha, M., and Olefsky, J.M. (2002). The effect of thiazolidinediones on plasma adiponectin levels in normal, obese, and type 2 diabetic subjects. Diabetes 51: 2968-2974.
    Beltowski, J. (2003). Adiponectin and resistin-new hormones of white adipose tissue. Med. Sci. Monit. 9: RA55-RA61.
    Chuang, L.M., Chiu, Y.F., Sheu, W.H., Hung, Y.J., Ho, L.T., Grove, J., Rodriguez, B., Quertermous, T., Chen, Y.D., Hsiung, C.A., and Tai, T.Y. (2004). Biethnic comparisons of autosomal genomic scan for loci linked to plasma adiponectin in populations of Chinese and Japanese origin. J. Clin. Endocrinol. Metab. 89: 5772-5778.
    Daimon, M., Oizumi, T., Saitoh, T., Kameda, W., Hrata, A., Yamaguchi, H., Ohnuma, H., Igarashi, M., Tominaga, M., and Kato, T. (2003). Decreased serum levels of adiponectin are a risk factor for the progression to type 2 diabetes in the Japanese population: The Funagata study. Diabetes Care 26: 2015-2020.
    Dresner, A., Laurent, D., Marcucci, M., Griffin, M.E., Dufour, S., Cline, G.W., Slezak, L.A., Andersen, D.K., Hundal, R.S., Rothman, D.L., Petersen, K.F., and Shulman, G.I. (1999). Effects of free fatty acids on glucose transport and IRS-1-associated phosphatidylinositol 3-kinase activity. J. Clin. Invest 103: 253-259.
    Duncan, B.B., Schmidt, M.I., Pankow, J.S., Bang, H., Couper, D., Ballantyne, C.M., Hoogeveen, R.C., and Heiss, G. (2004). Adiponectin and the development of type 2 diabetes: The atherosclerosis risk in communities study. Diabetes 53: 2473-2478.
    Evans, R.M., Barish, G.D., and Wang, Y.X. (2004). PPARs and the complex journey to obesity. Nat. Med. 10:355-361.
    
    Frieman, J.M. (2000). Obesity in the new millennium. Nature 404: 632-634.
    Griffin, M.E., Marcucci, M.J., Cline, G.W., Bell, K., Barucci, N., Lee, D., Goodyear, L.J., Kraegen, E.W., White, M.F., and Shulman, G.I. (1999). Free fatty acid-induced insulin resistance is associated with activity of protein kinase C theta and alterations in the insulin signaling cascade. Diabetes 48: 1270-1274.
    Gu, H.F., Abulaiti, A., Ostenson, C.G., Humphreys, K., Wahlestedt, C., Brookes, A.J., and Efendic, S. (2004). Single nucleotide polymorphisms in the proximal promoter region of the adiponectin (APM1) gene are associated with type 2 diabetes in Swedish Caucasians. Diabetes 53: S31-S35.
    
    Guo, X., Saad, M.F., Langefeld, C.D., Williams, A.H., Cui, J., Taylor, K.D., Norris, J.M., Jinagouda, S.,
    Darwin, C.H., Mitchell, B.D., Bergman, R.N., Sutton, B., Chen, Y.D., Wagenknecht, L.E., Bowden, D.W., and Rotter, J.I. (2006). Genome-wide linkage of plasma adiponectin reveals a major locus on chromosome 3q distinct from the adiponectin structural gene: The IRAS family study. Diabetes 55: 1723-1730.
    Hara, K., Boutin, P., Mori, Y., Tobe, K., Dina, C., Yasuda, K., Yamauchi, T., Otabe, S., Okada, T., Eto, K., Kadowaki ,H., Hagura, R., Akanuma, Y., Yazaki, Y., Ngai, R., Taniyama, M., Matsubara, K., Yoda, M., Nakano, Y., Kimura, S., Tomita, M., Kimura, S., Ito, C., Froguel, P., and Kasowaki, T. (2002). Genetic variation in the gene encoding adiponectin is associated with an increased risk of type 2 diabetes in the Japanese population. Diabetes 51: 536-540.
    Heid, I.M., Wagner, S.A., Gohlke, H., Iglseder, B., Mueller, J.C., Cip, P., Ladurner, G., Reiter, R., Stadlmayr, A., Mackevics, V., Illig, T., Kronenberg, F., and Paulweber, B. (2006). Genetic architecture of the APM1 gene and its influence on adiponectin plasma levels and parameters, of the metabolic syndrome in 1,727 healthy Caucasians. Diabetes 55: 375-384.
    Hirose, H., Kawai, T., Yamamoto, Y., Taniyama, M., Tomita, M., Matsubara, K., Okazaki, Y., Ishii, T., Oguma, Y., Takei, I., and Saruta, T. (2002). Effects of pioglitazone on metabolic parameters, body fat distribution, and serum adiponectin levels in Japanese male patients with type 2 diabetes. Metabolism 51: 314-317.
    Hotamisligil, G.S. (1999). The role of TNFa and TNF receptors in obesity and insulin resistance. J. Intern. Med. 245: 621-625.
    Hu, E., Liang, P., and Spiegelman, B.M. (1996). AdipoQ is a novel adipose-specific gene dysregulated in obesity. J. Biol. Chem. 271: 10697-10703.
    Hug, C., Wang, J., and Ahmad, N.S. (2004). T-cadherin is a receptor for hexameric and high-molecular-weight forms of Acrp30/adiponectin. Proc. Natl. Acad. Sci. USA 101: 10308-10313.
    Iwaki, M., Matsuda, M., Maeda, N., Funahashi, T., Matsuzawa, Y., Makishima, M., and Shimomura, I. (2003) Induction of adiponectin, a fat-derived antidiabetic and antiatherogenic factor, by nuclear receptors. Diabetes 52: 1655-1663.
    Kahn, S.E., Montgomery, B., Howell, W., Ligueros-Saylan, M., Hsu, C.H., Devineni, D., McLeod, F., Horowitz, A., and Foley, J.E. (2001). Importance of early phase insulin secretion to intravenous glucose tolerance in subjects with type 2 diabetes mellitus. J. Clin. Endocrinol. Metab. 86: 5824-5829.
    
    Kondo, H., Shimomura, I., Matsukawa, Y., Kumada, M., Takahashi, M., Matsuda, M., Ouchi, N.,
    Kihara, S., Kawamoto, T., Sumitsuji, S., Funahashi, T., and Matsuzawa, Y. (2002). Association of adiponectin mutation with type 2 diabetes: A candidate gene for the insulin resistance syndrome. Diabetes 51: 2325-2328.
    Krakoff, J., Funahashi, T., Stehouwer, C.D.A., Schalkwijk, C.G., Tanaka, S., Matsuzawa, Y., Kobes, S., Tataranni, P.A., Hanson, R.L., Knowler, W.C., and Lindsay, R.S. (2003). Inflammatory markers, adiponectin, and risk of type 2 diabetes in the Pima Indian. Diabetes Care 26: 1745-1751.
    Lindsay, R.S., Funahashi, T., Hanson, R.L., Matsuzawa, Y., Tanaka, S., Tataranni, P., Knowler, W.C., and Krakoff, J. (2002). Adiponectin and development of type 2 diabetes in the Pima Indian population. Lancet 360: 57-58.
    Lindsay, R.S., Funahashi, T., Krakoff, J., Matsuzawa, Y., Tanaka, S., Kobes, S., Bennett, P.H., Tataranni, P.A., Knowler, W.C., and Hanson, R.L. (2003). Genome-wide linkage analysis of serum adiponectin in the Pima Indian population. Diabetes 52: 2419-2425.
    Mackevics, V., Heid, I.M., Wagner, S.A., Cip, P., Doppelmayr, H., Lejnieks, A., Gohlke, H., Ladurner, G., Illig, T., Iglseder, B., Kronenberg, F., and Paulweber, B. (2006). The adiponectin gene is associated with adiponectin levels but not with characteristics of the insulin resistance syndrome in healthy Caucasians. Eur. J. Hum. Genet. 14: 349-356.
    Maeda, K., Okubo, K., Shimomura, I., Funahashi, T., Matsuzawa, Y., and Matsubara, K. (1996). cDNA cloning and expression of a novel adipose-specific collagen-like factor, apM1 (adipose most abundant gene transcript 1). Biochem. Biophys. Res. Commun. 221: 286-289.
    Mao, X., Kikani, C.K., Riojas, R.A., Langlais, P., Wang, L., Ramos, F.J., Fang, Q., Christ-Roberts, C.Y., Hong, J.Y., Kim, R.Y., Liu, F., and Dong, L.Q. (2006). APPL1 binds to adiponectin receptors and mediates adiponectin signaling and function. Nat. Cell Biol. 8: 516-523.
    Menzaghi, C., Ercolino, T., Paola, R.D., Berg, A.H., Waaram, J.H., Scherer, P.E., Trischitta, V., and Doria, A. (2002). A haplotype at the adiponectin locus is associated with obesity and other features of the insulin resistance syndrome. Diabetes 51: 2306-2312.
    Menzaghi, C., Ercolino, T., Salvemini, L., Coco, A., Kim, S.H., Fini, G., Doria, A., and Trischitta, V. (2004). Multigenic control of serum adiponectin levels: Evidence for a role of the APM1 gene and a locus on 14q13. Physiol. Genomics 19: 170-174.
    Menzaghi, C., Trischitta, V., and Doria, A. (2007). Genetic influences of adiponectin on insulin resistance, type 2 diabetes and cardiovascular disease. Diabetes 56: 1198-1209.
    Mori, Y., Otabe, S., Dina, C., Yasuda, K., Populaire, C., Lecoeur, C., Vatin, V., Durand, E., Hara, K., Okada, T., Tobe, K., Boutin, P., Kadowaki, T., and Froguel, P. (2002). Genome-wide search for type 2 diabetes in Japanese affected sib-pairs confirms susceptibility genes on 3q, 15q, and 20q and identifies two new candidate loci on 7p and 11p. Diabetes 51: 1247-1255.
    
    Nakano, Y., Tobe, T., Choi-Miura, N.H., Mazda, T., and Tomita, M. (1996). Isolation and characterization of GBP28, a novel gelatin-binding protein purified from human plasma. J. Biochem. 120: 803-812.
    
    Pajvani, U.B., Du, X., Combs, T.P., Berg, A.H., Rajala, M.W., Schulthess, T., Engel, J., Brownlee, M., and Scherer, P.E. (2003). Structure-function studies of the adipocyte-secreted hormone Acrp30/ adiponectin. Implications for metabolic regulation and bioactivity. J. Biol. Chem. 278: 9073-9085.
    
    Pajvani, U.B., Hawkins, M., Combs, T.P., Rajala, M.W., Doebber, T., Berger, J.P., Wagner, J.A., Wu, M., Knopps, A., Xiang, A.H., Utzschneider, K.M., Kahn, S.E., Olefsky, J.M., Buchanan, T.A., and Scherer, P.E. (2004). Complex distribution, not absolute amount of adiponectin, correlates with thiazolidinedione-mediated improvement in insulin sensitivity. J. Biol. Chem. 279: 12152-12162.
    
    Petrone, A., Zavarella, S., Caiazzo, A., Leto, G., Spoletini, M., Potenziani, S., Osborn, J., Vania, A., and Buzzetti, R. (2006).The promoter region of the adiponectin gene is a determinant in modulating insulin sensitivity in childhood obesity. Obesity 14: 1498-1504.
    
    Pollin, T.I., Tanner, K., O'Connell, J.R., Ott, S.H., Damcott, C.M., Shuldiner, A.R., McLenithan, J.C., and Mitchell, B.D. (2005). Linkage of plasma adiponectin levels to 3q27 explained by association with variation in the APM1 gene. Diabetes 54: 268-274.
    
    Richards, A.A., Stephens, T., Charlton, H.K., Jones, A., Macdonald, G.A., Prins, J.B., and Whitehead, J.P. (2006). Adiponectin multimerization is dependent on conserved lysines in the collagenous domain: Evidence for regulation of multimerization by alterations in posttranslational modifications. Mol. Endocrinol. 20: 1673-1687.
    
    Scherer, P.E., William, S., Fogliano, M., Baldini, G., Lodish, H.F., and Fogliano, M. (1995). A novel serum protein similar to C1q, produced exclusively in adipocytes. J. Biol. Chem. 270: 26746-26749.
    
    Shapiro, L., and Scherer, P.E. (1998). The crystal structure of a complement-1q family protein suggests an evolutionary link to tumor necrosis factor. Curr. Biol. 8: 335-338.
    
    Shimonura, I., Funahashi, T., Takahashi, M., Maeda, K., Kotani, K., Nakamura, T., Yamashita, S., Miura, M., Fukuda, Y., Takemura, K., Tokunaga, K., and Matsuzawa, Y. (1996). Enhanced expression of PAI-1 in visceral fat: Possible contributor to vascular disease in obesity. Nat. Med. 2: 800-803.
    
    Shulman, B.M., and Flier, J.S. (1996). Adipogenesis and obesity: Rounding out the big picture. Cell 87: 377-389.
    Snehalatha, C., Mukesh, B., Simon, M., Viswanathan, V., Haffner, S.M., and Ramachandran, A. (2003). Plasma adiponectin is an independent predictor of type 2 diabetes in Asian Indians. Diabetes Care 26: 3226-3229.
    Soliman, P.T., Wu, D., Tortolero-Luna, G., Schmeler, K.M., Slomovitz, B.M., Bray, M.S., Gershenson, D.M., and Lu, K.H. (2006). Association between adiponectin, insulin resistance, and endometrial cancer. Cancer 106: 2376-2381.
    Spranger, J., Kroke, A., M(o|¨)hlig, M., Bergmann, M., Ristow, M., Boeing, H., and Pfeiffer, A. (2003) Adiponectin and protection against type 2 diabetes mellitus. Lancet 361: 226-228.
    Steppan, C.M., Bailey, S.T., Bhat, S., Brown, E.J., Banerjee, R.R., Wright, C.M., Patel, H.R., Ahima, R.S., and Lazar, M.A. (2001). The hormone resistin links obesity to diabetes. Nature 409: 307-312.
    Stumvoll, M., Tschritter, O., Fritsche, A., Staiger, H., Renn, W., Weisser, M., Machicao, F., and Haring, H. (2002). Association of the T-G polymorphism in adiponectin (exon 2) with obesity and insulin sensitivity: Interaction with family history of type 2 diabetes. Diabetes 51: 37-41.
    Sutton, B.S., Weinert, S., Langefeld, C.D., Williams, A.H., Campbell, J.K., Saad, M.F., Haffner, S.M., Norris, J.M., and Bowden, D.W. (2005). Genetic analysis of adiponectin and obesity in Hispanic families: The IRAS family study. Hum. Genet. 117: 107-118.
    Tso, A.W., Sham, P.C., Wat, N.M., Xu, A., Cheung, B.M., Rong, R., Fong, C.H., Xu, J.Y., Cheng, K.K., Janus, E.D., and Lam, K.S. (2006). Polymorphisms of the gene encoding adiponectin and glycaemic outcome of Chinese subjects with impaired glucose tolerance: A 5-year follow-up study. Diabetologia 49: 1806-1815.
    Vasseur, F., Helbecque, N., Dina, C., Lobbens, S., Delannoy, V., Gaget, S., Boutin, P., Vaxillaire, M., Lepretre, F., Dupont, S., Hara, K., Clement, K., Bihain, B., Kadowaki, T., and Froguel, P. (2002). Single-nucleotide polymorphism haplotypes in the both proximal promoter and exon 3 of the APM1 gene modulate adipocyte-secreted adiponectin hormone levels and contribute to the genetic risk for type 2 diabetes in French Caucasians. Hum. Mol. Genet. 11: 2607-2614.
    Vozarova de Courten, B., Hanson, R.L., Funahashi, T., Lindsay, R.S., Matsuzawa, Y., Tanaka, S., Thameem, F., Gruber, J.D., Froguel, P., and Wolford, J.K. (2005). Common polymorphisms in the adiponectin gene ACDC are not associated with diabetes in Pima Indians. Diabetes 54: 284-289.
    Waki, H., Yamauchi, T., Kamon, J., Ito, Y., Uchida, S., Kita, S., Hara, K., Hada, Y., Vasseur, F., Froguel, P., Kimura, S., Nagai, R., and Kadowaki, T. (2003). Impaired multimerization of human adiponectin mutants associated with diabetes. J. Biol. Chem. 278: 40352-40363.
    White, R.T., Damm, D., Hancock, N., Rosen, B.S., Lowell, B.B., Usher, P., Flier, J.S., and Spiegelman, B.M. (1992). Human adipsin is identical to complement factor D and is expressed at high levels in adipose tissue. J. Biol. Chem. 267: 9210-9213.
    Wong, G.W., Wang, J., Hug, C., Tsao, T.S., and Lodish, H.F. (2004). A family of Acrp30/adiponectin structural and functional paralogs. Proc. Natl. Acad. Sci. USA 101: 10302-10307.
    Yamamoto, Y., Hirose, H., Sairo, I., Nishikai, K., and Saruta, T. (2004). Adiponectin, an adipocyte-derived protein, predicts future insulin-resistance: Two-year follow-up study in Japanese population. J. Clin. Endocrinol. Metab. 89: 87-90.
    Yamauchi, T., Kamon, J., Ito, Y., Tsuchida, A., Yokomizo, T., Kita, S., Sugiyama, T., Miyagishi, M., Hara, K., Tsunoda, M., Murakami, K., Ohteki, T., Uchida, S., Takekawa, S., Waki, H., Tsuno, NH., Shibata, Y., Terauchi, Y., Froguel, P., Tobe, K., Koyasu, S., Taira, K., Kitamura, T., Shimizu, T., Nagai, R., and Kadowaki, T. (2003). Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature 423: 762-769.
    Yatagai, T. (2003). Hypoadiponectinemia is associated with visceral fat accumulation and insulin resistance in Japanese men with type 2 diabetes mellitus. Metabolism 52: 1274-1278.
    Yu, J.G., Javorschi, S., Hevener, A.L., Kruszynska, Y.T., Norman, R.A., Sinha, M., and Olefsky, J.M. (2002). The effect of thiazolidinediones on plasma adiponectin levels in normal, obese, and type 2 diabetic subjects. Diabetes 51: 2968-2974.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700