等离子体作用下内弹道过程的数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在工程技术领域内,随着计算机技术的发展,有限元法等数值计算的精度和效率都大大提高了,从而得到了充分的应用。但是,在应用过程中,遇到了固有的缺陷:计算成本高、应力精度低、自适应分析困难,在计算过程中网格会产生很大的畸变,使得计算失效,为了解决这些问题,就必须对网格进行重构,生成新的网格信息,对计算精度和速度都产生了很大的影响。近年来兴起一种新一代计算方法一无网格法,这种方法在许多应用中被认为优于传统的基于网格的有限差分法和有限元法。
     无网格法是在建立整个问题域的系统代数方程时,不需利用预定义的网格信息进行域离散的方法,它利用一组散布在问题域边界上的节点表示该问题域和其边界。这组散布的节点被称为场节点,它们并不构成网格,即不需要任何事先定义的节点连接信息用于构造场变量未知函数的插值或是近似表达式。无网格法作为一种新型的数值计算方法刚刚起步,其理论和方法都有待完善。
     本文对固体化学工质电热化学炮的内弹道进行研究,等离子体点火过程和等离子体燃烧增强过程进行了理论的分析,由于目前对等离子体与发射药相互作用的物理化学过程的细节还没有一个完整确切的认识,只能进行一定假设来满足内弹道研究的需要。在本文建立了膛内的一维准两相流模型,也就是均相流模型,采用了无网格数值方法对内弹道进行模拟,编制Frotran程序,并用Tecplot相关软件处理数据,进行绘图。
In the engineering field, finite element method and other numerical calculation are greatly improved on efficiency and accuracy with the development of computer technology, which is fully applied. However, the inherent shortcomings are encountered when it is applied, such as high cost, low accuracy for stress, difficulties on self-adaptive analysis. Because of that the significant distortion happen on grid while it is computing, and then the calculation will fail. In order to solve these problems, the grid must be reconstructed and generate a new information, which has a great effect on calculation accuracy and speed. In recent years, a new calculation is rising meshless method which is considered superior to the traditional finite difference method and finite element method based on grid in many applications
     Meshless method is a way of discretizing domain without the pre-defined grid information, using a set of nodes scattered on the problem domain boundary to indicate the problem domain and its boundary, when the system algebraic equation of the whole problem domain is established. This group of the spread nodes are known as the field nodes and can not make up a grid, it means the connection information of any pre-defined node is not needed to construct the interpolation or approximation expression of the field variable unknown function. Meshless method has just got going as a new numerical method, its theory and method to be improved.
     This paper makes a theoretical analysis of the ignition process and burning enhanced process of the plasma, researching into solid chemical Electrothermal-Chemical Gun Ballistic. Because the details of the physical and chemical interaction between the plasma and propellant have not been yet understood completely and precisely, some assumptions can only be made to meet the needs of interior ballistic studies. On the assumption that the gunpowder combusts completely in an instant, the drawing is conducted by establishing one-dimensional homogeneous flow model in the plasma, simulating the internal ballistics with meshless numerical method, programming Fortran procedures and processing the data using Tecplot software.
引文
[1]谈乐斌,张相炎等.火炮概论[M].北京;北京理工大学出版社,2005
    [2]孙仁俊.电热化学炮发射中等离子体点火时的辐射换热过程[硕士学位论文].南京理工大学
    [3]孙江生,曹延杰,王莹.电热化学炮技术的动态研究[J].华北工学院学报.2000,21(2):148-151
    [4]Wisken H G, Podeny F. A 540KJ modular capacitive pulsed power supply system for basic investigation on ETC performance[J]. IEEE Transactions on magnetics,1999, 35(1):394~397
    [5]李劲松,刘克富.一种分级供电的电热化学炮电源系统[J].弹道学报,1997,9(4):6~9
    [6]李军,王莹,高敏.电炮脉冲直线发电机数学模型[J].兵工学报,1998,19(3):200~204
    [7]王争论,中心电弧等离子体发生器及其在电热化学炮中的应用研究[博士论文],南京理工大学,2006
    [8]Gurcio M D Burden H. A Pulse-Forming Network Design for ETC Combustion Characterization of Solid Propellants. ARL-MR-261,1995
    [9]Greig J R, Eamhart J, Winsor N. Investigation of Plasma-Augmented Solid Propellant Interior Ballistic Processes. IEEE Transaction on Magnetics, Vol.29, No.1, Jan.1993:555-560
    [10]Wren G P, Oberle W F. Ballistic Analysis of Electrothermal-Chemical(ETC) Propellant. ART-TR-1245, Dec.1996
    [11]Hurley J D, Bourham M A, Gilligan J G. Numerical Simulation and Experiment of Plasma Flow in the Electrotherm Launcher SIRENS. IEEE Transaction on Magnetics, Vol.31, No.1, Jan.1995:616-621
    [12]陈熙.热等离子体传热与流动[M].北京,科学出版社.2009
    [13]金志明.高速推进内弹道[M].北京,国防工业出版社.2001.
    [14]谢玉树,袁亚雄,张小兵.等离子体与发射药相互作用的研究[J].火炮发射与控制学报,2001
    [15]卢顺祥.强流脉冲等离子体发生器工作特性的研究[硕士学位论文].南京理工大学,1999.1
    [16]Loeb A, Kaplan Z. A Theoretical Model for the Physical Processes in the Confined High-Pressure discharge of Electrothermal Launchers. IEEE Transactions on Magnetics, Vol.25.No.1,1989:342-346
    [17]Gilligan J G, Mohanti R B. Time-Dependent Numerical Simulation of Ablation-Controlled Arcs. IEEE Transactions on Plasma Physics, Vol.18, No.2,
    [18]Zoler D, Cuperman S. A Time-dependent Model for High-pressure Discharges in Narrow Ablative Capillaries. Journal of the Plasma Physics, Vol.50,partl,1993:51-70
    [19]Powell J D, Zielinski A E. Capillary Discharge in the Electrothermal Gun. IEEE Transactions on Magnetics,Vol.29,No.1,Jan.1993:591-596
    [20]Koleczko A, et al. Plasma Ignition and Combusion.19th Internation Symposium on Ballistics, Interlaken, Switzerland, May 2000:195-202
    [21]Woodley C R. Modeling Heat Transfer from Convention and Plasma Igniters to Solid Propellant.20th International Symposium on Ballistics, Orlando, FL,23-27 September 2002:276-282
    [22]Oberle W F, Bradley Goodell. The Role of Electrothermal-Chemical Gun Propulsion in Enhancing Direct Fire Gun Lethality. Proceedings of the 16th International Symposium on Ballistics.
    [23]Chabokil A. Recent Advances in Electrothemal-Chemical Gun Propulsion at United Defense, L.P. IEEE Transaction on Magenetics,1997,33(1)
    [24]Robbins F W. Electrothermal Chemical (ETC) Temperature Sensitivity of JA2 7 Perf. Propellant.1996, ADA310377
    [25]Fifer R A. et al. Chemical Effects in Plasma Ignition. IEEE Fransactions on Magnetics, Vol.39, No.1 Jan 2003:218-222
    [26]Wildegger-Gaissmaier. Modeling Flame Spread in Plasma Igniters to Solid Propellant.20# International Symposium on Ballistics, U.S.A,1996:387-396
    [27]南京理工大学机械学院101教研室.电热-电磁发射技术译文选辑.1994.4
    [28]White K J, Katulka G L. Electrothermal Chemical Plasma Interaction with Propellants Proceedings of the 16# International Symposium on Ballistics, U.S.A, 1996:387-396
    [29]Bourham M A, et al. Plasma-Material Interaction in Electrothermal and Electromagnetic launchers. The 24th AIAA Plasma Dynamics & Lasers Conference, Orlando, FL,AIAA 93-3172,July 1993
    [30]Oberle W F. Electrothermal Guns-A Preliminary Armament Study.1989
    [31]Kappen K. Bauder U H. Simulation of plasma radiation in electrothermal-chemical accelerators[J]. IEEE Transaction on Magnetics1999.35(1)
    [32]谢玉树,袁亚雄,张小兵.等离子体增强发射药燃烧的实验研究[J].火炸药学
    报.2001
    [33]Oberle W, et al. Summary of Experimental Effects to Determines Plasma Augmented Burn Rates[R]. ARL-TR-782,1995.
    [34]Vanderhoff J A, et al. Absorbed Spectroscopy through the Dark Zone of Solid Propellant Flame Proceed. The 28th JANNAF Combustion Meeting, CPIA Publication Vol. Ⅱ,Oct.1991:465
    [35]Bourham M A, Gilligan J G Augmentation and Control of Born Rate in Plasma-Devices, ARL Progress Report, July 1,1997
    [36]Bourham M A, Gilligan J G, Oberle W F. Analysis of Solid Propellant Combustion Behavior under Electrothermal Plasma Injection for ETC Launchers. IEEE Transaction on Magnetics, Vol.33,No.1,Jan,1997:278-284
    [37]White K J, et al. Combustion Control Requirements in High Loading Density, Solid Propellant ETC Gun Firings. IEEE Transaction on Magnetics, Vol.33,No.1, Jan, 1997:pp350-355
    [38]Wren G P, Oberle W F. Influent of high loading density charge configuration on performance of electrothermal-chemical(ETC) guns. IEEE Transaction on Magnetics,2001,37:211-215
    [39]Thynell S T, Litzinger T A. Experimental study of plasma/propellant interaction, AD-A424481.Springfild:NTIS,2005
    [40]Wren G P, Oberle W F. Influent of high loading density charge configuration on performance of electrothermal-chemical(ETC) guns. IEEE Transaction on Magnetics,2001,37:211-215
    [41]Koleczko A, Ehrhardt W, Kelzenberg Setal. Plasma ignition and combustion, Propell, Explos,pyrot,2001,26:75~83
    [42]White K J, Stobie I, Oberle W, et al. Combustion control requirement in high loading density solid propellant ETC gun firings. IEEE Transaction on Magnetics, 1977,33:350~355
    [43]戴荣,栗保明,张建奇.固体含能工质等离子体单药粒点火特性分析[J].火炸药学报,2001,24(1):60~61
    [44]李鸿志.电热化学发射药技术的研究进展.南京理工大学学报.2003,27(5):449~465
    [45]杨春霞,赵宝昌,栗保明.以中低易损固体发射药的等离子体点火及燃烧特性[J].火炸药学报,2004,27(2):31~34
    [46]Lucy L B. Numerical approach to testing the fission hypothesis, Astronomical
    Journal,82:1013-1024,1977
    [47]Atluri SN,Cho J Y and Kim H G. Analysis of thin beams, using the meshless local Petrov-Galerkin(MLPG) method, with generalized moving least squares interpolation. Computation Mechanics,1999(24):334-347.
    [48]Lin H and Atluri SN. Analysis of incompressible Navier-Stokes flows by the meshless MLPG method. Computer Modeling in Engineering & Sciences,2(2), 117-142,2001
    [49]Liu G R and Gu Y T. A truly meshless method based on the strong-weak from, in Liu G R. (Ed.) Advances in Meshfree and X-FEM Methods, pp.259-261.2002
    [50]Liu G R and Gu Y T. A Meshfree Weak-Strong (MWS) from method,25th World Conference on Boundary Element Methods,8-10 September 2003, Split, Croatia. (Accepted)
    [51]Lucy L B, Numerical approach to testing the fission hypothesis. Astronmical Journal, 1977,82:1013-1024
    [52]韩旭,杨刚,强洪夫.光滑粒子流体动力学-一种无网格粒子法[M].湖南大学出版社.湖南.2005
    [53]Benz W and Asphaug E. Simulation of brittle solids using Smoothed Particle Hydrodynamics, Computer Physics Communications,87:253-265.
    [54]Bonet J and Kulasegaram S. Correction and stabilization of smoothed particle hydrodynamics method with application in metal forming simulation, International Journal for Numerical Methods in Engineering,47:1189-1214,2000
    [55]Swegle J W. Hicks D L. and Attaway S W. Smoothed particle hydrodynamics stability analysis, Journal of Computational Physics,116(1):123-134
    [56]Liu G R and Gu Y T. A truly method based on the strong-weak from, in Liu G.R. (Ed.) Advance in Meshfree and X-FEM Methods,pp.259-261
    [57]Benz W. Smoothed particle hydrodynamics:a review, In Numerical Modeling of Non-linear Stellar Pulsation:Problems and Prospects, Kluwer Academic,1990, Boston
    [58]Monaghan J J and Lattanzio J C. A refine particle method for astrophysical problem, Astronomy and Astrophysics,1985,149:225-235
    [59]Monaghan J J. Smoothed particle hydrodynamics, Annual Review of Astronomical and Astrophysics,1992,30:543-574
    [60]Morris J P. A study of the stability properties of SPH, Applied Mathematics Reports and Preprints, Monash University 1994
    [61]Morris J P. Analysis of smoothed particle hydrodynamics with application, Ph. D. thesis, Monash University 1996
    [62]Monaghan J J. On the problem of penetration in particle methods, Journal of Computation physics,1989,82:1-15
    [63]Noh W F. Errors for calculation of strong shocks using an artificial viscosity and an artificial feat flux, Journal of Computation Physics,1987,72:78-120
    [64]Benz W. Smoothed particle hydrodynamics:a review, in Numerical Modeling of Non-linear Stellar Pulsation:Problem and Prospects, Kluwer Academic, Boston.1990
    [65]Liu M B, Liu G R. and Lam K Y. Investigations into water mitigation using a meshless particle method, Shock Waves 2002,12(3):181-195
    [66]Benz W. Smoothed particle hydrodynamics:a review NATO Workshop, Les; Arcs, France.1989
    [67]Monaghan J J. Simulating free surface flow with SPH, Journal of Computation Physics,1994,110:399
    [68]李海元.固体发射药燃速的等离子体增强机理及多维多相流数值模拟研究[博士学位论文].南京.南京理工大学.2006
    [69]翁春生,王浩.计算内弹道学[M].北京:国防工业出版社.2006
    [70]金志明,袁亚雄,宋明.现代内弹道学[M].北京:北京理工大学出版社.1992

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700