表面等离激元增加薄膜光吸收及发光效率研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
太阳能发电在解决全球能源危机,以及减缓温室效应方面有着巨大的潜在应用。作为半导体和微电子工业中最重要的基础材料,硅以其高储量、较为成熟的工艺、污染小、较高的转换效率、稳定性好等优势成为了太阳能光电池研究开发的重点材料。其中,硅薄膜电池在节约电池成本方面具有巨大的优势,是近年来研究的重点。然而,由于非晶硅的光学禁带宽度在1.7ev左右,对太阳辐射光谱的长波段吸收较弱,使其光电转换效率较低,另外,由于其载流子扩散长度的限制,很难通过进一步降低薄膜厚度来减少成本,这些都严重影响了硅在光伏市场上的推广应用。将金属等离激元共振用于增强太阳能电池的效率,是提高太阳能电池效率的研究热点之一。本文将表面等离激元用于提高非晶硅薄膜吸收,不仅在表面等离激元增强薄膜吸收方面有重要的理论探索意义,而且在太阳能电池领域具有良好的应用前景。此外,本文还将表面等离激元共振用于增强薄膜的发光强度,取得较为不错的增强效果。
     本文制备了金属银纳米颗粒结构,研究了影响其形貌和表面等离激元共振特性的因素,在此基础上,将金属银颗粒用于增强非晶硅薄膜的吸收及用于增强Y_2O_3;Yb~(3+)薄膜的发光强度,并且分别研究了增强吸收和增强发光的机理。主要内容如下:
     (1)利用电子束蒸发法(EBE)制备了Ag纳米颗粒,研究了衬底温度,热处理温度等对其形貌和表面等离激元特性的影响,利用后续热处理法改变颗粒形貌来调节其表面等离激元共振峰的位置,还研究了通过改变周围介电材料环境来调节银纳米颗粒的表面等离激元共振峰的位置。实验结果表明,通过改变银颗粒的介电环境、生长温度以及热处理温度,可以达到调节银颗粒LSP共振特性的目的。
     (2)利用银纳米颗粒增强了非晶硅薄膜的吸收,结果表明,在适当尺寸的银纳米颗粒作用下,非晶硅薄膜对长波长光的吸收可以得到有效增强。在银纳米颗粒的作用下,入射光在非晶硅中的光学路径得到了增加,从而增强非晶硅对入射光的吸收。
     (3)利用Ag纳米颗粒的局域表面等离激元增强了Y_2O_3:Yb~(3+)薄膜的发光。结果表明,表面等离激元增强了激发过程,从而增强薄膜荧光发光。
There is huge potential for solar energy in solving global energy crisis and slowing down global warming.As the most basic material in semiconductor industries, silicon has many advantages for solar cells such as high reserves,mature technology, high efficiency and stability.Amorphous silicon thin-film solar cells,compared to single crystal and polycrystalline silicon solar cells,enjoy many outstanding advantages,such as lighter weight,larger optical absorption coefficient,better anti-radiation performance,lower cost and so on.However,since the optical band gap of amorphous silicon is approximate 1.7 eV,it results the small optical absorption coefficient at large wavelengths of solar radiation spectrum,as well as low photoelectric conversion efficiency.In addition,it is difficult to reduce the cost by further decreasing film thickness because the carrier diffusion length of amorphous silicon is just about 100 nm,which seriously affects the silicon photovoltaic market in the popularization and application.Then using surface plasmon to enhance the efficiency of amorphous silicon thin-film solar cells has become a hot topic in recent years.Evidentsly,using surface plasmon to enhance light absorption is expected to find wide potential applications in solar cells.
     In this thesis,metal nanoparticles were produced,and the factors that affect the morphology and suface palsmon resonance properties of metal particles were investigated.Then we used the suface palsmon of Ag nanostructures to increase the optical absorption efficiency of a-Si films.Finally,we used the suface palsmon of Ag nanostructures to increase the light emission of Y_2O_3:Yb~(3+) films.The primary significant results were follows:
     (1) Ag nanoparticles were prepared by electron beam evaporation.We found the morphology and surface plasmon of Ag nanoparticles dependent on temperature.And Subsequent thermal processing could change the morphology of Ag nanoparticles and tune the surface plasmon resonance wavelength.And with different dielectric materials around the Ag nanoparticles,surface plasmon of Ag nanoparticles could be tunned.
     (2) By adjusting the size of Ag nanoparticles,the optical absorption of a-Si thin film solar cells can be optimized.The average reflection value of a-Si films for the long wavelength range of optical spectra is reduced by evaporating Ag nanoparticles onto the a-Si films.
     (3) The photoluminescence of Y_2O_3:Yb~(3+) films was enhanced by coupling with surface plasmon of Ag nanoparticles and the mechanism was investigated.The results show that photoluminescence enhancement resulted from the enhancement of excitation efficiency.And it was found that the photoluminescne enhancement is related to the Ag nanoparticles size.
引文
[1] Raether, H., Surface plasmons on smooth and rough surfaces and on gratings. 1986, pringer-Verlag.
    
    [2] Anatoly V. Zayats, I.I.S., Alexei A. Maradudin, Nano-optics of surface plasmon polaritons. Physics Reports, 2005 408 131-314.
    [3] Pines, D.B., D.A.Collective, Description of Electron interactions:II. Collective vs individual particle aspects of the interactions. Physics Review, 1952 85 338
    [4] Uwe Kreibig, M.V., Optical properties of metal clusters. 1995, Berlin Heidlberg: Springer-Verlag.
    [5] K. Lance Kelly, E.C., Lin Lin Zhao, and George C. Schatz, The optical properties of metal nanoparticle:the influence of size, shape, and dielectric enviroment. J. Phys. Chem, 2003 107 668-677
    
    [6] K. R. Catchpolea and A. Polman, Plasmonic solar cells, Optics Express, 2008 16 21793
    [7] Jianhui Zhang, J.L., Sizhen Wang, Peng Zhan, Zhenlin Wang, and Naiben Ming, Facile methods to coat polystyrene and silica colloids with metal. Adv. Funct. Mater., 2004 14 1089-1096.
    [8] Hua Tan, S.L., and Wai Yip Fan, Core-shell and hollow nanocrystal formation via small molecule surface photodissociation; Ag@Ag_2Se as an example. J, Phys. Chem. B, 2006 110 15812-15816.
    [9] Hui Wang, F.T., Nathaniel K. Grady, and Naomi J. Halas, Cu nanoshells:effects of interband transitions on the nanoparticle plasmon resoance. J, Phys. Chem. B, 2005 109 18218-18222.
    [10] Halas, J.B.J.a.N.J., Silver nanoshells:Variations in morphologies and optical properties. J, Phys. Chem. B, 2001 105 2743-2746.
    
    [11] Hui Wang, J.K., and Naomi J. Halas, Plasmonic nanoshell arrays combine surface-enhanced vibrational spectroscopies on a single substrate. Angew. Chem. Int. Ed., 2007 46 9040-9044.
    
    [12] Dongbai Zhang, L.Q., Jiming Ma, and Humin Cheng, Formation of silver nanowires in aqueous solutions of a double-hydrophilic block copolymer. Chem. Mater., 2001 13 2753-2755.
    [13] K. K. Caswell, C.M.B., and Catherine J. Murphy, Seedless, surfactantless wet chemical synthesis of silver nanowires. Nono Lett., 2003 3 667-669.
    [14] Chaoying Ni, P.A.H., and Eric W. Kaler, Structural characteristics and growth of pentagonal silver nanorods prepared by a surfactant method. Langmuir, 2005 21 3334-3337.
    [15] YiYing Wu, T.L., You Xiang Zhang, Guosheng Cheng, Jianfang Wang, JIng Tang, Martin Moskovits, and Galen D. Stucky, Templated synthesis of highly ordered mesostructured nanowires and nanowire arrys. Nano Lett., 2004 4 2337-2342.
    [16] Yugan Sun, B.M., Thurston Herricks, and Younan Xia, Polyol synthesis of uniform silver nanowires: A plausible growth mechanism and the supporting evidence. Nano Lett., 2003 3 955-960.
    [17] J. Aizpurua, P.H., D. S. Sutherland, M. Kall, Garnett W. Bryant, and F. J. Garcia de Abajo, Optical properties of gold nanorings. Phys. Rev. Lett., 2003 90 057401-1-4.
    [18] JIngyi Chen, B.W., Zhi-Yuan Li, Dean Campbell, Fusayo Saeki, Hu Cang, Leslie Au, Jennifer Lee, Xingde Li, and Younan Xia, Gold nanocages: Engineering their structure for biomedical applications. Adv. Mater., 2005 17 2255-2261.
    [19] Leif J. Sherry, S.-H.C, George C. Schatz, and Richard P. Van Duyne, Localized surface plasmon resonance spectroscopy of single silver nanocubes. Nano Lett., 2005 5 2034-2038.
    [20] Murphy, T.K.S.a.C.J., Room temperature, high-yield synthesis of multiple shapes of gold nanoparticles in aqueous solution. J. Am. Chem. Soc., 2004 126 8648-8649.
    [21] Xia, Y.S.a.Y., Mechanistic study on the replacement reaction between silver nanostructures and chloroauric acid in aqueous medium. J. Am. Chem. Soc, 2004 126 3892-3901.
    [22] Xia, Y.S.a.Y, Shape-controlled suthesis of gold and silver nanoparticles. Science, 2002 298 2176-2179.
    [23] J. Muller, B. Rech, J. Springer, and M. Vanecek, TCO and light trapping in silicon thin film solar cells, Solar Energy, 2004 77 917-930
    [24] J. Meier, S. Dubail, S. Golay, U. Kroll, S. Fay, E. Vallat-Sauvain, L. Feitknecht, J. Dubail, and A. Shah, Microcrystalline silicon and the impact on micromorph tandem solar cells, Sol. Energy Mater. Sol. Cells 2002 74 457-467
    [25] H. R. Stuart and D. G. Hall, Island size effects in nanoparticle-enhanced photodetectors, Appl. Phys. Lett. 1998 73 3815
    [26] D. M. Schaadt, B. Feng, and E. T. Yu, Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles, Appl. Phys. Lett. 2005 86 063106
    [27] D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles, Appl. Phys. Lett. 2006 89 093103
    [28] S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, Surface plasmon enhanced silicon solar cells, J. Appl. Phys. 2007 101 093105
    [29] S. Pillai, K. R. Catchpole, T. Trupke, GZhang, J. Zhao, and M. A. Green, Enhanced emission from thin Si based LEDs using surface plasmons, Appl. Phys. Lett. 2006 88 161102
    [30] M. Westphalen, U. Kreibig, J. Rostalski, H. Liith, and D. Meissner, Metal cluster enhanced organic solar cells, Sol. Energy Mater. Sol. Cells 2000 61 97-105
    [31] B. P. Rand, P. Peumans, and S. R. Forrest, Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters, J. Appl. Phys. 2004 96 7519
    [32] A. J. Morfa, K. L. Rowlen, T. H. Reilly III, M. J. Romero, and J. v. d. Lagemaatb, Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics, Appl. Phys. Lett. 2008 92 013504
    [33] R. B. Konda, R. Mundle, H. Mustafa, O. Bamiduro, A. K. Pradhan, U. N. Roy, Y. Cui, and A. Burger, Surface plasmon excitation via Au nanoparticles in n-CdSe/p-Si heterojunction diodes, Appl. Phys. Lett. 2007 91 191111
    [34] C. Hagglund, M. Zach, and B. Kasemo, Enhanced charge carrier generation in dye sensitized solar cells by nanoparticle plasmons, Appl. Phys. Lett. 2008 92 013113
    [35] K. R. Catchpole and A. Polman, Design principles for particle plasmon enhanced solar cells, Appl. Phys. Lett. 2008 93 191113
    [36] S. P. Sundararajan, N. K. Grady, N. Mirin, and N. J. Halas, Nanoparticle-Induced Enhancement and Suppression of Photocurrent in a Silicon Photodiode, Nano Lett. 2008 8 624-630
    [37] B. J. Soller, H. R. Stuart, and D. G. Hall, Energy transfer at optical frequencies to silicon-on-insulator structures, Opt. Lett. 2001 26 1421
    [38] William L. Barnes, Alain Dereux and Thomas W. Ebbesen, Surface plasmon subwavelength optics, nature 2003 424 824
    [39] Florian Hallermann, Carsten Rockstuhl, Stephan Fahr, Gerhard Seifert, Stefan Wackerow, Heinrich Graener, Gero v. Plessen, and Falk Lederer, On the use of localized plasmon polaritons in solar cells, phys. stat. sol. (a) 2008 205 2844
    [40] Yalin Luland Xiaobing Chen, Plasmon-enhanced luminescence in Yb3+:Y2O3 thin ?lm and the potential for solar cell photon harvesting, Appl. Phys. Lett. 2009 94 193110
    [41] P. Wurfel, Physics of Solar Cells: From Principles to New Concepts [Wiley, Berlin, 2004].
    [42] BRUTON T M. General trends about photovoltaics based on crystalline silicon. Solar Energy Materials and Solar Cells, 2002, 72(1-4): 3-10.
    [43] SEUNG Y M, KOBSAK S, YASUTOSHI Y,et.al, Silicon-based thin film solar cells fabricated near the phase boundary by VHF PECVD technique. Solar Energy Materials and Solar Cells, 2008,92(6): 639-645.
    [44] A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. Fallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, Prog. Photovoltaics. 12, 113 (2004).
    
    [45] S. Fahr, C. Rockstuhl, andF. Lederer, Appl. Phys. Lett. 92, 171114 (2008).
    [46] C. Heine, R. H. Morf, and M. T. Gale, J. Mod. Opt. 43, 1371 (1996).
    [47] A. Bielawny, J. Upping, P. T. Miclea, R. B. Wehrspohn, C. Rockstuhl, F. Lederer, M. Peters, L. Steidl, R. Zentel, S.-M. Lee, M. Knez, A. Lambertz, and R. Carius, Phys. Status Solidi A 205, 2796 (2008).
    [48] L. Zeng, P. Bermel, Y. Yi, B. A. Alamariu, K. A. Broderick, J. Liu, C.Hong, X. Duan, J. Joannopoulos, and L. C. Kimerling, Appl. Phys. Lett.93, 221105 (2008).
    [49] D. M. Schaadt, B. Feng, and E. T. Yu, Appl. Phys. Lett. 86, 063106(2005).
    [50] C. Hagglund, M. Zach, G. Petersson, and B. Kasemo, Appl. Phys. Lett. 92, 053110 (2008).
    [51] H. R. Stuart and D. G. Hall, Appl. Phys. Lett. 69, 2327 (1996).
    
    [52] S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, J. Appl. Phys. 101, 093105 (2007).
    [53] K. R. Catchpole and A. Polman, Appl. Phys. Lett. 93, 191113 (2008).
    [54] Y. Lu and N. B. Ming, Properties of Er3+ -doped phosphate glasses and glass fibres and efficient infrared to visible upconversion, J. Mater. Sci. 1995 30 5705
    [55] Qiaobing Xu, J.B., Federico Capasso, and George M. Whitesides, Surface plasmon resonances of free-standing gold nanowires fabricated by nanoskiving. Angew. Chem. Int. Ed., 2006 45 3631-3635.
    [56] Ivan O. Sosa, C.N., and Ruben G. Barrera, Optical properties of metal nanoparticles with arbitrary shapes. J. Phys. Chem. B, 2003 107 6269-6275.
    [57] Encai Hao, S.L., Ryan C. Bailey, Shengli Zou, George C. Schatz, and Joseph T. Hupp, Optical properties of metal nanoshells. J. Phys. Chem. B, 2004 108 1224-1229.
    
    [58] Halas, C.R.a.N.J., Plasmonic properties of concentric nanoshells. Nano Lett., 2004 4 1323-1327.
    [59] Benjamin J. Wiley, S.H.I., Zhi-Yuan Li, Joeseph Mclellan, Andrew Siekkinen, and Younan Xia, Maneuvering the surface plasmon resonance of silver nanostructures through shape-controlled synthesis. J. Phys. Chem. B, 2006 110 15666-15675.
    [60] David D. Evanoff, J.a.GC, Size-controlled synthesis of nanoparticles.2. Measurement of extinction, scattering, and absorption cross sections. J. Phys. Chem. B, 2004 108 13957-13962.
    [61] EI-Sayed, S.L.a.M.A., Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles. J. Phys. Chem. B, 1999 103 4212-4217.
    
    [62] Bohren, C.F., Huffman, D. R., Absorption and scttering of light radiation. 1983, New York: Wiley.
    [63] Dongbai Zhang, L.Q., Jiming Ma, and Humin Cheng, Formation of silver nanowires in aqueous solutions of a double-hydrophilic block copolymer. Chem. Mater., 2001 13 2753-2755.
    [64] K. K. Caswell, C.M.B., and Catherine J. Murphy, Seedless, surfactantless wet chemical synthesis of silver nanowires. Nono Lett., 2003 3 667-669.
    [65] Chaoying Ni, P.A.H., and Eric W. Kaler, Structural characteristics and growth of pentagonal silver nanorods prepared by a surfactant method. Langmuir, 2005 21 3334-3337.
    [66] YiYing Wu, T.L., You Xiang Zhang, Guosheng Cheng, Jianfang Wang, JIng Tang, Martin Moskovits, and Galen D. Stucky, Templated synthesis of highly ordered mesostructured nanowires and nanowire arrys. Nano Lett., 2004 4 2337-2342.
    [67] Yugan Sun, B.M., Thurston Herricks, and Younan Xia, Polyol synthesis of uniform silver nanowires: A plausible growth mechanism and the supporting evidence. Nano Lett., 2003 3 955-960.
    [68] Qiaobing Xu, J.B., Federico Capasso, and George M. Whitesides, Surface plasmon resonances of free-standing gold nanowires fabricated by nanoskiving. Angew. Chem. Int. Ed., 2006 45 3631-3635.
    [69] Ahmadi, O.R.M.a.T.S., Effects of intensity and energy of CW UV light on the growth of gold nanorods. J. Phys. Chem. B, 2005 109 15724-15734.
    [70] Zhengquan Li, J.T., Xianmao Lu, Yimei Zhu, and Younan Xia, Facile synthesis of ultrathin Au nanorods by aging the AuCl(oleylamine) complex with amorphous Fe nanoparticles in chloroform. Nano Lett., 2008 8 3052-3055.
    [71] Yugan Sun, B.M., Thurston Herricks, and Younan Xia, Polyol synthesis of uniform silver nanowires: A plausible growth mechanism and the supporting evidence. Nano Lett., 2003 3 955-960.
    [72] Qiaobing Xu, J.B., Federico Capasso, and George M. Whitesides, Surface plasmon resonances of free-standing gold nanowires fabricated by nanoskiving. Angew. Chem. Int. Ed., 2006 45 3631-3635.
    [73] Ahmadi, O.R.M.a.T.S., Effects of intensity and energy of CW UV light on the growth of gold nanorods. J. Phys. Chem. B, 2005 109 15724-15734.
    [74] Zhengquan Li, J.T., Xianmao Lu, Yimei Zhu, and Younan Xia, Facile synthesis of ultrathin Au nanorods by aging the AuCl(oleylamine) complex with amorphous Fe nanoparticles in chloroform. Nano Lett., 2008 8 3052-3055.
    [75] Andrea Tao, P.S.S., and Peidong Yang, Polyhedral silver nanocrystals with distinct scattering signatures. Angew. Chem. Int. Ed., 2006 45 1-5.
    [76] Yam, D.Y.a.V.W.-W., Controlled synthesis of monodisperse silver nanocubes in water. J. Am. Chem. Soc, 2004. 126: p. 13200-13201.
    [77] Jianhui Zhang, J.L., Sizhen Wang, Peng Zhan, Zhenlin Wang, and Naiben Ming, Facile methods to coat polystyrene and silica colloids with metal. Adv. Funct. Mater., 2004 14 1089-1096.
    [78] Tomokatsu Hayakawa, S.T.S., and Masayuki Nogami, Field enhancement effect of small Ag particles on the flluorescence from Eu~(3+) doped SiO_2 glass. Appl. Phys. Lett., 1999 74(11) 1513-1515.
    [79] Barnes, S.W.a.W.L., Surface plasmon-polariton mediated light emission through thin metal films. Optics Express, 2004 12(16) 3673.
    [80] D. M. Roller, A.H., H. Ditlbacher, N. Galler, F. R. Aussenegg, A. Leitner, J. R. Krenn, S. Sax, and E. J. W. List, Surface plasmon coupled electroluminescent emission. Advanced Functional Materials, 2008 92 103304.
    [81] J. Bellessa, C.B., and J. C. Plenet, Strong coupling between surface plasmons and excitons in an organic semiconductor. Physical Review Letters, 2004 93(3) 036404.
    [82] Jean Cesarion, M.U.G., Stephanie Cheylan, William. L. Barnes, Stefan Enoch, and Romain Quidant, Coupling localized and extended plasmons to improve the light extraction through metal films. Optics Express, 2007 15(17) 10533.
    [83] Peter A. Hobson, S.W., Jon A. E. Wasey, Ian Sage, and William L. Barnes, Surface plasmon mediated emission from organic light-emitting diodes. Advanced Materials, 2002 14(19) 1393.
    [84] Ziyao Wang, Z.C., Zhihao Lan, Xiaofeng Zhai, Weimin Du, and Qihuang Gong, Enhancement of Alq_3 fluorescence by nanotextured silver films deposited on porous alumina substrates. Applied Physics Letters, 2007 90 151119.
    [85] Barry P. Rand, P.P., and Stephen R. Forrest, Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters. J. Appl. Phys., 2004 96 7519-7526.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700