肾综合征出血热患者血浆病毒载量的检测及其与病程病情关系的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
汉滩病毒是汉坦病毒属中的一个成员,感染其天然宿主条纹姬鼠后引起慢性无症状感染。然而,汉滩病毒感染人类引起以发热、出血、低血压和肾衰竭为典型临床特征的急性传染病-肾综合征出血热。全世界每年肾综合征出血热发病人数达10万左右,其中70~90%病例发生在中国,死亡率达0.1%-15%。肾综合征出血热疾病过程中有五个典型临床分期:发热期、休克期、少尿期、多尿期和恢复期。
     肾综合征出血热的基本病理改变为全身小血管和毛细血管广泛损害、通透性增加,然而其致病机制至今仍未阐明。汉滩病毒引起的肾综合征出血热是一个多因素参与的过程,汉坦病毒感染宿主细胞导致的直接损伤以及病毒感染后引起的免疫病理损伤可能在全身小血管和毛细血管广泛损害中共同发挥作用,病毒感染直接作用包括改变内皮细胞的运动能力和通透性以及病毒影响机体的固有免疫应答,病毒感染引起机体的免疫应答包括免疫复合物沉积、补体激活、体液和T细胞免疫应答以及病毒感染诱导细胞释放炎症因子等。
     除汉滩病毒外,其他病毒如汉城病毒、多普拉病毒、阿穆尔河病毒以及普马拉病毒感染人类也能引起肾综合征出血热。最近有一些研究表明汉坦病毒属中的多普拉病毒、普马拉病毒RNA载量与病情严重程度有相关性,然而至今没有汉滩病毒检测的商品化试剂盒,也未见有汉滩病毒引起的肾综合征出血热病毒载量与疾病严重程度及病理损伤关系的研究。
     血浆细胞外游离DNA(cf-DNA)是存在于血浆中的细胞外双链DNA,主要来源于凋亡和坏死细胞,反应了机体受损程度,在多种急性和慢性疾病中升高并与疾病严重程度相关。最近研究表明,血浆cf-DNA在登革热以及普马拉病毒引起的肾综合征出血热等疾病中升高且与疾病严重程度相关。然而至今未见有汉滩病毒引起的肾综合征出血热患者血浆cf-DNA的动态变化规律及其与疾病严重程度相关性的研究。
     本研究通过一步法实时定量RT-PCR方法检测2009~2011年第四军医大学唐都医院传染科101例患者的198份血浆标本的病毒载量,通过荧光染色法检测患者血浆标本的cf-DNA水平,通过捕获法ELISA检测患者血清中抗汉滩病毒核蛋白的IgM和IgG的效价,并分别分析了患者血浆病毒载量和血浆cf-DNA与患者血小板计数、肌酐、白细胞计数之间的相关性,患者血浆病毒载量和血浆cf-DNA之间的相关性,以及血浆病毒载量和血清IgM和IgG的效价之间的相关性。
     (1)建立了检测汉滩病毒载量的一步法实时定量RT-PCR方法,检测灵敏度为2700copies/mL血浆,该方法特异性良好,汉城病毒L99株和常见病毒HBV、HCV、流感病毒不会引起假阳性,批内差异和批间差异分别为:0.6%~4.5%和3.9%~7.3%,重复性好。
     (2)检测了2009~2011年唐都医院住院101例HFRS患者(男78例,女23例,年龄跨度9~73岁)198份血浆标本的病毒载量和其中有两个病期以上患者170份血浆标本的cf-DNA水平:①提取患者血浆标本RNA后用建立的一步法实时定量RT-PCR检测病毒载量,79例患者的84份标本能检测到病毒,病毒载量为3.43~7.33log10copies/mL。②患者血浆直接荧光染色法检测均能检测到cf-DNA的存在,浓度范围为:832~41400ng/mL。
     (3)依据临床症状和实验室检测指标将患者分为轻型/中型和重型/危重型两组,分别分析了肾综合征出血热患者血浆病毒载量和血浆cf-DNA与病程、病情和病情指标之间的相关性,患者血浆病毒载量和血浆cf-DNA之间的相关性,以及血浆病毒载量和血清IgM和IgG的效价之间的相关性,发现:①汉滩病毒载量在发热期、低血压休克期明显升高,随病程进展到少尿期迅速下降,多尿期与恢复期检测不到病毒载量,这与汉滩病毒感染的重要特征-自限性一致。②疾病早期重型/危重型患者血浆病毒载量高于轻型/中型患者(分别为5.90和5.03log10copies/mL; P=0.001),患者发热期/休克期病毒载量与血小板计数最低值呈负相关,与肌酐最高值呈正相关,提示汉滩病毒感染病毒载量与疾病严重程度相关。③用GST捕获法检测患者血清IgM、IgG的效价,并分析了患者发热期/休克期病毒载量与患者血清特异性IgM和IgG效价的峰值的相关性,没有发现明显相关性。④患者血浆cf-DNA疾病早期升高,病程进展至多尿期cf-DNA下降至正常水平。⑤疾病早期重型/危重型患者血浆cf-DNA高于轻型/中型患者(3664vs.2060ng/mL,P=0.007),患者发热期/休克期血浆cf-DNA与白细胞计数最高值呈正相关,与血小板计数最低值呈负相关,与肌酐最高值呈正相关,提示汉滩病毒感染后血浆cf-DNA水平与疾病严重程度相关。⑥患者血浆cf-DNA与血浆病毒载量明显正相关(P<0.001; r=0.68),提示汉滩病毒感染后引起的细胞的坏死或凋亡可能参与疾病的病理损伤。
     本研究首次系统检测汉滩病毒引起的肾综合征出血热患者血浆病毒载量和血浆cf-DNA水平,并分别分析了病毒载量和血浆cf-DNA与病程、病情之间的相关性,患者血浆病毒载量和血浆cf-DNA之间的相关性,以及血浆病毒载量和血清IgM和IgG的效价之间的相关性,结果表明:汉滩病毒引起的肾综合征出血热患者发热期/休克期血浆病毒载量和血浆cf-DNA与疾病严重程度相关,可以作为预测疾病预后的指标,明确了汉滩病毒载量和血浆cf-DNA在肾综合征出血热中的变化规律,并为研究汉滩病毒在肾综合征出血热致病机制中的作用提供理论和实验依据。
Hantaan virus (HTNV), a member of the genus Hantavirus, causes a chronic,asymptomatic infection in its natural host, the striped field mouse Apodemusagrarius. In contrast, HTNV infection in humans manifests as acutehemorrhagic fever with renal syndrome (HFRS). Typically, HFRS occurs in fivesequential stages: febrile, hypotensive, oliguric, diuretic, and convalescent.Clinical symptoms also include thrombocytopenia and, in severe cases,hemorrhage caused by capillary leak syndrome. As many as100,000cases ofHFRS have occurred annually worldwide, of which over70%~90%weredocumented in the mainland of China, with a mortality rate of0.1%-15%.
     The pathogenesis of HFRS is considerably far from being completelyunderstood. The basic mechanisms underlying HFRS pathogenesis relate toincreased vascular permeability, and it has been widely recognized recently thatviral replication together with the immune response, which involving immunecomplexes, complement activation, B cell response, T cell response, and HTNV-induced cytokine production, are involved in tissue injury.
     HFRS could be caused by other Hantaviruses besides HTNV, such asDobrava virus, Seoul virus, Amur virus, and Puumala virus. Some recent studieshave suggested that there might be an association between the Hantavirus RNAload and severity of the corresponding disease. Nevertheless, there has been noreport until now about the quantitative HTNV RNA load in HFRS patients,including the relationship between HTNV load and the pathogenesis andseverity of HFRS.
     Cell free DNA (cf-DNA) is a kind of extracellular double strain DNAexisting in the plasma. Cf-DNA is released by the apoptosis or necrosis cells,increased in several acute or chronic diseases, and related with the diseaseseverity. Recent studies demonstrated that plasma cf-DNA is increased inDengue Fever and HFRS caused by Puumala virus, and is positively related withthe disease severity. However, there hasn’t been any report concerning thedynamic changes of cf-DNA or its relationship with disease severity in HFRScaused by HTNV.
     In our present study, the HTNV RNA load was measured in plasmasamples from HFRS patients with a quantitative one-step real-timereverse-transcriptase polymerase chain reaction (RT-PCR) assay. The cf-DNAlevel in patients’ plasma was detected by fluorescent staining, and therelationship between viral load or cf-DNA and disease course and diseaseseverity (including clinical symptom as well as laboratory parameters such ascreatinine, platelet count, and white cells count), the relationship between viralload and cf-DNA, and the relationship between viral load and level of specifichumoral immunity were analyzed respectively. The details are as following:
     1. One-step real-time quantitative RT-PCR assay was established and used to detect the HTNV RNA load. The detect limit of the assay reached2700copies/mL (3.43log10copies/mL) in the plasma and the assay showed nocross-reactivity to4other viruses, namely, HBV, HCV, influenza, and Seoulviruses. Furthermore, the intra-assay and inter-assay variabilities of the assaywere evaluated to be ranging from0.6%to4.5%and3.9%to7.3%, respectively,which indicated the high reproducibility of the assay.
     2. A panel of198plasma samples were collected from101patients (78male and23female subjects in the age range of9-73years) with HFRSaperiodically during hospitalization. Virus RNA was extracted from the plasmasamples of HFRS patients and the HTNV RNA load was detected by theRT-PCR assay mentioned above. Among the198plasma samples from101patients which were examined,84samples from79patients could be detectedfor HTNV RNA load, ranging from3.43to7.33log10copies per mL of plasma.Meanwhile, cf-DNA level in plasma from patients who have samples in overtwo disease stages (altogether170samples) was detected, and the cf-DNA in allthe170plasma samples could be detected by direct fluorescent staining, rangingfrom832to41400ng/ml.
     3. The patients were categorized as having severe-to-critical disease (i.e.,the severe/critical group) or mild-to-moderate disease (i.e., the mild/moderategroup), on the basis of clinical and laboratory parameters. The relationshipbetween viral load or cf-DNA and disease course and disease severity (includingclinical symptom as well as laboratory parameters), the relationship betweenviral load and cf-DNA, and the relationship between viral load and level ofspecific humoral immunity were analyzed.①HTNV RNA load could only bedetected in plasma of HFRS patients in febrile/hypotensive and oliguric stageand it gradually declined and decreased to an undetectable level with the progress of the disease, which is in accordance with the most important propertyof HFRS, that is, self-limiting.②In the early stage of disease, patients insevere/critical group were found to have higher viral loads than those inmild/moderate group (5.90vs.5.03log10copies/mL; P=0.001), suggesting anassociation between Hantaan virus load and disease severity. And patients withhigh viral loads in febrile/hypotensive stage might be more likely to have a moresevere course of disease. We also found that viral load in the febrile/hypotensivestage was positively related with the peak value of serum creatinine andnegatively related with the lowest value of platelet count, which further certifiedthe relationship between viral loads and disease severity.③The relationshipbetween HTNV viral load in febrile/hypotensive samples and the peak value oftiters of HTNV-NP specific IgM and IgG was also investigated using a GSTcapture ELISA method. No significant correlation between antibody titers andviral load was found.④cf-DNA level in plasma from HFRS patients wasincreased in early stages of the disease and gradually decreased to normal levelin diuretic stage.⑤In the early stage of disease, patients in severe/critical groupwere found to have higher cf-DNA level than those in mild/moderate group(3664vs.2060ng/mL; P=0.007), and cf-DNA level in the febrile/hypotensivestage was positively related with the peak value of serum creatinine and thewhile cells count, and negatively related with the lowest value of platelet count,suggesting an association between cf-DNA level and disease severity afterHTNV infection.⑥A significant positive relationship between cf-DNA andviral load in plasma has also been found (P<0.001; r=0.68), indicating thatcellular apoptosis or necrosis induced after HTNV infection might be involvedin the pathogenesis of HFRS.
     In conclusion, this is the first study to describe the plasma HTNV RNA load and cf-DNA level in HFRS patients and discuss their relationship between eachother and with disease course, disease severity, and level of specific humoralimmunity based on a kinetic observation. It is indicated that the viral load andcf-DNA in plasma from HFRS patients are both related with the disease severityand could be used as a prognostic marker for monitoring and/or predicting theseverity of clinical manifestations. These results provide experimental data forfully understanding the role of HTNV RNA load as well as plasma cf-DNA inHFRS, and establish the foundation for further exploration of the relationshipbetween HTNV load and the pathogenesis and severity of HFRS.
引文
1. Mir MA. Hantaviruses. Clin Lab Med2010;30:67-91
    2. Enria DA, Briggiler AM, Pini N and Levis S. Clinical manifestations of NewWorld hantaviruses. Curr Top Microbiol Immunol2001;256:117-34
    3. Kanerva M, Mustonen J and Vaheri A. Pathogenesis of puumala and otherhantavirus infections. Rev Med Virol1998;8:67-86
    4. Kruger DH, Ulrich R and Lundkvist AA. Hantavirus infections and theirprevention. Microbes Infect2001;3:1129-44
    5. Peters CJ, Simpson GL and Levy H. Spectrum of hantavirus infection:hemorrhagic fever with renal syndrome and hantavirus pulmonary syndrome.Annu Rev Med1999;50:531-45
    6. Marty AM, Jahrling PB and Geisbert TW. Viral hemorrhagic fevers. Clin LabMed2006;26:345-86, viii
    7. Johnson KM. Hantaviruses: history and overview. Curr Top MicrobiolImmunol2001;256:1-14
    8. Guerrero CA, Mendez E, Zarate S, Isa P, Lopez S and Arias CF. Integrinalpha(v)beta(3) mediates rotavirus cell entry. Proc Natl Acad Sci U S A2000;97:14644-9
    9. Jackson T, Sharma A, Ghazaleh RA, et al. Arginine-glycine-asparticacid-specific binding by foot-and-mouth disease viruses to the purified integrinalpha(v)beta3in vitro. J Virol1997;71:8357-61
    10. Roivainen M, Piirainen L, Hovi T, et al. Entry of coxsackievirus A9into hostcells: specific interactions with alpha v beta3integrin, the vitronectin receptor.Virology1994;203:357-65
    11. Wickham TJ, Mathias P, Cheresh DA and Nemerow GR. Integrins alpha vbeta3and alpha v beta5promote adenovirus internalization but not virusattachment. Cell1993;73:309-19
    12. Gavrilovskaya IN, Gorbunova EE, Mackow NA and Mackow ER.Hantaviruses direct endothelial cell permeability by sensitizing cells to thevascular permeability factor VEGF, while angiopoietin1and sphingosine1-phosphate inhibit hantavirus-directed permeability. J Virol2008;82:5797-806
    13. Gavrilovskaya IN, Peresleni T, Geimonen E and Mackow ER. Pathogenichantaviruses selectively inhibit beta3integrin directed endothelial cell migration.Arch Virol2002;147:1913-31
    14. Gavrilovskaya IN, Brown EJ, Ginsberg MH and Mackow ER. Cellular entryof hantaviruses which cause hemorrhagic fever with renal syndrome is mediatedby beta3integrins. J Virol1999;73:3951-9
    15. Krautkramer E, Zeier M. Hantavirus causing hemorrhagic fever with renalsyndrome enters from the apical surface and requires decay-accelerating factor(DAF/CD55). J Virol2008;82:4257-64
    16. Jin M, Park J, Lee S, et al. Hantaan virus enters cells by clathrin-dependentreceptor-mediated endocytosis. Virology2002;294:60-9
    17. Elliott RM, Schmaljohn CS and Collett MS. Bunyaviridae genome structureand gene expression. Curr Top Microbiol Immunol1991;169:91-141
    18. Garcin D, Lezzi M, Dobbs M, et al. The5' ends of Hantaan virus(Bunyaviridae) RNAs suggest a prime-and-realign mechanism for the initiationof RNA synthesis. J Virol1995;69:5754-62
    19. Lee HW, Cho HJ. Electron microscope appearance of Hantaan virus, thecausative agent of Korean haemorrhagic fever. Lancet1981;1:1070-2
    20. Ravkov EV, Nichol ST and Compans RW. Polarized entry and release inepithelial cells of Black Creek Canal virus, a New World hantavirus. J Virol1997;71:1147-54
    21. Ravkov EV, Nichol ST, Peters CJ and Compans RW. Role of actinmicrofilaments in Black Creek Canal virus morphogenesis. J Virol1998;72:2865-70
    22. Saksida A, Duh D, Korva M and Avsic-Zupanc T. Dobrava virus RNA loadin patients who have hemorrhagic fever with renal syndrome. J Infect Dis2008;197:681-5
    23. Xiao R, Yang S, Koster F, Ye C, Stidley C and Hjelle B. Sin Nombre viralRNA load in patients with hantavirus cardiopulmonary syndrome. J Infect Dis2006;194:1403-9
    24. Terajima M, Hendershot JD,3rd, Kariwa H, et al. High levels of viremia inpatients with the Hantavirus pulmonary syndrome. J Infect Dis1999;180:2030-4
    25. Hodivala-Dilke KM, McHugh KP, Tsakiris DA, et al.Beta3-integrin-deficient mice are a model for Glanzmann thrombastheniashowing placental defects and reduced survival. J Clin Invest1999;103:229-38
    26. Hynes RO. Integrins: bidirectional, allosteric signaling machines. Cell2002;110:673-87
    27. Martinez-Lemus LA, Wu X, Wilson E, et al. Integrins as unique receptorsfor vascular control. J Vasc Res2003;40:211-33
    28. Raymond T, Gorbunova E, Gavrilovskaya IN and Mackow ER. Pathogenichantaviruses bind plexin-semaphorin-integrin domains present at the apex ofinactive, bent alphavbeta3integrin conformers. Proc Natl Acad Sci U S A2005;102:1163-8
    29. Dvorak HF. Discovery of vascular permeability factor (VPF). Exp Cell Res2006;312:522-6
    30. Lampugnani MG, Dejana E. The control of endothelial cell functions byadherens junctions. Novartis Found Symp2007;283:4-13; discussion13-7,238-41
    31. Dejana E, Orsenigo F and Lampugnani MG. The role of adherens junctionsand VE-cadherin in the control of vascular permeability. J Cell Sci2008;121:2115-22
    32. Gavard J, Gutkind JS. VEGF controls endothelial-cell permeability bypromoting the beta-arrestin-dependent endocytosis of VE-cadherin. Nat CellBiol2006;8:1223-34
    33. Shrivastava-Ranjan P, Rollin PE and Spiropoulou CF. Andes virus disruptsthe endothelial cell barrier by induction of vascular endothelial growth factorand downregulation of VE-cadherin. J Virol2010;84:11227-34
    34. Coller BS, Shattil SJ. The GPIIb/IIIa (integrin alphaIIbbeta3) odyssey: atechnology-driven saga of a receptor with twists, turns, and even a bend. Blood2008;112:3011-25
    35. Mackow ER, Gavrilovskaya IN. Cellular receptors and hantaviruspathogenesis. Curr Top Microbiol Immunol2001;256:91-115
    36. Verheul HM, Jorna AS, Hoekman K, Broxterman HJ, Gebbink MF andPinedo HM. Vascular endothelial growth factor-stimulated endothelial cellspromote adhesion and activation of platelets. Blood2000;96:4216-21
    37. Banno A, Ginsberg MH. Integrin activation. Biochem Soc Trans2008;36:229-34
    38. Gavrilovskaya IN, Gorbunova EE and Mackow ER. Pathogenic hantavirusesdirect the adherence of quiescent platelets to infected endothelial cells. J Virol2010;84:4832-9
    39. Goldsmith CS, Elliott LH, Peters CJ and Zaki SR. Ultrastructuralcharacteristics of Sin Nombre virus, causative agent of hantavirus pulmonarysyndrome. Arch Virol1995;140:2107-22
    40. Dehler M, Zessin E, Bartsch P and Mairbaurl H. Hypoxia causespermeability oedema in the constant-pressure perfused rat lung. Eur Respir J2006;27:600-6
    41. Stenmark KR, Fagan KA and Frid MG. Hypoxia-induced pulmonaryvascular remodeling: cellular and molecular mechanisms. Circ Res2006;99:675-91
    42. Matthys VS, Gorbunova EE, Gavrilovskaya IN and Mackow ER. Andesvirus recognition of human and Syrian hamster beta3integrins is determined byan L33P substitution in the PSI domain. J Virol2010;84:352-60
    43. Lutteke N, Raftery MJ, Lalwani P, et al. Switch to high-level virusreplication and HLA class I upregulation in differentiating megakaryocytic cellsafter infection with pathogenic hantavirus. Virology2010;405:70-80
    44. Haller O, Kochs G and Weber F. The interferon response circuit: inductionand suppression by pathogenic viruses. Virology2006;344:119-30
    45. Haller O, Kochs G and Weber F. Interferon, Mx, and viral countermeasures.Cytokine Growth Factor Rev2007;18:425-33
    46. Randall RE, Goodbourn S. Interferons and viruses: an interplay betweeninduction, signalling, antiviral responses and virus countermeasures. J Gen Virol2008;89:1-47
    47. Alff PJ, Sen N, Gorbunova E, Gavrilovskaya IN and Mackow ER. The NY-1hantavirus Gn cytoplasmic tail coprecipitates TRAF3and inhibits cellularinterferon responses by disrupting TBK1-TRAF3complex formation. J Virol2008;82:9115-22
    48. Geimonen E, Fernandez I, Gavrilovskaya IN and Mackow ER. Tyrosineresidues direct the ubiquitination and degradation of the NY-1hantavirus G1cytoplasmic tail. J Virol2003;77:10760-868
    49. Abram CL, Lowell CA. The expanding role for ITAM-based signalingpathways in immune cells. Sci STKE2007;2007:re2
    50. Jakus Z, Fodor S, Abram CL, Lowell CA and Mocsai A.Immunoreceptor-like signaling by beta2and beta3integrins. Trends Cell Biol2007;17:493-501
    51. Sen N, Sen A and Mackow ER. Degrons at the C terminus of the pathogenicbut not the nonpathogenic hantavirus G1tail direct proteasomal degradation. JVirol2007;81:4323-30
    52. Kaukinen P, Vaheri A and Plyusnin A. Hantavirus nucleocapsid protein: amultifunctional molecule with both housekeeping and ambassadorial duties.Arch Virol2005;150:1693-713
    53. Mir MA, Duran WA, Hjelle BL, Ye C and Panganiban AT. Storage ofcellular5' mRNA caps in P bodies for viral cap-snatching. Proc Natl Acad Sci US A2008;105:19294-9
    54. Mir MA, Sheema S, Haseeb A and Haque A. Hantavirus nucleocapsidprotein has distinct m7G cap-and RNA-binding sites. J Biol Chem2010;285:11357-68
    55. Mir MA, Panganiban AT. A protein that replaces the entire cellular eIF4Fcomplex. Embo J2008;27:3129-39
    56. Haque A, Mir MA. Interaction of hantavirus nucleocapsid protein withribosomal protein S19. J Virol2010;84:12450-3
    57. Yu L, Ye L, Zhao R, Liu YF and Yang SJ. HSP70induced by Hantavirusinfection interacts with viral nucleocapsid protein and its overexpressionsuppresses virus infection in Vero E6cells. Am J Transl Res2009;1:367-80
    58. Ontiveros SJ, Li Q and Jonsson CB. Modulation of apoptosis and immunesignaling pathways by the Hantaan virus nucleocapsid protein. Virology2010;401:165-78
    59. Taylor SL, Frias-Staheli N, Garcia-Sastre A and Schmaljohn CS. Hantaanvirus nucleocapsid protein binds to importin alpha proteins and inhibits tumornecrosis factor alpha-induced activation of nuclear factor kappa B. J Virol2009;83:1271-9
    60. Kukkonen SK, Vaheri A and Plyusnin A. L protein, the RNA-dependentRNA polymerase of hantaviruses. Arch Virol2005;150:533-56
    61. Vera-Otarola J, Soto-Rifo R, Ricci EP, Ohlmann T, Darlix JL andLopez-Lastra M. The3' untranslated region of the Andes hantavirus smallmRNA functionally replaces the poly(A) tail and stimulates cap-dependenttranslation initiation from the viral mRNA. J Virol2010;84:10420-4
    62. Pensiero MN, Sharefkin JB, Dieffenbach CW and Hay J. Hantaan virusinfection of human endothelial cells. J Virol1992;66:5929-36
    63. Raftery MJ, Kraus AA, Ulrich R, Kruger DH and Schonrich G. Hantavirusinfection of dendritic cells. J Virol2002;76:10724-33
    64. Temonen M, Vapalahti O, Holthofer H, Brummer-Korvenkontio M, Vaheri Aand Lankinen H. Susceptibility of human cells to Puumala virus infection. J GenVirol1993;74(Pt3):515-8
    65. Yanagihara R, Silverman DJ. Experimental infection of human vascularendothelial cells by pathogenic and nonpathogenic hantaviruses. Arch Virol1990;111:281-6
    66. Kang JI, Park SH, Lee PW and Ahn BY. Apoptosis is induced byhantaviruses in cultured cells. Virology1999;264:99-105
    67. Markotic A, Hensley L, Geisbert T, Spik K and Schmaljohn C. Hantavirusesinduce cytopathic effects and apoptosis in continuous human embryonic kidneycells. J Gen Virol2003;84:2197-202
    68. Hardestam J, Klingstrom J, Mattsson K and Lundkvist A. HFRS causinghantaviruses do not induce apoptosis in confluent Vero E6and A-549cells. JMed Virol2005;76:234-40
    69. Outinen TK, Kuparinen T, Jylhava J, et al. Plasma cell-free DNA levels areelevated in acute Puumala hantavirus infection. PLoS One2012;7:e31455
    70. Pepini T, Gorbunova EE, Gavrilovskaya IN, Mackow JE and Mackow ER.Andes virus regulation of cellular microRNAs contributes to hantavirus-inducedendothelial cell permeability. J Virol2010;84:11929-36
    71. Sundstrom JB, McMullan LK, Spiropoulou CF, et al. Hantavirus infectioninduces the expression of RANTES and IP-10without causing increasedpermeability in human lung microvascular endothelial cells. J Virol2001;75:6070-85
    72. Geimonen E, Neff S, Raymond T, Kocer SS, Gavrilovskaya IN and MackowER. Pathogenic and nonpathogenic hantaviruses differentially regulateendothelial cell responses. Proc Natl Acad Sci U S A2002;99:13837-42
    73. Kim IW, Hwang JY, Kim SK, Kim JK and Park HS. Interferon-stimulatedgenes response in endothelial cells following Hantaan virus infection. J KoreanMed Sci2007;22:987-92
    74. Kraus AA, Raftery MJ, Giese T, et al. Differential antiviral response ofendothelial cells after infection with pathogenic and nonpathogenic hantaviruses.J Virol2004;78:6143-50
    75. Hippenstiel S, Suttorp N. Interaction of pathogens with the endothelium.Thromb Haemost2003;89:18-24
    76. Zaki SR, Greer PW, Coffield LM, et al. Hantavirus pulmonary syndrome.Pathogenesis of an emerging infectious disease. Am J Pathol1995;146:552-79
    77. Hooper JW, Larsen T, Custer DM and Schmaljohn CS. A lethal diseasemodel for hantavirus pulmonary syndrome. Virology2001;289:6-14
    78. Janeway CA, Jr., Medzhitov R. Innate immune recognition. Annu RevImmunol2002;20:197-216
    79. Janeway CA, Jr. Approaching the asymptote? Evolution and revolution inimmunology. Cold Spring Harb Symp Quant Biol1989;54Pt1:1-13
    80. Thompson AJ, Locarnini SA. Toll-like receptors, RIG-I-like RNA helicasesand the antiviral innate immune response. Immunol Cell Biol2007;85:435-45
    81. Banchereau J, Steinman RM. Dendritic cells and the control of immunity.Nature1998;392:245-52
    82. Mazzoni A, Segal DM. Controlling the Toll road to dendritic cellpolarization. J Leukoc Biol2004;75:721-30
    83. Padovan E, Landmann RM and De Libero G. How pattern recognitionreceptor triggering influences T cell responses: a new look into the system.Trends Immunol2007;28:308-14
    84. Ouyang W, Kolls JK and Zheng Y. The biological functions of T helper17cell effector cytokines in inflammation. Immunity2008;28:454-67
    85. Belkaid Y, Rouse BT. Natural regulatory T cells in infectious disease. NatImmunol2005;6:353-60
    86. Zhou Y. Regulatory T cells and viral infections. Front Biosci2008;13:1152-70
    87. Peebles RS, Jr., Graham BS. Viruses, dendritic cells and the lung. Respir Res2001;2:245-9
    88. Bray M, Geisbert TW. Ebola virus: the role of macrophages and dendriticcells in the pathogenesis of Ebola hemorrhagic fever. Int J Biochem Cell Biol2005;37:1560-6
    89. Rinaldo CR, Jr., Piazza P. Virus infection of dendritic cells: portal for hostinvasion and host defense. Trends Microbiol2004;12:337-45
    90. Wu L, KewalRamani VN. Dendritic-cell interactions with HIV: infectionand viral dissemination. Nat Rev Immunol2006;6:859-68
    91. Khaiboullina SF, Netski DM, Krumpe P and St Jeor SC. Effects of tumornecrosis factor alpha on sin nombre virus infection in vitro. J Virol2000;74:11966-71
    92. Takeuchi O, Akira S. Recognition of viruses by innate immunity. ImmunolRev2007;220:214-24
    93. Unterholzner L, Bowie AG. The interplay between viruses and innateimmune signaling: recent insights and therapeutic opportunities. BiochemPharmacol2008;75:589-602
    94. Kato H, Takeuchi O, Sato S, et al. Differential roles of MDA5and RIG-Ihelicases in the recognition of RNA viruses. Nature2006;441:101-5
    95. Sumpter R, Jr., Loo YM, Foy E, et al. Regulating intracellular antiviraldefense and permissiveness to hepatitis C virus RNA replication through acellular RNA helicase, RIG-I. J Virol2005;79:2689-99
    96. Yoneyama M, Kikuchi M, Matsumoto K, et al. Shared and unique functionsof the DExD/H-box helicases RIG-I, MDA5, and LGP2in antiviral innateimmunity. J Immunol2005;175:2851-8
    97. Yoneyama M, Onomoto K and Fujita T. Cytoplasmic recognition of RNA.Adv Drug Deliv Rev2008;60:841-6
    98. Habjan M, Andersson I, Klingstrom J, et al. Processing of genome5' terminias a strategy of negative-strand RNA viruses to avoid RIG-I-dependentinterferon induction. PLoS One2008;3:e2032
    99. Alff PJ, Gavrilovskaya IN, Gorbunova E, et al. The pathogenic NY-1hantavirus G1cytoplasmic tail inhibits RIG-I-and TBK-1-directed interferonresponses. J Virol2006;80:9676-86
    100. Stetson DB, Medzhitov R. Type I interferons in host defense. Immunity2006;25:373-81
    101. Raftery MJ, Winau F, Giese T, Kaufmann SH, Schaible UE and SchonrichG. Viral danger signals control CD1d de novo synthesis and NKT cell activation.Eur J Immunol2008;38:668-79
    102. Tamura M, Asada H, Kondo K, Takahashi M and Yamanishi K. Effects ofhuman and murine interferons against hemorrhagic fever with renal syndrome(HFRS) virus (Hantaan virus). Antiviral Res1987;8:171-8
    103. Stoltz M, Ahlm C, Lundkvist A and Klingstrom J. Lambda interferon(IFN-lambda) in serum is decreased in hantavirus-infected patients, and invitro-established infection is insensitive to treatment with all IFNs and inhibitsIFN-gamma-induced nitric oxide production. J Virol2007;81:8685-91
    104. Andersson I, Bladh L, Mousavi-Jazi M, et al. Human MxA protein inhibitsthe replication of Crimean-Congo hemorrhagic fever virus. J Virol2004;78:4323-9
    105. Andersson I, Lundkvist A, Haller O and Mirazimi A. Type I interferoninhibits Crimean-Congo hemorrhagic fever virus in human target cells. J MedVirol2006;78:216-22
    106. Bridgen A, Dalrymple DA, Weber F and Elliott RM. Inhibition of Dugbenairovirus replication by human MxA protein. Virus Res2004;99:47-50
    107. Frese M, Kochs G, Feldmann H, Hertkorn C and Haller O. Inhibition ofbunyaviruses, phleboviruses, and hantaviruses by human MxA protein. J Virol1996;70:915-23
    108. Kochs G, Janzen C, Hohenberg H and Haller O. Antivirally active MxAprotein sequesters La Crosse virus nucleocapsid protein into perinuclearcomplexes. Proc Natl Acad Sci U S A2002;99:3153-8
    109. Reichelt M, Stertz S, Krijnse-Locker J, Haller O and Kochs G. Missortingof LaCrosse virus nucleocapsid protein by the interferon-induced MxA GTPaseinvolves smooth ER membranes. Traffic2004;5:772-84
    110. Kanerva M, Melen K, Vaheri A and Julkunen I. Inhibition of puumala andtula hantaviruses in Vero cells by MxA protein. Virology1996;224:55-62
    111. Khaiboullina SF, Rizvanov AA, Deyde VM and St Jeor SC. Andes virusstimulates interferon-inducible MxA protein expression in endothelial cells. JMed Virol2005;75:267-75
    112. Shim SH, Park MS, Moon S, et al. Comparison of innate immune responsesto pathogenic and putative non-pathogenic hantaviruses in vitro. Virus Res2011;160:367-73
    113. Oelschlegel R, Kruger DH and Rang A. MxA-independent inhibition ofHantaan virus replication induced by type I and type II interferon in vitro. VirusRes2007;127:100-5
    114. Klingstrom J, Akerstrom S, Hardestam J, et al. Nitric oxide andperoxynitrite have different antiviral effects against hantavirus replication andfree mature virions. Eur J Immunol2006;36:2649-57
    115. Reiss CS, Komatsu T. Does nitric oxide play a critical role in viralinfections? J Virol1998;72:4547-51
    116. Klingstrom J, Plyusnin A, Vaheri A and Lundkvist A. Wild-type Puumalahantavirus infection induces cytokines, C-reactive protein, creatinine, and nitricoxide in cynomolgus macaques. J Virol2002;76:444-9
    117. Davis IC, Zajac AJ, Nolte KB, Botten J, Hjelle B and Matalon S. Elevatedgeneration of reactive oxygen/nitrogen species in hantavirus cardiopulmonarysyndrome. J Virol2002;76:8347-59
    118. Bradley JR. TNF-mediated inflammatory disease. J Pathol2008;214:149-60
    119. Guidotti LG, Chisari FV. Noncytolytic control of viral infections by theinnate and adaptive immune response. Annu Rev Immunol2001;19:65-91
    120. Bray M, Mahanty S. Ebola hemorrhagic fever and septic shock. J Infect Dis2003;188:1613-7
    121. Laskin DL, Pendino KJ. Macrophages and inflammatory mediators intissue injury. Annu Rev Pharmacol Toxicol1995;35:655-77
    122. Nolte KB, Feddersen RM, Foucar K, et al. Hantavirus pulmonarysyndrome in the United States: a pathological description of a disease caused bya new agent. Hum Pathol1995;26:110-20
    123. Krakauer T, Leduc JW and Krakauer H. Serum levels of tumor necrosisfactor-alpha, interleukin-1, and interleukin-6in hemorrhagic fever with renalsyndrome. Viral Immunol1995;8:75-9
    124. Linderholm M, Ahlm C, Settergren B, Waage A and Tarnvik A. Elevatedplasma levels of tumor necrosis factor (TNF)-alpha, soluble TNF receptors,interleukin (IL)-6, and IL-10in patients with hemorrhagic fever with renalsyndrome. J Infect Dis1996;173:38-43
    125. Sadeghi M, Eckerle I, Daniel V, Burkhardt U, Opelz G and Schnitzler P.Cytokine expression during early and late phase of acute Puumala hantavirusinfection. BMC Immunol2011;12:65
    126. Terajima M, Hayasaka D, Maeda K and Ennis FA. Immunopathogenesis ofhantavirus pulmonary syndrome and hemorrhagic fever with renal syndrome:Do CD8+T cells trigger capillary leakage in viral hemorrhagic fevers? ImmunolLett2007;113:117-20
    127. Nagai T, Tanishita O, Takahashi Y, et al. Isolation of haemorrhagic feverwith renal syndrome virus from leukocytes of rats and virus replication incultures of rat and human macrophages. J Gen Virol1985;66(Pt6):1271-8
    128. Wang ML, Lai JH, Zhu Y, et al. Genetic susceptibility to haemorrhagicfever with renal syndrome caused by Hantaan virus in Chinese Han population.Int J Immunogenet2009;36:227-9
    129. Hayasaka D, Maeda K, Ennis FA and Terajima M. Increased permeabilityof human endothelial cell line EA.hy926induced by hantavirus-specificcytotoxic T lymphocytes. Virus Res2007;123:120-7
    130. Klingstrom J, Hardestam J, Stoltz M, et al. Loss of cell membrane integrityin puumala hantavirus-infected patients correlates with levels of epithelial cellapoptosis and perforin. J Virol2006;80:8279-82
    131. Tuuminen T, Kekalainen E, Makela S, et al. Human CD8+T cell memorygeneration in Puumala hantavirus infection occurs after the acute phase and isassociated with boosting of EBV-specific CD8+memory T cells. J Immunol2007;179:1988-95
    132. Chen LB, Yang WS. Abnormalities of T cell immunoregulation inhemorrhagic fever with renal syndrome. J Infect Dis1990;161:1016-9
    133. Huang C, Jin B, Wang M, Li E and Sun C. Hemorrhagic fever with renalsyndrome: relationship between pathogenesis and cellular immunity. J Infect Dis1994;169:868-70
    134. Van Epps HL, Terajima M, Mustonen J, et al. Long-lived memory Tlymphocyte responses after hantavirus infection. J Exp Med2002;196:579-88
    135. Tan LC, Gudgeon N, Annels NE, et al. A re-evaluation of the frequency ofCD8+T cells specific for EBV in healthy virus carriers. J Immunol1999;162:1827-35
    136. Kilpatrick ED, Terajima M, Koster FT, Catalina MD, Cruz J and Ennis FA.Role of specific CD8+T cells in the severity of a fulminant zoonotic viralhemorrhagic fever, hantavirus pulmonary syndrome. J Immunol2004;172:3297-304
    137. Borges AA, Campos GM, Moreli ML, et al. Role of mixed Th1and Th2serum cytokines on pathogenesis and prognosis of hantavirus pulmonarysyndrome. Microbes Infect2008;10:1150-7
    138. Mills KH. Regulatory T cells: friend or foe in immunity to infection? NatRev Immunol2004;4:841-55
    139. Easterbrook JD, Zink MC and Klein SL. Regulatory T cells enhancepersistence of the zoonotic pathogen Seoul virus in its reservoir host. Proc NatlAcad Sci U S A2007;104:15502-7
    140. Zhu LY, Chi LJ, Wang X and Zhou H. Reduced circulating CD4+CD25+cell populations in haemorrhagic fever with renal syndrome. Clin Exp Immunol2009;156:88-96
    141. Pohl C, Shishkova J and Schneider-Schaulies S. Viruses and dendritic cells:enemy mine. Cell Microbiol2007;9:279-89
    142. Raftery MJ, Schwab M, Eibert SM, Samstag Y, Walczak H and SchonrichG. Targeting the function of mature dendritic cells by human cytomegalovirus: amultilayered viral defense strategy. Immunity2001;15:997-1009
    143. Muller DB, Raftery MJ, Kather A, Giese T and Schonrich G. Frontline:Induction of apoptosis and modulation of c-FLIPL and p53in immaturedendritic cells infected with herpes simplex virus. Eur J Immunol2004;34:941-51
    144. Larsson M, Beignon AS and Bhardwaj N. DC-virus interplay: a doubleedged sword. Semin Immunol2004;16:147-61
    145. Pollara G, Kwan A, Newton PJ, Handley ME, Chain BM and Katz DR.Dendritic cells in viral pathogenesis: protective or defective? Int J Exp Pathol2005;86:187-204
    146. Bosio CM, Aman MJ, Grogan C, et al. Ebola and Marburg viruses replicatein monocyte-derived dendritic cells without inducing the production ofcytokines and full maturation. J Infect Dis2003;188:1630-8
    147. Mahanty S, Hutchinson K, Agarwal S, McRae M, Rollin PE and PulendranB. Cutting edge: impairment of dendritic cells and adaptive immunity by Ebolaand Lassa viruses. J Immunol2003;170:2797-801
    148. Markotic A, Hensley L, Daddario K, Spik K, Anderson K and SchmaljohnC. Pathogenic hantaviruses elicit different immunoreactions in THP-1cells andprimary monocytes and induce differentiation of human monocytes todendritic-like cells. Coll Antropol2007;31:1159-67
    149. Marsac D, Garcia S, Fournet A, et al. Infection of human monocyte-deriveddendritic cells by ANDES Hantavirus enhances pro-inflammatory state, thesecretion of active MMP-9and indirectly enhances endothelial permeability.Virol J2011;8:223
    150. Guhl S, Franke R, Schielke A, et al. Infection of in vivo differentiatedhuman mast cells with hantaviruses. J Gen Virol2010;91:1256-61
    151. Bjorkstrom NK, Lindgren T, Stoltz M, et al. Rapid expansion andlong-term persistence of elevated NK cell numbers in humans infected withhantavirus. J Exp Med2011;208:13-21
    152. Wang M, Zhu Y, Wang J, Lv T and Jin B. Identification of three novel CTLepitopes within nucleocapsid protein of Hantaan virus. Viral Immunol2011;24:449-54
    153. Ennis FA, Cruz J, Spiropoulou CF, et al. Hantavirus pulmonary syndrome:CD8+and CD4+cytotoxic T lymphocytes to epitopes on Sin Nombre virusnucleocapsid protein isolated during acute illness. Virology1997;238:380-90
    154. Manigold T, Mori A, Graumann R, et al. Highly differentiated, restinggn-specific memory CD8+T cells persist years after infection by andeshantavirus. PLoS Pathog2010;6:e1000779
    155. Vapalahti O, Lundkvist A and Vaheri A. Human immune response, hostgenetics, and severity of disease. Curr Top Microbiol Immunol2001;256:153-69
    156. Gott P, Zoller L, Darai G and Bautz EK. A major antigenic domain ofhantaviruses is located on the aminoproximal site of the viral nucleocapsidprotein. Virus Genes1997;14:31-40
    157. Kallio-Kokko H, Lundkvist A, Plyusnin A, Avsic-Zupanc T, Vaheri A andVapalahti O. Antigenic properties and diagnostic potential of recombinantdobrava virus nucleocapsid protein. J Med Virol2000;61:266-74
    158. Valdivieso F, Vial P, Ferres M, et al. Neutralizing antibodies in survivors ofSin Nombre and Andes hantavirus infection. Emerg Infect Dis2006;12:166-8
    159. Ye C, Prescott J, Nofchissey R, Goade D and Hjelle B. Neutralizingantibodies and Sin Nombre virus RNA after recovery from hantaviruscardiopulmonary syndrome. Emerg Infect Dis2004;10:478-82
    160. MacNeil A, Comer JA, Ksiazek TG and Rollin PE. Sin Nombrevirus-specific immunoglobulin M and G kinetics in hantavirus pulmonarysyndrome and the role played by serologic responses in predicting diseaseoutcome. J Infect Dis2010;202:242-6
    161. Chu YK, Jennings G, Schmaljohn A, et al. Cross-neutralization ofhantaviruses with immune sera from experimentally infected animals and fromhemorrhagic fever with renal syndrome and hantavirus pulmonary syndromepatients. J Infect Dis1995;172:1581-4
    162. Hooper JW, Custer DM, Thompson E and Schmaljohn CS. DNAvaccination with the Hantaan virus M gene protects Hamsters against three offour HFRS hantaviruses and elicits a high-titer neutralizing antibody response inRhesus monkeys. J Virol2001;75:8469-77
    163. Hooper JW, Custer DM, Smith J and Wahl-Jensen V. Hantaan/Andes virusDNA vaccine elicits a broadly cross-reactive neutralizing antibody response innonhuman primates. Virology2006;347:208-16
    164. de Carvalho Nicacio C, Gonzalez Della Valle M, Padula P, Bjorling E,Plyusnin A and Lundkvist A. Cross-protection against challenge with Puumalavirus after immunization with nucleocapsid proteins from different hantaviruses.J Virol2002;76:6669-77
    165. Flatz L, Rieger T, Merkler D, et al. T cell-dependence of Lassa feverpathogenesis. PLoS Pathog2010;6:e1000836
    166. Martin MP, Carrington M. Immunogenetics of viral infections. Curr OpinImmunol2005;17:510-6
    167. Makela S, Mustonen J, Ala-Houhala I, et al. Human leukocyteantigen-B8-DR3is a more important risk factor for severe Puumala hantavirusinfection than the tumor necrosis factor-alpha(-308) G/A polymorphism. J InfectDis2002;186:843-6
    168. Mustonen J, Partanen J, Kanerva M, et al. Genetic susceptibility to severecourse of nephropathia epidemica caused by Puumala hantavirus. Kidney Int1996;49:217-21
    169. Korva M, Saksida A, Kunilo S, Vidan Jeras B and Avsic-Zupanc T.HLA-associated hemorrhagic fever with renal syndrome disease progression inslovenian patients. Clin Vaccine Immunol2011;18:1435-40
    170. Klein SL, Bird BH and Glass GE. Sex differences in Seoul virus infectionare not related to adult sex steroid concentrations in Norway rats. J Virol2000;74:8213-7
    171. Bernshtein AD, Apekina NS, Mikhailova TV, et al. Dynamics of Puumalahantavirus infection in naturally infected bank voles (Clethrinomys glareolus).Arch Virol1999;144:2415-28
    172. Childs JE, Glass GE, Korch GW and LeDuc JW. Effects of hantaviralinfection on survival, growth and fertility in wild rat (Rattus norvegicus)populations of Baltimore, Maryland. J Wildl Dis1989;25:469-76
    173. Deter J, Chaval Y, Galan M, et al. Kinship, dispersal and hantavirustransmission in bank and common voles. Arch Virol2008;153:435-44
    174. Glass GE, Livingstone W, Mills JN, et al. Black Creek Canal Virusinfection in Sigmodon hispidus in southern Florida. Am J Trop Med Hyg1998;59:699-703
    175. Mills JN, Ksiazek TG, Ellis BA, et al. Patterns of association with host andhabitat: antibody reactive with Sin Nombre virus in small mammals in the majorbiotic communities of the southwestern United States. Am J Trop Med Hyg1997;56:273-84
    176. Klein SL, Bird BH and Glass GE. Sex differences in immune responses andviral shedding following Seoul virus infection in Norway rats. Am J Trop MedHyg2001;65:57-63
    177. Hinson ER, Shone SM, Zink MC, Glass GE and Klein SL. Wounding: theprimary mode of Seoul virus transmission among male Norway rats. Am J TropMed Hyg2004;70:310-7
    178. Klein SL, Cernetich A, Hilmer S, Hoffman EP, Scott AL and Glass GE.Differential expression of immunoregulatory genes in male and female Norwayrats following infection with Seoul virus. J Med Virol2004;74:180-90
    179. Hutchinson KL, Rollin PE and Peters CJ. Pathogenesis of a NorthAmerican hantavirus, Black Creek Canal virus, in experimentally infectedSigmodon hispidus. Am J Trop Med Hyg1998;59:58-65
    180. Klein SL, Marson AL, Scott AL, Ketner G and Glass GE. Neonatal sexsteroids affect responses to Seoul virus infection in male but not female Norwayrats. Brain Behav Immun2002;16:736-46
    181. Hannah MF, Bajic VB and Klein SL. Sex differences in the recognition ofand innate antiviral responses to Seoul virus in Norway rats. Brain BehavImmun2008;22:503-16
    182. Jin HK, Yoshimatsu K, Takada A, et al. Mouse Mx2protein inhibitshantavirus but not influenza virus replication. Arch Virol2001;146:41-9
    183. Jahr S, Hentze H, Englisch S, et al. DNA fragments in the blood plasma ofcancer patients: quantitations and evidence for their origin from apoptotic andnecrotic cells. Cancer Res2001;61:1659-65
    184. Ha TT, Huy NT, Murao LA, et al. Elevated levels of cell-free circulatingDNA in patients with acute dengue virus infection. PLoS One2011;6:e25969
    185. Cosgriff TM. Mechanisms of disease in Hantavirus infection:pathophysiology of hemorrhagic fever with renal syndrome. Rev Infect Dis1991;13:97-107

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700