猪Dppa5, FP和MAL2基因遗传多态性与繁殖性状的关联分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本实验室前期从构建的母猪妊娠相关基因调控网络中筛选出3个功能未知的基因(CK455976、CK465614和CO986776)作为影响繁殖性状的候选基因进行进一步分析,并对3个基因的序列进行了全长克隆,即猪的Dppa5,FP和MAL2基因。本次试验对这3个基因的多态性与母猪繁殖性能之间的关系进行了研究,得到以下结果:
     (1)猪Dppa5基因的2个错义突变位点g.363 T>C(Cys 93 Arg)和g.844 G>T (Arg 101 Leu)分别位于第二和第三外显子上。g.363 T>C位点具有低度遗传多样性,其基因频率与基因型频率在北京黑猪和大白猪中均处于Hardy-Weinberg平衡状态(P>0.05);而g.844 G>T位点具有中度遗传多样性,其基因频率与基因型频率在两个猪群中均未达到Hardy-Weinberg平衡状态(P<0.01)。关联分析结果表明,g.363 T>C位点与经产北京黑猪初生窝重显著相关(P<0.05);g.844 G>T位点与经产北京黑猪的总产仔数(P<0.05)和经产大白猪的初生窝重(P<0.01)显著相关。
     (2)猪FP基因第一外显子上的同义突变位点g.546 A>G(182 Ser)具有中度遗传多样性,基因频率与基因型频率在北京黑猪和大白猪群体中均处于Hardy-Weinberg平衡状态(P>0.05),与两猪群的繁殖性状没有显著性相关。
     (3)猪MAL2基因第三外显子上的2个错义突变位点g.18862 C>A(Gln 138 Lys)和g.18865 C>G(Pro 139 Ala)具有中度遗传多样性。g.18862 C>A位点的基因频率与基因型频率在北京黑猪和大白猪中均处于Hardy-Weinberg平衡状态(P>0.05),而g.18865 C>G位点的基因频率与基因型频率均不处于Hardy-Weinberg平衡状态(P<0.01)。两个多态位点的不同基因型与繁殖性能间没有显著性相关。
     以上结果表明,可以将猪Dppa5基因的g.363 T>C和g.844 G>T位点作为育种工作中母猪繁殖性状的遗传标记进行更深入的研究。
In our previous research, a regulatory network on sow gestation was constructed. Three unknown genes (CK455976, CK465614 and CO986776) from the network were selected as candidate genes for reproduction traits, and were cloned as Dppa5, FP, and MAL2. In this study, the associations of polymorphisms of the three genes with reproductive performance of sows were preformed. The results are as following:
     (1) Two missense mutations g.363 T>C (Cys 93 Arg) and g.844 G>T (Arg 101 Leu) were found in exon2 and 3 of porcine Dppa5, respectively. The allele frequencies and genotype frequencies of g.363 T>C, which had lower PIC, were in Hardy-Weinberg equilibrium (P>0.05) by chi-square analysis in both Beijing Black and Large White populations. On the contrary, the allele frequencies and genotype frequencies of g.844 T>C were in disequilibrium (P<0.01) in both of the two breeds and had intermediate PIC. The mutation g.363 T>C was associated with litter weight of birth at later parities in Beijing Black pigs significantly (P<0.05). Besides, at later parities, Dppa5 g.844 G>T was associated with total number of birth in Beijing Black pigs (P<0.05) and with litter weight of birth in Large White pigs (P<0.01).
     (2) A synonymous mutation g.546 A>G (182 Ser) was detected in exon1 of FP gene. The allele frequencies and genotype frequencies were in Hardy-Weinberg equilibrium (P>0.05) in both Beijing Black and Large White populations by chi-square analysis, and it had intermediate PIC, had no significant relationship with any reproduction traits in both of the two pig populations.
     (3) In exon3 of MAL2 gene, two missense mutations, g.18862 C>A (Gln 138 Lys) and g.18865 C>G (Pro 139 Ala), were found with intermediate PIC. In contrast with g.18862 C>A, Hardy-Weinberg disequilibrium (P<0.01) were detected in both allele frequencies and genotype frequencies of g.18865 C>G in the two pig populations. No significant associations among different genotypes of the two polymorphisms with any reproduction traits in both Beijing Black and Large White populations were found.
     These results indicated that Dppa5 g.363 T>C and g.844 G>T could be further investigated as genetic markers for sow reproductive performance in breeding.
引文
1.储明星. Booroola羊FecB基因的遗传标记研究进展.国外畜牧科技, 2001, 28(2): 37-40.
    2.储明星.太湖猪高繁殖力研究与应用.北京:中国农业科学技术出版社, 2003.
    3.储明星,吴常信.猪窝产仔数遗传改进的效果.农产品市场周刊, 2004, 44: 24-25.
    4.范衡宇,杨增明.前列腺素及其受体与哺乳动物的生殖.生理科学进展, 2000, 31(1): 75-78.
    5.黄志军,甘美连,黄璐璐,等. DNA分子遗传标记RFLP、STR、SNP在凝血因子基因型分析中的应用.中国误诊学杂志, 2006, 6(7): 1239-1241.
    6.姜运良,李宁,赵兴波,等.影响PCR-SSCP的因素分析.农业生物技术学报, 2000, 8(3): 245-247.
    7.雷雪芹,陈宏,袁志发,等.促卵泡生成素受体基因的SNP对牛双胎性状的标记研究.云南畜牧兽医, 2002 (4): 28-29.
    8.李凤娥,熊远著,邓昌彦.猪繁殖力主基因和QTL的研究进展.国外畜牧学——猪与禽, 2003, 23(4): 31-35.
    9.李勇.母猪繁殖力相关新基因的研究. [硕士学位论文].北京:中国农业科学院, 2009.
    10.李玉华,曾勇庆.猪繁殖性状的遗传改良策略.动物科学与动物医学, 2003, 20(1): 11-14.
    11.吕晓智,殷学民,冯元勇,等.口腔鳞癌与正常黏膜中T细胞分化蛋白mRNA的表达.中国口腔颌面外科杂志, 2009, 7(3): 241-243.
    12.王爱华,赵志辉,李宁.猪繁殖性状QTL基因定位研究进展.中国兽医学报, 2002, 22(4): 415-417.
    13.王怀禹.催乳素受体(PRLR)基因多态性与动物繁殖性能的关系.黑龙江动物繁殖, 2009, 17(3): 9-13.
    14.王立刚.基于基因芯片的母猪妊娠相关基因调控网络构建. [硕士学位论文].北京:中国农业科学院, 2008.
    15.汪维鹏,倪坤仪,周国华.单核苷酸多态性检测方法的研究进展.遗传, 2006, 28(1): 117-126.
    16.王鲜萍.猪繁殖性状主基因和QTL研究进展.家畜生态学报, 2007, 28(6): 113-115.
    17.吴国龙.影响母猪繁殖性状的主要因素.当代畜禽养殖业, 2002, 11: 35-36.
    18.向德标,黄生强,欧阳叙向.家畜繁殖性状遗传基因研究进展.怀化学院学报, 2008, 27(8): 40-44.
    19.熊远著.瘦肉猪育种的发展及展望.中国工程科学, 2000, 2: 41-46.
    20.张勤.主效基因及其在家畜育种中的意义.中国畜牧杂志, 1993, 29(1): 57-59.
    21.张淑君,熊远著,邓昌彦,等.卵泡刺激素受体基因作为产仔数候选基因的研究.华中农业大学学报, 2002, 21: 506-508.
    22.张思仲.人类基因组的单核苦酸多态性及其医学应用.中华遗传学杂志, 1999, 16: 119-122
    23.张元跃.母猪繁殖性状的遗传改良前景展望.广西畜牧兽医, 2002, 18(2): 42-44.
    24.赵要风,李宁,陈新福,等.猪FSHβ亚基基因5’端调控区PCR克隆测序及变异分析.自然科学进展-国家重点实验室通讯, 1996, 6(3): 351-356.
    25.赵要风,李宁,陈新福,等.猪FSHβ亚基基因RFLPs研究初报.畜牧兽医学报, 1998, 29(1): 23-26.
    26.赵要风,李宁,肖璐,等.猪FSHβ亚基基因结构区逆转座子插入突变及其与猪产仔数关系的研究.中国科学(C辑), 1999, 29(1): 81-86.
    27.赵永忠,徐湘民,徐铃. PCR-LIS-SSCP快速分析非缺失型α-地中海贫血点突变.中华医学遗传学杂志, 1999, 2: 113-115.
    28. Abramovitz M, Boie Y, Nguyen T, et al. Cloning and expression of a cDNA for the human prostanoid FP receptor. J Biol Chem, 1994, 269(4): 2632-2636.
    29. Alonso MA, Barton DE, Francke U. Assignment of the T-cell differentiation gene MAL to human chromosome 2, region cen----q13. Immunogenetics, 1988, 27(2): 91-95.
    30. Alonso MA, Millán J. The role of lipid rafts in signalling and membrane trafficking in T lymphocytes. J Cell Sci, 2001, 114(Pt 22): 3957-3965.
    31. Alonso MA, Weissman SM. cDNA cloning and sequence of MAL, a hydrophobic protein associated with human T-cell differentiation. Proc Natl Acad Sci USA, 1987, 84(7): 1997-2001.
    32. Amano H, Itakura K, Maruyama M, et al. Identification and targeted disruption of the mouse gene encoding ESG1 (PH34/ECAT2/DPPA5). BMC Dev Biol, 2006, 6: 11.
    33. Anderson LE, Wu YL, Tsai SJ, et al. Prostaglandin F(2alpha) receptor in the corpus luteum: recent information on the gene, messenger ribonucleic acid, and protein. Biology of Reproduction, 2001, 64 (4): 1041-1047.
    34. Ashley CT, Wilkinson KD, Reines D, et al. FMR1 protein: conserved RNP family domains and selective RNA binding. Science, 1993, 262(5133): 563-566.
    35. Astigiano S, Barkai U, Abarzua P, et al. Changes in gene expression following exposure of nulli-SCCl murine embryonal carcinoma cells to inducers of differentiation: characterization of a down-regulated mRNA. Differentiation, 1991, 46(1):61-67.
    36. Auletta FJ, Flint APF. Mechanisms controlling corpus luteum function in sheep, cows, nonhuman primates and women especially in relation to the time of luteolysis. Endocr Rev, 1988, 9(1): 88-105.
    37. Backe PH, Messias AC, Ravelli RB, et al. X-ray crystallographic and NMR studies of the third KH domain of hnRNP K in complex with single-stranded nucleic acids. Structure, 2005, 13 (7): 1055-1067.
    38. Baird DT, Campbell BK. Follicle selection in sheep with breed differences in ovulation rate. Mol Cell Endocrinal, 1998, 145(1-2): 89-95.
    39. Bernal AL. Overview of current research in parturition. Exp Physiol, 2001, 86(2): 213-222.
    40. Bierbaum P, MacLean-Hunter S, Ehlert F, et al. Cloning of embryonal stem cell-specific genes: Characterization of the transcriptionally controlled gene esg-1. Cell Growth Differ, 1994, 5(1): 37-46.
    41. Boonyaprakob U, Gadsby JE, Hedgpeth V, et al. Cloning of pig prostaglandin F2alphaFP receptor cDNA and expression of its mRNA in the corpora lutea. Reproduction, 2003, 125 (1): 53-64.
    42. Bortvin A, Eggan K, Skaletsky H, et al: Incomplete reactivation of Oct4-related genes in mouseembryos cloned from somatic nuclei. Development, 2003, 130(8):1673-1680.
    43. Braddock DT, Baber JL, Levens D, et al. Molecular basis of sequence-specific single-stranded DNA recognition by KH domains: solution structure of a complex between hnRNP K KH3 and single-stranded DNA. EMBO J, 2002, 21(13): 3476-3485.
    44. Braglia S, Ramirez O, Noguera JL, et al. Comparison of genetic models for analyzing the effects of a Pvull Polymorphism in the oestrogen receptor 1 (ESR1) gene on prolificacy in an Iberian×Meishan Pig population. Anim Genet, 2006, 37: 454-458.
    45. Braun A, Little DP, Koster H. Detecting CFTR gene mutations by using primer oligo base extension and mass spectrometry. Clin Chem, 1997, 43: 1151-1158.
    46. Chen T, Damaj BB, Herrera C, et al. Self-association of the single-KH-domain family members Sam68, GRP33, GLD-1, and Qk1: role of the KH domain. Mol Cell Biol, 1997, 17(10): 5707-5718.
    47. Cheong KH, Zacchetti D, Schneeberger EE, et al. VIP17/MAL, a lipid raft-associated protein, is involved in apical transport in MDCK cells. Proc Natl Acad Sci U S A, 1999, 96(11): 6241-6248.
    48. Currie JR, Brown T. KH domain-containing proteins of yeast: absence of a fragile X gene homologue. Am J Med Genet, 1999, 84: 272-276.
    49. Dantzer V. Electron microscopy of the initial stages of placentation in the pig. Anat Embryol (Berl), 1985, 172(3): 281-293.
    50. de Kok JB, Wiegerinck ET, Giesendorf BA, et al. Rapid genotyping of single nucleotide polymorphisms using novel minor groove binding DNA oligonuclotides (MGB-probes) . Hum Mutat, 2002, 19: 554-559.
    51. de Marco MC, Kremer L, Albar JP, et al. BENE, a novel raft-associated protein of the MAL proteolipid family, interacts with caveolin-1 in human endothelial-like ECV304 cells. J Biol Chem, 2001, 276(25): 23009-23017.
    52. de Marco MC, Mart?′n-Belmonte F, Kremer L, et al. MAL2, a novel raft protein of the MAL family, is an essential component of the machinery for transcytosis in hepatoma HepG2 cells. J Cell Biol, 2002, 159(1): 37-44.
    53. Ellegrenn H, Chowdhary BP, Johansson M, et al. A primary linkage map of the porcine genome reveals a low rate of genetic recombination. Genetics, 1994, 137(4): 1089-1100.
    54. Elsen JM. Utilization of genomic information in livestock improvement. Outlook on Agriculture, 2003, 32: 241-245.
    55. Eric L. Application of SNP technologies in medicine: lessons learned and future challenges. Genome Res, 2001, 11: 927-929.
    56. Ezashi T, Sakamoto K, Miwa K, et al. Genomic organization and characterization of the gene encoding bovine prostaglandin F2alpha receptor. Gene, 1997, 190(2): 271-278.
    57. Fan JB, Chen X, Halushka MK, et al. Parallel genotyping of human SNP using generic high-density oligonucleotide tag arrays. Genome Res, 2000, 10: 853-860.
    58. Foord SM. Receptor classification: post genome. Curr OpinPharm acol, 2002, 2(5): 561-566.
    59. Ford SP. Control of uterine and ovarian blood flow throughout the estrous cycle and pregnancy ofewes, sows and cows. J Anim Sci, 1982, 55 Suppl 2: 32-42.
    60. Fors L, Lieder KW, Vavra SH, et al. Large-scale SNP scoring from unamplified genomic DNA. Pharmacogenomics, 2000, 1: 219-229.
    61. Fuchs AR, Periyasamy S, Alexandrova M, et al. Correlation between oxytocin receptor concentration and responsiveness to oxytocin in pregnant rat myometrium: effects of ovarian steroids. Endocrinology, 1983, 113(2): 742-749.
    62. Gadsby JE, Balapure AK, Britt JH, et al. Prostaglandin F2 alpha receptors on enzyme-dissociated pig luteal cells throughout the estrous cycle. Endocrinology, 1990, 126(2): 787-795.
    63. Gibb W. The role of prostaglandins in human parturition. Ann Med, 1998, 30(3): 235-241.
    64. Gibson TJ, Thompson JD, Heringa J. The KH domain occurs in a diverse set of RNA-binding proteins that include the antiterminator NusA and is probably involved in binding to nucleic acid. FEBS Lett, 1993, 324(3):361-366.
    65. Graves PE, Pierce KL, Bailey TJ, et al. Cloning of a receptor for prostaglandin F2 alpha from the ovine corpus luteum. Endocrinology, 1995, 136(8): 3430-3436.
    66. Grishin NV. KH domain: one motif, two folds. Nucleic Acids Res, 2001, 29(3): 638-643.
    67. Guthrie HD, Polge C. Luteal function and oestrus in gilts treated with a synthetic analogue of prostaglandin F-2alpha (ICI 79,939) at various times during the oestrous cycle. J Reprod Fertil, 1976, 48(2): 423-425.
    68. Haff L, Smirnov I. Single-nucleotide polymorphism identification assays using a thermostable DNA polymerase and delayed extraction MALDI-TOF mass spectrometry. Genome Res, 1997, 7: 378-388.
    69. Hakeda Y, Hotta T, Kurihara N, et al. Prostaglandin E1 and F2 alpha stimulate differentiation and proliferation, respectively, of clonal osteoblastic MC3T3-E1 cells by different second messengers in vitro. Endocrinology, 1987, 121(6): 1966-1974.
    70. Hall JG, Eis PS, Law SM, et al. Sensitive detection of DNA polymorphisms by the serial invasive signal amplification reaction. Proc Natl Acad Sci USA, 2000, 15: 8272-8277.
    71. Hallford DM, Wettemann RP, Turman EJ, et al. Luteal function in gilts after prostaglandin F2alpha. J Anim Sci, 1975, 41(6): 1706-1710.
    72. Harney JP, Ott TL, Geisert RD, et al. Retinol-binding protein gene expression in cyclic and pregnant endometrium of pig, sheep and cattle . Biology of Reproduction, 1993, 49: 1066-1073.
    73. Hasumoto K,Sngimoto Y, Yamasaki A, et al. Association of expression of mRNA encoding the PGF2 alpha receptor with luteal cell apoptosis in ovaries of pseudopregnant mice. J Reprod Fertil, 1997, 109 (1): 45-51.
    74. Hedrick SM, Cohen DI, Nielsen EA, et al. Isolation of cDNA clones encoding T cell-specific membrane-associated proteins. Nature, 1984, 308(5955): 149-153.
    75. Hehnke KE, Christenson LK, Ford SP, et al. Macrophage infiltration into the porcine corpus luteum during prostaglandin F2 alpha-induced luteolysis. Biol Reprod, 1994, 50(1): 10-15.
    76. Hirschhorn JN, Sklar P, Lindblad-Toh K, et al. SBE-TAGS: An array-based method for efficientsingle-nucleotide polymorphism genotyping. Proc Natl Acad Sci USA, 2000, 97: 121640-121649.
    77. Holl JW, Cassady JP, Pomp D, et al. A genome scan for quantitative trait loci and imprinted regions affecting reproduction in pigs. J Anim Sci, 2004, 82(12): 3421-3429.
    78. Holland PM, Abramson RD, Watson R, et al. Detection of specific polymerase chain reaction product by utilizing the 5’→3’exonuclease activity of thermus aquaticus DNA polymerase. Proc Natl Acad Sci USA, 1991, 88: 7276-7280.
    79. Horton EW, Poyser NL. Uterine luteolytic hormone: a physiological role for prostaglandin F2alpha. Physiol Rev, 1976, 56(4): 595-651.
    80. Howell WM, Jobs M, Gyllensten U, et al. Dynamic allele-specific hybridization. A new method for scoring single nucleotide polymorphisms. Nat Biotechnol, 1999, 17: 87-88.
    81. Hübner K, Windoffer R, Hutter H, et al. Tetraspan vesicle membrane proteins: synthesis, subcellular localization, and functional properties. Int Rev Cytol, 2002, 214: 103-159.
    82. Huttner WB, Zimmerberg J. Implications of lipid microdomains for membrane curvature, budding and fission. Curr Opin Cell Biol, 2001, 13(4): 478-484.
    83. Isler BJ, Irvin KM, Neal SM, et al. Examination of the relationship between the estrogen receptor gene and reproductive traits in swine. J Anim Sci, 2002, 80(9): 2334-2339.
    84. Juengel JL, Wiltbank MC, Meberg BM, et al. Regulation of steady-state concentrations of messenger ribonucleic acid encoding prostaglandin F2 alpha receptor in ovine corpus luteum. Biol Reprod, 1996, 54(5): 1096-1102.
    85. Kenny N, Robinson J. Prostaglandin F2 alpha-induced functional luteolysis: interactions of LH, prostaglandin F2 alpha and forskolin in cyclic AMP and progesterone synthesis in isolated rat luteal cells. J Endocrinol, 1986, 111(3): 415-423.
    86. Kim SK, Suh MR, Yoon HS, et al. Identification of developmental pluripotency associated 5 expression in human pluripotent stem cells. Stem Cells, 2005, 23 (4): 458-462.
    87. Kim T, Fiedler K, Madison DL, et al. Cloning and characterization of MVP17: a developmentally regulated myelin protein in oligodendrocytes. J Neurosci Res, 1995, 42(3): 413-422.
    88. Kitanaka J, Hasimoto H, Sugimoto Y, et al. Cloning and expression of a cDNA for rat prostaglandin F2 alpha receptor. Prostaglandins, 1994, 48(1): 31-41.
    89. Kopito RR, Lodish HF. Primary structure and transmembrane orientation of the murine anion exchange protein. Nature, 1985, 316(6025): 234-238.
    90. Kyte J, Doolittle RF. A simple method for displaying the hydropathic character of a protein. J Mol Biol, 1982, 157(1): 105-132.
    91. Lake S, Gullberg H, Wahlqvist J, et al. Cloning of the rat and human prostaglandin F2 alpha receptors and the expression of the rat prostaglandin F2 alpha receptor. FEBS Lett, 1994, 355(3): 317-325.
    92. Landegren U, Kaiser R, Sanders J, et al. A ligase-mediated gene detection technique. Science, 1988, 241: 1077-1080.
    93. Lefkowitz RJ, Caron MG. Adrenergic receptors. Models for the study of receptors coupled toguanine nucleotide regulatory proteins. J Biol Chem, 1988, 263(11): 4993-4996.
    94. Li YF, Molina JR, Klindt J, et al. Prolactin maintains relaxin and progesterone secretion by aging corpora lutea after hypophysial stalk transection or hypophysectomy in the pig. Endocrinology, 1989, 124: 1243-1294.
    95. Liu Z, Luyten I, Bottomley MJ, et al. Structural basis for recognition of the intron branch site RNA by splicing factor 1. Science, 2001, 294 (5544): 1098-1102.
    96. Livak KJ, Marmaro J, Todd JA. Towards fully automated genome-wide polymorphism screening. Nature Genet, 1995, 9: 341-342.
    97. Lukong KE, Richard S. Sam68, the KH domain-containing superSTAR. Biochim Biophys Acta, 2003, 1653(2): 73–86.
    98. Lyamichev V, Mast AL, Hall JG, et al. Polymorphism identification and quantitative detection of genomic DNA by invasive cleavage of oligonucleotide probes. Nat Biotechnol, 1999, 17: 292-296.
    99. Marazuela M, Acevedo A, Adrados M, et al. Expression of MAL, an integral protein component of the machinery for raft-mediated pical transport, in human epithelia. J Histochem Cytochem, 2003, 51(5): 665-674.
    100. Marazuela M, Acevedo A, García-López MA, et al. Expression of MAL2, an integral protein component of the machinery for basolateral-to-apical transcytosis, in human epithelia. J Histochem Cytochem, 2004, 52(2): 243-252.
    101. Marazuela M, Alonso MA. Expression of MAL and MAL2, two elements of the protein machinery for raft-mediated transport, in normal and neoplastic human tissue. Histol Histopathol, 2004, 19(3): 925-933.
    102. Marazuela M, Martín-Belmonte F, García-López MA, et al. Expression and distribution of MAL2, an essential element of the machinery for basolateral-to-apical transcytosis, in human thyroid epithelial cells. Endocrinology, 2004, 145(2): 1011-1016.
    103. Martín-Belmonte F, Arvan P, Alonso MA. MAL mediates apical transport of secretory proteins in polarized epithelial Madin-Darby canine kidney cells. J Biol Chem, 2001, 276(52): 49337-49342.
    104. Martín-Belmonte F, Kremer L, Albar JP, et al. Expression of the MAL gene in the thyroid: the MAL proteolipid, a component of glycolipid-enriched membranes, is apically distributed in thyroid follicles. Endocrinology, 1998, 139(4): 2077-2084.
    105. Martín-Belmonte F, Puertollano R, Millán J, et al. The MAL proteolipid is necessary for the overall apical delivery of membrane proteins in the polarized epithelial Madin-Darby canine kidney and fischer rat thyroid cell lines. Mol Biol Cell, 2000, 11(6): 2033-2045.
    106. Matter K, Mellman I. Mechanisms of cell polarity: sorting and transport in epithelial cells. Curr Opin Cell Biol, 1994, 6(4): 545-554.
    107. McCracken JA, Custer EE, Lamsa JC. Luteolysis: a neuroendocrine-mediated event. Physiol Rev, 1999, 79(2): 263-323.
    108. McKnight GL, Reasoner J, Gilbert T, et al. Cloning and expression of a cellular high density lipoprotein-binding protein that is up-regulated by cholesterol loading of cells. J Biol Chem, 1992,267(17): 12131-12141.
    109. Mein CA, Barratt BJ, Dunn MG, et al. Evaluation of single nucleotide polymorphism typing with invader on PCR amplicons and its automation. Genome Res, 2000, 10: 330-343.
    110. Messer L, Wang L, Yelich J, et al. Linkage mapping of the retinol-binding protein (RBP4) gene to porcine chromosome 14 . Mammalian Genome, 1996, 7: 396.
    111. Millán J, Alonso MA. MAL, a novel integral membrane protein of human T lymphocytes, associates with glycosylphosphatidylinositol-anchored proteins and Src-like tyrosine kinases. Eur J Immunol, 1998, 28(11): 3675-3684.
    112. Millán J, Montoya MC, Sancho D, et al. Lipid rafts mediate biosynthetic transport to the T lymphocyte uropod subdomain and are necessary for uropod integrity and function. Blood, 2002, 99(3): 978-984.
    113. Milvae RA. Inter-relationships between endothelin and prostaglandin F2alpha in corpus luteum function. Rev Reprod, 2000, 5(1): 1-5.
    114. Mimori K, Shiraishi T, Mashino K, et al. MAL gene expression in esophageal cancer suppresses motility, invasion and tumorigenicity and enhances apoptosis through the Fas pathway. Oncogene, 2003, 22(22): 3463-3471.
    115. Moeljono MP, Bazer FW, Thatcher WW. A study of prostaglandin F2alpha as the luteolysin in swine: I. Effect of prostaglandin F2alpha in hysterectomized gilts. Prostaglandins, 1976, 11(4): 737-743.
    116. Moeljono MP, Thatcher WW, Bazer FW, et al. A study of prostaglandin F2alpha as the luteolysin in swine: II Characterization and comparison of prostaglandin F, estrogens and progestin concentrations in utero-ovarian vein plasma of nonpregnant and pregnant gilts. Prostaglandins, 1977, 14(3): 543-555.
    117. Mostov KE, Verges M, Altschuler Y. Membrane traffic in polarized epithelial cells. Curr Opin Cell Biol, 2000, 12(4): 483-490.
    118. Noda M, Shimizu S, Tanabe T, et al. Primary structure of Electrophorus electricus sodium channel deduced from cDNA sequence. Nature, 1984, 312(5990): 121-127.
    119. O’Donnell WT, Warren ST. A decade of molecular studies of fragile X syndrome. Annu Rev Neurosci, 2002, 25: 315-328.
    120. Olivier M, Chuang LM, Chang M S, et al. High-throughput genotyping of single nucleotide polymorphisms using new biplex invader technology. Nucleic Acids Res, 2002, 30: e53.
    121. Orita M, Iwahana H, Kanazawa H. Detection of Po1ymorphisms of human DNA by gel electrophoresis as single-strand conformational polymorphisms. Proc Natl Acad Sci, USA, 1989, 86: 2766-2770.
    122. Orita M, Suzuki Y, Sekiya T, et al. A rapid and sensitive detection of point mutations and genetic polymorphism using polymerase chain reaction. Genomies, 1989, 5: 874-879.
    123. Ostareck LA, Ostareck DH. Control of mRNA translation and stability in haematopoietic cells: the function of hnRNPs K and E1 ? E2. Biol Cell, 2004, 96(6): 407-411.
    124. Pastinen T, Kurg A, Metspalu A, et al. Minisequencing: A specific tool for DNA analysis and diagnostics on oligonucleotide arrays. Genome Res, 1997, 7: 606-614.
    125. Pérez P, Puertollano R, Alonso MA. Structural and biochemical similarities reveal a family of proteins related to the MAL proteolipid, a component of detergent-insoluble membrane microdomains. Biochem Biophys Res Commun, 1997, 232(3): 618-621.
    126. Pierre A, Gautier M, Callebaut I, et al. Atypical structure and phylogenomic evolution of the new eutherian oocyte- and embryo-expressed KHDC1/DPPA5/ECAT1/OOEP gene family. Genomics, 2007, 90(5): 583-594.
    127. Piper LR. Genetic variation in ovulation rate in Merino ewe aged. Proceedings of the Australian Society of Animal Production, 1980, (13): 409-412.
    128. Powell WS, Hammarstr?m S, Samuelsson B. Occurrence and properties of a prostaglandin F2alpha receptor in bovine corpora lutea. Eur J Biochem, 1975, 56(1): 73-77.
    129. Probst WC, Snyder LA, Schuster DI, et al. Sequence alignment of the G-protein coupled receptor superfamily. DNA Cell Biol, 1992, 11(1): 1-20.
    130. Puertollano R, Alonso MA. MAL, an integral element of the apical sorting machinery, is an itinerant protein that cycles between the trans-Golgi network and the plasma membrane. Mol Biol Cell, 1999, 10(10): 3435-3447.
    131. Puertollano R, Martín-Belmonte F, Millán J, et al. The MAL proteolipid is necessary for normal apical transport and accurate sorting of the influenza virus hemagglutinin in Madin-Darby canine kidney cells. J Cell Biol, 1999, 145(1): 141-151.
    132. Rao CV, Harker CW. Prostaglandin E and F2alpha receptors in bovine corpus luteum plasma membranes are two different macromolecular entities. Biochem Biophys Res Commun, 1978, 85(3): 1054-1060.
    133. Romero R, Munoz H, Gomez R, et al. Increase in prostaglandin bioavailability precedes the onset of human parturition. Prostaglandins Leukot Essent Fatty Acids, 1996, 54(3): 187-191.
    134. Ronaghi M, Uhlen M, Nyren P. A sequencing method based on real-time pyrophosphate. Science, 1998, 281: 363-365.
    135. Ross PL, Lee K, Belgrader P. Discrimination of single-nucleotide polymorphisms in human DNA using peptide nucleic acid probes detected by MALDI-TOF mass spectrometry. Anal Chem, 1997, 69: 4197-4202.
    136. Rothschild M.F, Laconbson C, Vaske DA, et al. The estrogen receptor locus is associated with a major influencing size in pigs. Proc Natl.Acad Sci.USA, 1996, 93(1): 201-205.
    137. Sachidanandam R, Weissman D, Schmidt S C, et al. A map of human genome sequence variation containing 1.42 million SNP. Nature, 2001, 409: 928-933.
    138. Sakamoto K, Ezashi T, Miwa K, et al. Molecular cloning and expression of a cDNA of the bovine prostaglandin F2 alpha receptor. J Biol Chem, 1994, 269(5): 3881-3886.
    139. Sakamoto K, Miwa K, Ezashi T, et al. Expression of mRNA encoding the prostaglandin F2 alpha receptor in bovine corpora lutea throughout the oestrous cycle and pregnancy. J Reprod Fertil,1995,103 (1): 99-105.
    140. Sánchez-Pulido L, Martín-Belmonte F, Valencia A, et al. MARVEL: a conserved domain involved in membrane apposition events. Trends Biochem Sci, 2002, 27(12): 599-601.
    141. Schaeren-Wiemers N, Valenzuela DM, Frank M, et al. Characterization of a rat gene, rMAL, encoding a protein with four hydrophobic domains in central and peripheral myelin. J Neurosci, 1995, 15(8): 5753-5764.
    142. Shrimpton AE, Robertson A. The isolation of polygenic factors controlling bristle score in Drosophila melanogaster. I. Allocation of third chromosome sternopleural bristle effects to chromosome sections. Genetics, 1988, 118(3): 437-443.
    143. Siegel D, Schuff M, Oswald F, et al. Functional dissection of XDppa2/4 structural domains in Xenopus development. Mech Dev, 2009, 126 (11-12): 974-989.
    144. Siomi H, Matunis MJ, Michael WM, et al. The pre-mRNA binding K protein contains a novel evolutionarily conserved motif. Nucleic Acids Res, 1993, 21(5): 1193-1198.
    145. Siomi H, Siomi MC, Nussbaum RL, et al. The protein product of the fragile X gene, FMR1, has characteristics of an RNA-binding protein. Cell, 1993, 74(2): 291-298.
    146. Siomi MC, Zhang Y, Siomi H, et al. Specific sequences in the fragile X syndrome protein FMR1 and the FXR proteins mediate their binding to 60S ribosomal subunits and the interactions among them. Mol Cell Biol, 1996, 16(7): 3825-3832.
    147. Souza CJ, Campbell BK, Webb R, et al. Secretion of inhibit A and follicular dynamic throughout the estrous cycle in the sheep with and without the Booroola gene (FecB). Endocrinology, 1997, 138(12): 5333-5340.
    148. Spencer TE, Bazer FW. Conceptus signals for establishment and maintenance of pregnancy. Reprod Biol Endocrinol, 2004, 2: 49.
    149. Spingola M, Armisen J, Ares MJ. Mer1p is a modular splicing factor whose function depends on the conserved U2 snRNP Snu17p. Nucleic Acids Res, 2004, 32(3): 1242-1250.
    150. Sugimoto Y, Hasumoto K, Namba T, et al. Cloning and expression of a cDNA for mouse prostaglandin F receptor. J Biol Chem, 1994, 269(2): 1356-1360.
    151. Sugimoto Y, Yamasaki A, Segi E, et al. Failure of parturition in mice lacking the prostaglandin F receptor. Science, 1997, 277(5326): 681-683.
    152. Swanson WJ, Vacquier VD. The rapid evolution of reproductive proteins. Nat Rev Genet, 2002, 3(2): 137-144.
    153. Syvanen AC, Aaltosetala K, Harju L, et al. A primer-guided nucleotide incorporation assay in the genotyping of apolipoprotein E. Genomics, 1990, 8: 684-692.
    154. Tanaka TS, Kunath T, Kimber WL, Jaradat SA, Stagg CA, Usuda M, Yokota T, Niwa H, Rossant J, Ko MS. Gene expression profiling of embryo-derived stem cells reveals candidate genes associated with pluripotency and lineage specificity. Genome Res, 2002, 12(12):1921-1928.
    155. Tian X, Pascal G, Fouchécourt S, et al. Gene birth, death, and divergence: the different scenarios of reproduction-related gene evolution. Biol Reprod, 2009, 80(4): 616-621.
    156. Torgerson DG, Kulathinal RJ, Singh RS. Mammalian sperm proteins are rapidly evolving: evidence of positive selection in functionally diverse genes. Mol Biol Evol, 2002, 19(11): 1973-1980.
    157. Torgerson DG, Singh RS. Rapid evolution through gene duplication and subfunctionalization of the testes-specific alpha4 proteasome subunits in Drosophila. Genetics, 2004, 168(3): 1421-1432.
    158. Trout WE, McDonnell JJ, Kramer KK, et al. The retinol-binding protein of the expanding pig blastocyst: molecular cloning and expression in trophectoderm and embyronic disc. Molecular Endocrinology, 1991, 5: 1533-1540.
    159. Wandinger-Ness A, Bennett MK, Antony C, et al. Distinct transport vesicles mediate the delivery of plasma membrane proteins to the apical and basolateral domains of MDCK cells. J Cell Biol, 1990, 111(3): 987-1000.
    160. Wang D G, Fan J B, Siao C J, et al. Large-scale identification, mapping and genotyping of single-nucleotide polymorphisms in the human genome. Science, 1998, 280: 1077-1082.
    161. Wellstead JR, Bruce NW, Rahima A. Effects of indomethacin on spacing of conceptuses within the uterine horn and on fetal and placental growth in the rat. Anat Rec, 1989, 225(2): 101-105.
    162. Wilkins SP, Hall JG, Lyamichev V, et al. Analysis of single nucleotide polymorphisms with solid phase invasive cleavage reactions. Nucleic Acids Res, 2001, 29: e77.
    163. Wilson SH, Bailey AM, Nourse CR, et al. Identification of MAL2, a novel member of the mal proteolipid family, though interactions with TPD52-like proteins in the yeast two-hybrid system. Genomics, 2001, 76(1-3): 81-88.
    164. Wiqvist N, Lindblom B, Wikland M, et al. Prostaglandins and uterine contractility. Acta Obstet Gynecol Scand Suppl, 1983, 113: 23-29.
    165. Valverde R, Edwards L, Regan L. Structure and function of KH domains. FEBS J, 2008, 275(11): 2712-2726.
    166. Vincent AL, Evans G, Short TH, et al. The prolactin recaptor gene is associated with increased litter size in pigs. Proceedings of the 6th World Congress on Genetics Applied to Livestock Production. Arimidale, Australia, 1998, 27: 15-18.
    167. Vincent AL, Wang L, Tuggle CK, et al. Prolactin receptor maps to pig chromosome 16. Mamm Genome, 1997, 8(10): 793-794.
    168. Ye S, Liang X, Yamamoto Y, et al. Detection of single nucleotide polymorphisms by the combination of nuclease S1 and PNA. Nucleic Acids Res, 2002, Supp l: 235-236.
    169. Yelich J, Pomp D, Geisert R. Detection of transcripts for retinoic acid receptors, retinal-binding protein, and transforming growth factors during rapid trophoblastic elongation in the porcine conceptus. Biology of Reproduction, 1997, 57: 286-294.
    170. Zacchetti D, Per?nen J, Murata M, et al. VIP17/MAL, a proteolipid in apical transport vesicles. FEBS Lett, 1995, 377(3): 465-469.
    171. Zannoni A, Bernardini C, Rada T, et al. Prostaglandin F2-alpha receptor (FPr) expression on porcine corpus luteum microvascular endothelial cells (pCL-MVECs). Reprod Biol Endocrinol,2007, 20(5): 31.
    172. Zhang Y, O'Connor JP, Siomi MC, et al. The fragile X mental retardation syndrome protein interacts with novel homologs FXR1 and FXR2. EMBO J, 1995, 14(21): 5358-5366.
    173. Zhou Guo-Hua, Gu Zhuo-Liang, Zhang Jie-Bing. P53 gene mutation detection by bioluminometry assay. Acta Pharamceutica Sinica, 2002, 37(1): 41-45.
    174. Ziecik AJ. Old, new and the newest concepts of inhibition of luteolysis during early pregnancy in pigs. Domest Anim Endocrinol, 2002, 23(1-2): 265-275.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700