金属复合纳米材料及宽带半导体材料的超快光物理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文主要分为两个部分,第一部分研究了磁控溅射制得的以氮化硅为基质的含银金属纳米复合薄膜及离子交换得到的掺银,铜复合玻璃的超快能量弛豫过程和三阶非线性光学性质,以及热处理的影响。采用的是z-scan及飞秒时间分辨的泵浦-探测,光学克尔效应等实验技术。第二部分是对氧化锌晶体及微米管在800 nm附近强的飞秒光脉冲作用下的多光子激发过程的研究,并对实验结果进行了一些相关的理论模拟。
     主要研究内容和相应创新结论如下:
     1.通过飞秒泵浦.探测及z-scan等实验技术,研究了热处理对由磁控共溅射法制备的Ag∶Si_3N_4纳米复合薄膜的光学非线性及超快能量弛豫过程的影响。结果表明,虽然热处理对材料的三阶光学非线性的值影响不大,但是因为热处理后材料的吸收降低(800 nm处),其品质因数相应提高。对材料的超快能量弛豫过程的研究表明,热处理后材料的能量弛豫过程明显加快。我们认为这主要是退火后银纳米颗粒尺寸明显增大,导致自由电子振荡频率和声子德拜频率的重叠加大,进而导致更强的电子-声子耦合,加速了快过程的弛豫速率。而慢的弛豫过程加速的原因被认为与热处理后Si3N4基底的相变使得其导热性能得到提高有关。
     2.利用相关实验技术,研究了离子交换得到的单独掺银,单独掺铜及同时掺银和铜的复合玻璃的光学非线性及超快能量弛豫过程。发现在单独掺银的复合玻璃中,热处理不仅能够明显增大材料在表面等离子共振(SPR)附近的光学非线性,还可以加速材料的快能量弛豫过程。其原因在于热处理不但能够促进银纳米颗粒的聚集,还有利于玻璃基底中银离子向银原子间的转化。在退火后的样品中可能存在银纳米颗粒内部的电子与周围玻璃基底的声子问耦合等过程,这有利于材料能量弛豫过程的加速。对掺铜复合玻璃的时间分辨的结果分析可以得出,材料激发后电子布居的改变而造成的复合材料SPR红移及展宽是造成不同波长出现光致吸收与漂白转化的根本原因。对同时掺银和铜的复合玻璃材料的时间分辨研究表明,玻璃基底中的铜和银纳米颗粒在不同波长处对材料的超快能量弛豫过程起主要贡献。
     3.对氧化锌单晶及微米管两种材料在波长为800 nm附近的飞秒强激光激发下多光子吸收过程的研究结果表明,即使存在双光子失谐,在强的飞秒激光激发下,双光子吸收而不是三光子吸收在氧化锌材料的激发过程中占主要影响。我们认为极强光电场作用下出现的一些非线性效应可能会极大地提高氧化锌的双光子吸收效率。对双光子Rabi振荡参与下的氧化锌激发过程的理论模拟结果表明,在失谐条件下,一定消相过程的存在有利于二能级系统中上能级粒子数的布居。
     总之,本论文通过对热处理前后两类金属复合纳米材料的光学非线性及超快能量弛豫过程的研究,证明了适当温度下的热处理有利于提高该类材料的光学非线性性能及超快光响应。对不同种类氧化锌材料在飞秒激光强光场作用下的研究结果表明,多光子过程同样能有效地激发氧化锌这类宽禁带半导体材料,强光场下出现的一些非线性光学效应可能在材料的激发过程中占有重要的影响。本论文的研究结果有助于人们加深对金属纳米复合材料体系光物理特性的认识。有关氧化锌材料的多光子激发过程的研究有助于揭示材料在强场作用下的出现的一些奇异特性。
In this thesis,first,we investigate the energy relaxation dynamics and third-order nonlinear optical susceptibilities of noble metal nanocomposites by using femtosecond(fs) pump-probe,time-resolved optical Kerr effect(OKE) and z-scan techniques.Then,multi-photon absorption processes in ZnO materials,including single crystal and microtubes,were studied under the excitation of intense fs pulses near 800 nm.Relative simulation has also been made.
     The main innovative results and conclusions are as follows:
     1.The energy relaxation dynamics and nonlinear optical properties of Ag:Si_3N_4 nanocomposite films fabricated by magnetron co-sputtering were investigated by utilizing fs pump-probe and z-scan techniques.After thermal treatment,the figure of merit was improved although the third-order susceptibility didn't change much.Heat treatment is proven to be a feasible way to improve the performance of ultrafast response for this material.The acceleration of the fast relaxation is attributed to the intensification of the coupling between the electrons and the phonons in Ag nanoparticles due to the diminishing of the detuning of the electron-oscillation phonon resonance overlap,caused by the size increase of Ag nanoparticles after annealing.The improvement of thermal conductivity properties of the Si_3N_4 substrate after annealing may be responsible for the acceleration of the slow relaxation process in the annealed samples.
     2.Effects of thermal treatment on the optical nonlinearity and ultrafast dynamics of Ag and Cu nanoparticles embedded in soda-lime silicate glasses were investigated.For the glass embedded with Ag nanoparticles,after the annealment,the figure of merit near the SPR increases obviously due to the increased content of Ag particles inside the glass.In addition to this,the relaxation is accelerated after the annealment,which could be attributed to the efficient interfacial coupling between hot electrons in Ag and phonons in SiO_2 substrate.The time-resolved experimental results indicate that the change of electrons population results in the red shift and the broadening of SPR,leading to the conversion from photobleaching to photoabsorption in the glass embedded with Cu nanoparticles.While Cu and Ag nanoparticles dominate the transient absorption properties of the nanocomposites at different wavelength in the glass embedded with both Cu and Ag nanoparticles.
     3.Multi-photon absorption in ZnO single crystal and microtube were investigated by utilizing intense fs pulses at wavelength near 800 nm.Nonlinear optical effects that may emerge under extremely intense field are attributed to be responsible for the efficient two-photon absorption process under detuned excitation.The simulation results of the two-photon Rabi effect show that there would be the population remained in the upper state if dephasing is taken into consideration even under detuning,while no population is found in the upper state after excitation when there is no dephasing effect.
     In conclusion,the ultrafast dynamics and the nonlinear optical response of metal nanocomposites were investigated.Heat treatment has been proven to be a feasible way to improve the performance of ultrafast response for this kind of materials. Based on the experimental results of ZnO materials excited by intense fs pulses near 800 nm,nonlinear optical effects that may emerge under an intense field are attributed to be responsible for the efficient two-photon absorption process under detuned excitation.
     Our research results are meaningful in accumulating the information of the optical properties of metal nanocomposite and the relative researches on the multi-photon absorption processes in ZnO materials are benefit for further understanding of the light-matter interaction under ultrashort intense excitation.
引文
[1]张立德.纳米材料和纳米结构.北京:科学出版社,2001.
    [2]袁哲俊.纳米科学与技术.哈尔滨:哈尔滨工业大学出版社,2005.
    [3]陈敬中,刘剑洪.纳米材料科学导论.北京:高等教育出版社,2006.
    [4]Y Takahashi,etal.Fabrication technique for Si single-electron transistor operating at room temperature.Electron Letters,1995,31(2):136-137.
    [5]王占国,陈涌海,叶小玲.纳米半导体技术.北京:化学工业出版社,2006.
    [6]布凌格.未来世界的100种变化.北京:科学出版社,2006.
    [7]施利毅.纳米材料.上海:华东理工大学出版社,2007.
    [8]A Fujishima,K Honda.Electrochemical Photolysis of Water at a Semiconductor Electrode.Nature,1972,238:37-38.
    [9]徐国财,张立德.纳米复合材料.北京:化学工业出版社,2002.
    [10]贺鹏,赵安赤.聚合物改性中纳米复合新技术.高分子通报,2001,1:74-82.
    [11]洪伟良,刘剑洪等.有机—无机纳米复合材料的制备方法.化学研究应用,2000,12(2):132-136.
    [12]J.Y.Bigot,J.C.Merle,O.Cregut,and A.Daunois.Electron Dynamics in Copper Metallic Nanoparticles Probed with Femtosecond Optical Pulses.Physical Review Letters,1995,75(25):4702-4705.
    [13]T.V.Shahbazyan,I.E.Perakis,and J.Y.Bigot.Size-dependent surface plasmon dynamics in metal nanoparticles.Physical Review Letters,1998,81(15):3120-3123.
    [14]A.Arbouet,C.Voisin,D.Christofilos,P.Langot,N.Del Fatti,F.Vallee,J.Lerme,G.Celep,E.Cottancin,M.Gaudry,M.Pellarin,M.Broyer,M.Maillard,M.P.Pileni,and M.Treguer.Electron-phonon scattering in metal clusters.Physical Review Letters,2003,90(17):177401.
    [15]R.W.Schoenlein,W.Z.Lin,J.G.Fujimoto,and G.L.Eesley.Femtosecond studies of nonequilibrium electronic processes in metals.Physical Review Letters,1987,58(16):1680-1683.
    [16]H.E.Elsayed-Ali,T.B.Norris,M.A.Pessot,and G.A.Mourou.Time-resolved observation of electron-phonon relaxation in copper.Physical Review Letters,1987,58(12):1212-1215.
    [17]G.V.Hartland.Coherent excitation of vibrational modes in metallic nanoparticles.Annual Review of Physical Chemistry,2006,57:403-430.
    [18]C.Voisin,D.Christofilos,N.D.Fatti,F.Vallee,B.Prevel,E.Cottancin,J.Lerme,M.Pellarin,and M.Broyer.Size-dependent electron-electron interactions in metal nanoparticles.Physical Review Letters,2000,85(10):2200-2203.
    [19] M. Perner, P. Bost, U. Lemmer, G. vonPlessen, J. Feldmann, U. Becker, M. Mennig, M. Schmitt, and H. Schmidt. Optically induced damping of the surface plasmon resonance in gold colloids. Physical Review Letters, 1997, 78 (11): 2192-2195.
    [20] C. Bauer, J. P. Abid, and H. H. Girault. Hot adsorbate-induced retardation of the internal thermalization of nonequilibrium electrons in adsorbate-covered metal nanoparticles. Journal of Physical Chemistry B, 2006,110 (10): 4519-4523.
    [21] Q. F. Zhang, W. M. Liu, Z. Q. Xue, J. L. Wu, S. F. Wang, D. L. Wang, and Q. H. Gong. Ultrafast optical Kerr effect of Ag-BaO composite thin films. Applied Physics Letters, 2003, 82 (6): 958-960.
    [22] D. Y. Guan, Z. H. Chen, W. T. Wang, H. B. Lu, Y. L. Zhou, K. J. Jin and G. Z. Yang. Enhancement of optical nonlinearity in Ag : BaTiO_3 composite films by applying an electric field during growth. Journal of the Optical Society of America B-Optical Physics, 2005, 22 (9): 1949-1952.
    [23] H. M. Gong, X. H. Wang, Y. M. Du and Q. O. Wang. Optical nonlinear absorption and refraction of CdS and CdS-Ag core-shell quantum dots. Journal of Chemical Physics, 2006, 125 (2): 024707.
    [24] J. P. Huang and K. W. Yu. Enhanced nonlinear optical responses of materials: Composite effects. Physics Reports-Review Section of Physics Letters, 2006,431(3):87-172.
    [25] G. H. Ma, W. X. Sun, S. H. Tang, H. H. Zhang, Z. X. Shen and S. X. Qian. Size and dielectric dependence of the third-order nonlinear optical response of Au nanocrystals embedded in matrices. Optics Letters, 2005,27 (12): 1043-1045.
    [26] Y. Liu, D. Li, R. Y. Zhu, G. J. You, S. X. Qian, Y. Yang and J. L Shi. Third-order nonlinear optical response of Au-core CdS-shell composite nanoparticles embedded in BaTiO_3 thin films. Applied Physics B, 2003,76 (4): 435-439.
    [27] G. J. You, P. Zhou, C. F. Zhang, Z. W. Dong, F. Yang, Z. L. Du, L. Y. Chen, and S. X. Qian. Ultrafast studies on the energy relaxation dynamics and the concentration dependence in Ag : Bi_2O_3 nanocomposite films. Chemical Physics Letters, 2007, 413 (1-3): 162-167.
    [28] Y. Ohko, T. Tatsuma, T. Fujii, K. Naoi, C. Niwa, Y. Kubota, and A. Fujishima. Multicolour photochromism of TiO_2 films loaded with silver nanoparticles. Nature Materials, 2003,2 (1): 29-31.
    [29] M. S. Hu, H. L. Chen, C. H. Shen, L. S. Hong, B. R. Huang, K. H. Chen, and L. C. Chen. Photosensitive gold-nanoparticle-embedded dielectric nanowires. Nature Materials,2006,5 (2): 102-106.
    [30] S. I. Anisimov et al. Structure of an absorption under the action of laser radiation on metal. Sov. Phys. JETP, 1975,39: 375.
    [31] V. Halte, J. Y. Bigot, B. Palpant, M. Broyer, B. Prevel, and A. Perez. Size dependence of the energy relaxation in silver nanoparticles embedded in dielectric matrices. Applied Physics Letters, 1999,75 (24): 3799-3801.
    [32] M. B. Mohamed, T. S. Ahmadi, S. Link, M. Braun, and M. A. El-Sayed. Hot electron and phonon dynamics of gold nanoparticles embedded in a gel matrix. Chemical Physics Letters, 2001,343 (1-2): 55-63.
    [33] Q. Darugar, W. Qian, M. A. El-Sayed, and M. P. Pileni. Size-dependent ultrafast electronic energy relaxation and enhanced fluorescence of copper nanoparticles. Journal of Physical Chemistry B, 2006,110 (1): 143-149.
    [34] L. Jiang L, H. L. Tsai. Improved two-temperature model and its application in ultrashort laser heating of metal filmsnanoparticles. Journal of Heat Transfer, 2005,127(10):1167-1173.
    [35] T. Ning, Y. L. Zhou, H. Shen, H. Lu, Z. H. Sun, L. Z. Cao, D. Y. Guan, D. X., Zhang and G. Z. Yang. Large third-order optical nonlinearity of periodic gold nanoparticle arrays coated with ZnO. J. Phys. D: Appl. Phys., 2007,40: 6705-6708.
    [36] K. Uchida, S. Kaneko, S. Omi, C. Hata, H. Tanji, Y. Asahara, A.J. Ikushima, T. Tokizaki, A. Nakamura. Optical nonlinearities of a high concentration of small metal particles dispersed in glass: copper and silver particles. Journal of the Optical Society of America B-Optical Physics, 1994,11(7): 1236-1243.
    [37] W. J. Leng, C. R. Yang, H. Ji, J. H. Zhang, J. L Tang, and H. W. Chen. Large third-order optical nonlinearity in (Pb,La) (Zr,Ti)O_3 ferroelectric thin film. J. Appl. Phys., 2006,100: 126101.
    [38] S. J. Mathews, S. Chaitanya Kumar, L. Giribabu, S. Venugopal Rao, Large third-order optical nonlinearity and optical limiting in symmetric and unsymmetrical phthalocyanines studied using Z-scan. Optics Communications, 2007, 280: 206-212.
    [39] Tanahashi I, Inouye H, Tanaka K, Mito A. Preparation and femtosecond third-order nonlinear optical properties of Cu/SiO_2 composite thin films. Japanese Journal of Applied Physics Part 1,1999,38(9): 5079-5082.
    [40] A. K. Sarychev and V. M. Shalaev. Theory of nonlinear optical responses in metal-dielectric composites. Optical Properties of Nanostructured Random Media. Topics in Applied Physics, 2002,82:169.
    [41] J. E. Sipe and R. W. Boyd. Nanocomposite materials for nonlinear optics based on local field effects. Optical Properties of Nanostructured Random Media. Topics in Applied Physics, 2002,82:1.
    [42] H. R. Ma, P. Sheng, and G. K. L. Wong. Third-order nonlinear properties of Au clusters containing dielectric thin films. Optical Properties of Nanostructured Random Media. Topics in Applied Physics, 2002, 82:41.
    [43] S. Eustis and M. A. El-Sayed. Why gold nanoparticles are more precious than pretty gold: Noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chemical Society Reviews, 2006, 35(3): 209-217.
    
    [44] U. Kreibig and M. Vollmer. Optical Properties of Metal Clusters. Berlin: Springer, 1995.
    
    [45] J. H. Hodak, I. Martini, and G. V. Hartland. Spectroscopy and Dynamics of Nanometer-Sized Noble Metal Particles. Journal of Physical Chemistry B, 1998,102(36): 6958-6967.
    [46] Y. Zhang, N. Wang, R. He, Q. Zhang, J. Zhu and Y. Yan. Reversible bending of Si_3N_4 nanowire. Journal of Materials Research, 2000,15:1048-1051.
    [47] I. W. Chen and A. Rosenflanz, A tough SiAlONceramic based on a-Si_3N_4 with a whisker-like microstructure. Nature (London), 1997,389(6652): 701-704.
    [48] F. Wang, G. Q. Jin, X. Y. Guo. Sol-gel synthesis of Si_3N_4 nanowires and nanotubes. Materials Letters, 2006, 60(3): 330-333.
    [49] L. W. Yin, Y. Bando, Y. C. Zhu et al. Synthesis, structure, and photoluminescence of very thin and wide alpha silicon nitride .a-Si_3N_4. single-crystalline nanobelts. Applied Physics Letters, 2003,83(17): 3584-3586.
    [50] C. F. Klingshirn. ZnO: From basics towards applications. Physica Status Solidi B, 2007, 244(9): 3027-3073.
    [51] Z. L Wang Z L. Novel nanostructures of ZnO for nanoscale photonics, optoelectronics, piezoelectricity, and sensing. Applied Physics A, 2007, 88: 7-15.
    [52] J. Zhou, N. S. Xu, Z. L. Wang. Dissolving behavior and stability of ZnO wires iin biofluids: A study on biodegradability and biocompatibility of ZnO nanostructures. Advanced Materials, 2006,18(18): 2432-2432.
    [53] X.. Y. Kong, Z. L.Wang. Spontaneous polarization-induced nanohelixes, nanosprings, and nanorings of piezoelectric nanobelts. Nano Letters. 2003,3(12): 1625-1631.
    [54] L. E. Greene, M. Law, D. H. Tan, M. Montano, J. Goldberger, G. Somorjai, P. D. Yang. General route to vertical ZnO nanowire arrays using textured ZnO seeds. Nano Letters, 2005, 5(7): 1231-1236.
    [55] P. D. Yang, H. Q. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, N. Morris, J. Pham, R. R. He, H. J. Choi. Controlled growth of ZnO nanowires and their optical properties. Advanced Functional Materials, 2002,12(5): 323-331.
    [56] Z. W. Dong, C. F. Zhang, H. Deng, G. J. You, and S. X. Qian. Raman spectra of single micrometer-sized tubular ZnO. Materials Chemistry and Physics, 2006, 99 (1): 160-163.
    [57] T. J. Hsueh TJ, S. J., C. L. Hsu, Y. R. Lin, I. C. Chen. Highly sensitive ZnO nanowire ethanol sensor with Pd adsorption. Applied Physics Letters, 2007, 91(5): 053111.
    [58] A. Z. Sadek, S. Choopun, W. Wlodarski, S. J. Ippolito, K. Kalantar-zadeh. Characterization of ZnO nanobelt-based gas sensor for H-2, NO_2, and hydrocarbon sensing. IEEE Sensors Journal, 2007,7(5-6): 919-924.
    [59] M. Suchea, S. Christoulakis, K. Moschovis, N. Katsarakis, G.Kiriakidis. ZnO transparent thin films for gas sensor applications. Thin Solid Films, 2006,515(2): 551-554.
    [60] M. S. Wagh, L. A. Patil, T. Seth, D. P. Amalnerkar. Surface cupricated SnO_2-ZnO thick films as a H_2S gas sensor. Mateials Chemistry and Physics, 2004,84(2-3): 228-233.
    [61] Y. Qin, X.D. Wang and Z L. Wang. Microfibre-nanowire hybrid structure for energy scavenging. Nature, 2008,451:809-813.
    [62] J. Wang, Z. Gu, M. H. Lu, D. Wu, C. S. Yuan, S. T. Zhang, Y. F. Chen, S. N. Zhu, Y. Y. Zhu. Giant magnetoresistance in transition-metal-doped ZnO films. Applied Physics Letters, 2006, 88(25): 252110.
    [63] C. R. Ding, S. W. Li, H. Z. Wang. Lasing characteristics of ZnxMg1-xO and ZnO : Al epilayers. Applied Physics Letters, 2007,90(24): 241918.
    [64] M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo, P. D. Yang. Room-Temperature Ultraviolet Nanowire Nanolasers. Science, 2001,292(5523): 1897-1899.
    [65] J. C. Johnson et al. Near-field imaging of nonlinear optical mixing in single zinc oxide nanowires. Nano Letters,2002,2(4): 279-283.
    [66] X. T. Zhang etal. Structure and optically pumped lasing from nanocrystalline ZnO thin films prepared by thermal oxidation of ZnS thin films. Journal of Applied Physics, 2002, 92(6): 3293-3298.
    [67] Y. Zhang etal. Low-temperature growth and Raman scattering study of vertically aligned ZnO nanowires on Si substrate. Applied Physics Letters, 2003, 83(22): 4631-4633.
    [68] B. Guo etal. Intensity dependence and transient dynamics of donor-acceptor pair recombination in ZnO thin films grown on (001) silicon. Applied Physics Letters, 2003, 82(14): 2290-2292.
    [69] J. J. Wu etal. Catalyst-Free Growth and Characterization of ZnO Nanorods. Journal of Physical Chemistry B, 2002,106(37): 9546-9551.
    [70] D. M. Bagnall etal. High temperature excitonic stimulated emission from ZnO epitaxial layers. Applied Physics Letters, 1998,73(8): 1038-1040.
    [71] D. C. Dai, S. J. Xu, S. L. Shi and M. H. Xie. Efficient multiphoton-absorption-induced luminescence in single-crystalline ZnO at room temperature. Optics Letters, 2005, 30: 3377-3379.
    
    [72] J. He, Y. L. Qu, H. P. Li, J. Mi and W. Ji. Optics, Express, 2005,13: 9235-9247.
    [73] C. F. Zhang C F, Z. W. Dong, K. J. Liu, Y. L. Yan and S. X. Qian. Multiphoton absorption pumped ultraviolet stimulated emission from ZnO microtubes. Applied Physics Letters, 2007, 91:142109.
    [74] C. F. Zhang, Z. W. Dong, G.J. You, R. Y. Zhu and S. X. Qian. Femtosecond pulse excited two-photon photoluminescence and second harmonic generation in ZnO nanowires. Applied Physics Letters, 2006, 89(4): 042117.
    [75] C. F. Zhang, Z. W. Dong, G.J. You and S. X. Qian. Multiphoton route to ZnO nanowire lasers. Optics Letters, 2006,31(22): 3345-3347.
    [76] Z. W. Dong, C. F. Zhang, G.J. You, X. Q. Qiu, K. J. Liu, Y. L. Yan and S. X. Qian Multi-photon excitation UV emission by femtosecond pulses and nonlinearity in ZnO single crystal. Journal of Physics D-Condensed Matters, 2007,19: 216202.
    [77] C. F. Zhang, Z. W. Dong, G.J. You and S. X. Qian. Observation of two-photon-induced photoluminescence in ZnO microtubes. Applied Physics Letters, 2005,87:051920.
    [78] A. Schulzgen, R. Binder, M. E. Donovan, T. Lindberg, K. Wundke, H. M. Gibbs, G. Khitrova, N. Peyghambarian. Direct Observation of Excitonic Rabi Oscillations in Semiconductors. Physics Review Letters, 1999,82(11): 2346-2349.
    [79] T. Rickes T et al. Efficient adiabatic population transfer by two-photon excitation assisted by a laser-induced Stark shift. Journal of Chemical Physics, 2000,113(2):534-546.
    [80] S. Tsuda et al. Femtosecond dynamics of the optical Stark effect in semiconductor-doped glass. Applied Physics Letters. 1996,68(8): 1093-1095.
    [81] A. Zrenner, E. Beham, S. Stufler, F. Findeis, M. Bichler, G.Abstreiter. Coherent properties of a two-level system based on a quantum-dot photodiode. Nature, 2002,418(6898): 612-614.
    [1]钱士雄,王恭明.非线性光学:原理与进展.上海:复旦大学出版社,2001.
    [2]N.Bloembergen.Nonlinear Spectroscopy.North-Holland,Amsterdam,1977.
    [3]M.Sheikbahae,A.A.Said,T.H.Wei,D.J.Hagan and E.W.Vanstryland.Sensitive Measurement of Optical Nonlinearities Using a Single Beam.Ieee Journal of Quantum Electronics,1990,26(4):760-769.
    [4]P.B.Chapple,J.Staromlynska,J.A.Hermann,T.J.McKay and R.G.McDuff.Single-beam z-scan:measurement techniques and analysis.Journal of Nonlinear Optical Physics and Materials,1997,6:251-293.
    [5]P.Yuan,Z.J.Xia,Y.H.Zou,et al.Ultrafast optical Kerr effect of phthalocyanine.Chem.Phys.Lett.,1994,224(1):101-105.
    [6]Aristides Marcano,Curtis Loper and Noureddine Melikechi.Pump-probe mode-mismatched thermal-lens Z scan.Journal of the Optical Society of America B-Optical Physics,2002,19:119-124.
    [7]A.Marcano O.and F.E.Herna'ndez,A.D.Sena.Two-color near-field eclipsing Z-scan technique for the determination of nonlinear refraction.Journal of the Optical Society of America B-Optical Physics,1997,12:3363-3367.
    [8]J.Wang,M.Sheik-Bahae,A.A.Said,D.J.Hagan,and E.W.Van Stryland.Time-resolved Z-scan measurements of optical nonlinearities.Journal of the Optical Society of America B-Optical Physics,1994,11:1009.
    [9]R.L Sutherland.Handbook of Nonlinear Optics.New York:Marcel Dekker,1996.
    [10]A.Idrissi,M.Ricci,P.Bartolini and R.Righini.Optical Kerr-effect investigation of the reorientational dynamics of CS2 in CC14 solutions.Journal of Chemical Physics,1999,111(9):4148-4152.
    [11]刘烨.金属及金属-半导体核壳结构纳米颗粒复合薄膜的超快光物理研究.上海:复旦大学,2003.
    [12]M.E.Orczyk,M.Samoc,J.Swiatkiewicz,and P.N.Prasad.Dynamics of 3rd-Order Nonlinearity of Canthaxanthin Carotenoid by the Optically Heterodyned Phase-Tuned Femtosecond Optical Kerr Gate.Journal of Chemical Physics,1993,98(4):2524-2533.
    [13]D.H.Auston et al.,Picosecond spectroscopy of semiconductors.Solid State Electronics,1978,21(1):147-150.
    [14]C.V.Shank et al.Picosecond spectroscopy of semiconductors.Solid State Electronics,1978,21(1):567-570.
    [15] Q. F. Zhang, W. M. Liu, Z. Q. Xue, J. L. Wu, S. F. Wang, D. L. Wang, and Q. H. Gong. Ultrafast optical Kerr effect of Ag-BaO composite thin films. Applied Physics Letters, 2003, 82 (6): 958-960
    [16] S. Link, C. Burda, Z. L. Wang etal. Electron dynamics in gold and gold-silver alloy nanoparticles: The influence of a nonequilibrium electron distribution and the size dependence of the electron-phonon relaxation. Journal of Chemical Physics., 1999,111(3): 1255-1264.
    [17] Y. J. Ye, C. J. Divin, J. R. Baker, T. B. Norris. Whole spectrum fluorescence detection with ultrafast white light excitation. Optics Express, 2007,15(16): 10439-10445.
    [1] C. Voisin, D. Christofilos, N. D. Fatti, F. Vallee, B. Prevel, E. Cottancin, J. Lerme, M. Pellarin, and M. Broyer. Size-dependent electron-electron interactions in metal nanoparticles. Physical Review Letters, 2000, 85 (10): 2200-2203.
    
    [2] V. Halte, J. Y. Bigot, B. Palpant, M. Broyer, B. Prevel and A. Perez. Size dependence of the energy relaxation in silver nanoparticles embedded in dielectric matrices. Applied Physics Letters, 1999,75 (24): 3799-3801.
    [3] A. Arbouet, C. Voisin, D. Christofilos, P. Langot, N. Del Fatti, F. Vallee, J. Lerme, G.Celep, E. Cottancin, M. Gaudry, M. Pellarin, M. Broyer, M. Maillard, M. P. Pileni and M. Treguer. Electron-phonon scattering in metal clusters. Physical Review Letters, 2003,90 (17): 177401.
    [4] Q. Darugar, W. Qian, M. A. El-Sayed, and M. P. Pileni. Size-dependent ultrafast electronic energy relaxation and enhanced fluorescence of copper nanoparticles. Journal Of Physical Chemistry B, 2006,110 (1): 143-149.
    [5] M. B. Mohamed, T. S. Ahmadi, S. Link, M. Braun and M. A. El-Sayed. Hot electron and phonon dynamics of gold nanoparticles embedded in a gel matrix. Chemical Physics Letters, 2001, 343 (1-2): 55-63.
    [6] C. Bauer, J. P. Abid, and H. H. Girault. Hot adsorbate-induced retardation of the internal thermalization of nonequilibrium electrons in adsorbate-covered metal nanoparticles. Journal of Physical Chemistry B, 2006,110 (10): 4519-4523.
    [7] H. Inouye, K. Tanaka, I. Tanahashi, T. Hattori, and H. Nakatsuka. Ultrafast optical switching in a silver nanoparticle system. Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, 2000, 39 (9A): 5132-5133.
    [8] Y. Hamanaka, A. Nakamura, S. Omi, N. Del Fatti, F. Vallee, and C. Flytzanis. Ultrafast response of nonlinear refractive index of silver nanocrystals embedded in glass. Applied Physics Letters, 1999,75 (12): 1712-1714.
    [9] G.Yang, W. T. Wang, Y. L. Zhou, H. B. Lu, G.Z. Yang, and Z. H. Chen. Linear and nonlinear optical properties of Ag nanocluster/BaTiO_3 composite films. Applied Physics Letters, 2002, 81 (21): 3969-3971.
    [10] P. Zhou, G.J. You, Y. G.Li, T. Han, J. Li, S. Y. Wang, L. Y. Chen, Y. Liu, and S. X. Qian. Linear and ultrafast nonlinear optical response of Ag: Bi_2O_3 composite films. Applied Physics Letters, 2003, 83 (19): 3876-3878.
    
    [11] Y. Zhang, N. Wang, R. He, Q. Zhang, J. Zhu and Y. Yan. J. Mater. Res., 2000,15:1048.
    
    [12] I. W. Chen and A. Rosenflanz. A tough SIAION ceramic based on alpha-Si_3N_4 with a whisker-like microstructure. Nature (London), 1997, 389: 701-704.
    [13] H. B. Liao, R. F. Xiao, J. S. Fu, P. Yu, G.K.L Wong, and P. Sheng. Large third-order optical nonlinearity in Au:SiO_2 composite films near the percolation threshold. Applied Physics Letters, 1997,70 (1): 1-3.
    [14] T. Xie, G. S. Wu et al.A simple route to large scale synthesis of crystalline alpha-Si_3N_4 nanowires. Applied Physics A-Materials Science & Processing, 2005, 80:1057-1059.
    [15] J . Farjas, C. Rath, A. Pinyol et al. Si_3N_4 single-crystal nanowires grown from silicon micro- and nanoparticles near the threshold of passive oxidation. Applied Physics Letters, 2005, 87: 192114.
    [16] A. Bahari, U. Robenhagen, P. Morgen and Z. S. Li. Growth of ultrathin silicon nitride on Si(111) at low temperatures. Physical Review B, 2005, 72: 205323.
    [17] F. Wang, G. Q. Jin, X. Y. Guo. Sol-gel synthesis of Si_3N_4 nanowires and nanotubes. Material Letters, 2006, 60: 330-333.
    [18] L. W. Yin, Y. Bando, Y. C. Zhu et al. Synthesis, structure, and photoluminescence of very thin and wide alpha silicon nitride (alpha-Si_3N_4) single-crystalline nanobelts. Applied Physics Letters, 2003, 83: 3584-3586.
    
    [19] Bohren and Huffman. Absorption and Scattering of Light by Small Particles. J. Wiley ed. 1998.
    [20] P. Zhou, G. J. You, J. Li et al. Annealing effect of linear and nonlinear optical properties of Ag: Bi_2O_3 nanocomposite films. Optical Express, 2005,13:1508-1514.
    [21] S. Kinoshita, Y. Kai, M. Yamaguchi and T. Yagi. Direct comparison between ultrafast optical Ken-effect and high-resolution light scattering spectroscopy. Physical Review Letters, 1995, 75: 148-151.
    [22] Q. F. Zhang, W. M. Liu, Z. Q. Xue, et al. Ultrafast optical Kerr effect of Ag-BaO composite thin films. Applied Physics Letters, 2003, 82:958-960.
    [23] Z. W. Dong, G. J. You, P. Zhou, C. F. Zhang, K. J. Liu, Y. L. Yan, and S. X. Qian. Heat treatment effect on the ultrafast dynamics and nonlinear optical properties of Ag: Si_3N_4 nanocermets. Journal of Physics D: Applied Physics, 2006, 39: 4766-4770.
    [24] H. Park, X. Wang, S. Nie, R. Clinite and J. Cao. Mechanism of coherent acoustic phonon generation under nonequilibrium conditions. Physical Review B, 2005, 72:100301.
    [25] V. E. Gusev et al. On duration of acoustic pulses excited by subpicosecond laser action on metals. Optical Communications, 1992,94: 76-78.
    [26] S. I. Anisimov et al. Electron emission from metal surfaces exposed to ultrashort laser pulses. Sov Phys JETP, 1975,39: 375.
    [27] J. Y. Bigot, V. Halte, J. C. Merle, and A. Daunois. Electron dynamics in metallic nanoparticles. Chemical Physics, 2000, 251 (1-3): 181-203.
    [28] Jose' H. Hodak, Ignacio Martini, and Gregory V. Hartland. Spectroscopy and dynamics of nanometer-sized noble metal particles. Journal of Physics Chemistry B 1998,102: 6958-6967.
    [29] Mark J. Feldstein, Christine D. Keating, Yish-Hann Liau, Michael J. Natan and Norbert F. Scherer. Electronic relaxation dynamics in coupled metal nanoparticles. Journal of American Chemical Society, 1997,119: 6638-6647.
    [30] S. A. Gorban, S. A. Nepijko and P. M. Tomchuk. Electron phonon interaction in small metal islands deposited on an insulating substrate. Internal Journal of Electronics, 1991,70:485-490.
    [31] C. Voisin, N. D. Fatti, D. Christofilos and F. Vallee. Ultrafast electron dynamics and optical nonlinearities in metal nanoparticles. Journal of Physics Chemistry B, 2001,105:2264-2280.
    [32] Y. J. Bai, J. Bian, C. G.Wang et al. One step convenient synthesis of crystalline beta-Si_3N_4. Journal of Materials Chemistry, 2005,15:4832-4837.
    [1]E.M.Vogel,M.J.Weber.E.M.Vogel,M.J.Weber,D.M.Krol.Nonlinear optical phenomena in glass.Physics and Chemistry of Glasses,1991,32:231-254.
    [2]W.P.Gai,L.D.Zhang,H.C.Zhong,et al.Annealing of mesoporous silica loaded with silver loaded with silver nanoparticles within its pores from iothermal sportion.Journal of Materials Research,1998,13(10):2888-2895.
    [3]F.Gonella,P.Mazzoldi,Metal nanocluster composite glasses.Handbook of Nano- structured Materials and Nanotechnology,2000,1:81-158.
    [4]K.E.Remitz,N.Neuroth,B.Speit.Semiconductor-doped glass as a nonlinear material.Materials Scicence Engineering,1991,B9:413-416.
    [5]X.C.Yang,M.Dubiel,H.Hofmeister.X-ray absorption spectroscopy analysis of formation and structure of Ag nanoparticales in soda-lime silicate glass.Journal of Non-Crststalline Solids,2003,328:123-136.
    [6]G.Marchi,F.Gonella,P.Mazzoldi,et al.Non-linear glasses by clusterr formation:synthesis and properties.Journal of Non-Crystalline Solids,1996,196:79-83.
    [7]C.Mohr,M.Dubiel,H.Hofmeister.Formation of silver particles and periodic precipititate layers in silicate glass induced by thermally assisted hydrogen permeation.Journal of Physics:Condensed Matter,2001,13:525-536.
    [8]Y.Shimotsuma,P.G.Kazansky,J.R.Qiu,et al.Self-organized nanogretings in glass irradiated by ultrashort light pulses.Physical Review Letters,2003,91:247405-247408.
    [9]Yoshihiko Taked,Oleg A.Plaksin,Jing Lu,Naoki Kishimoto.Optical nonlinearity of metal nanoparticle composites fabricated by negative ion implantation.Vacuum,2006,80:776-779.
    [10]H.B.Liao,R.F.Xiao,H.Wang,et al.Large third-order optical nonlinearity in Au:TiO_2composite films measured on a femtosecond time scale.Applied Physics Letters,1998,72:1987-1989.
    [11]J.H.Adair,To Li,T.Kido,et al.Recent developments in the preparation and properties of nanometer-size spherical and platelet-shaped particles and composite particles.Materials Science and Engineering:R:Reports,1997,23:139-144.
    [12]L.M.Liz-Marzan,M.A.Correa-Durate,I.Pastorza-Santos,et al.Handbook of surfaces and interfaces of materials:nanostructured material.Micelles and Colloids,2001,3:189-193.
    [13]杜天伦.金属纳米颗粒掺杂玻璃及其光学性能的研究.硕士毕业论文,上海:同济大学,2007.
    [14]Masayuki Yamane,Shiuichi Shibata,Atsuo Yasumori Tetsuji Yano,Hiroyasu Takada, Structural evolution during Ag+/Na+ ion exchange in a sodium silicate glass.Journal of Non-Crystal Solids,1996,203:268.
    [15]Tetsuji Yano,Tomonori Nagano,Jaeho Lee,Shuichi Shibata,Masayuki Yamane.Cation site occupation by Ag+/Na+ ion-exchange in R2O-Al2O3-SiO2 glasses.Journal of Non-Crystal Solids,2000,270:163.
    [16]Bohren and Huffman,Absorption and Scattering of Light by Small Particles(J.Wiley ed),1998.
    [17]P.Zhou,G.J.You,J.Li,S.Y.Wang,S.X.Oian,L.Y.Chen,Annealing effect of linear and nonlinear optical properties of Ag:Bi2O3 nanocomposite films.Optics Express,2005,13:1508-1514.
    [18]E.Borsella,A.Dal Vecchio,M.A.Garci,C.Sada,F.Gonella,R.Polloni,A.Ouaranta and L.J.G.W.van Wilderen.Copper doping of silicate glasses by the ion-exchange technique:A photoluminescence spectroscopy study.Journal of Applied Physics,2002,91:90-98.
    [19]李志会.双金属纳米颗粒掺杂玻璃及其光学性能的研究,硕士毕业论文,上海:同济大学,2008.
    [20]I.Tanahashi,and et al.Optical nonlinearities of Au/SiO2 composite thin films prepared by a sputtering method.J.Appl.Phys.,1996,79:1244-1249.
    [21]H.B.Liao,R.F.Xiao,Ping Sheng,and et al.,Large third-order optical nonlinearity in Au:SiO2 composite films near the percolation threshold Applied Physics Letters,1997,70,1-3.
    [22]D.Ricard,Ph.Roussignol,and Chr.Flytzanis.Surface-mediated enhancement of optical phase conjugation in metal colloids.Optics Letters,1985,10(10):511-513.
    [23]F.Hache,D.Ricard,and Chr.Flytzanis.Optical nonlinearities of small metal particles surface-mediated resonance and quantum size effects.Journal of the Optical Society of America B-Optical Physics,1986,3(12):1647-1655.
    [24]R.L.Sutherland,Handbook of Nonlinear Optics,Marcel Dekker(Ed.),New York,1996.
    [25]Giancarlo Battaglin,Paolo Calvelli,Elti Cattaruzza,and Riccardo Polloni etal.Laser-irradiation effects during Z-scan measurement on metal nanocluster composite glasses.Journal of the Optical Society of America B-Optical Physics,2000,17(2):213-218.
    [26]C.Voisin,N.D.Fatti,D.Christofilos and E Vallee.Ultrafast electron dynamics and optical nonlinearities in metal nanoparticles.Journal of Physical Chemistry B,2001,105,2264-2280.
    [27]N.Del Fatti,C.Flytzanis and F.Vallee,Ultrafast induced electron-surface scattering in a confined metallic system.Applied Physics B-Lasers and Optics,1999,68,433-437.
    [28]G.J.You,P.Zhou,C.F.Zhang,Z.W.Dong,L.Y.Chen and S.X.Qian,Ultrafast nonlinear optical response of silver/bismuth oxide nanocomposite films with different silver concentrations. Journal of Luminescence, 2006,119: 370-377.
    [29] A. Arbouet, C. Voisin, D. Christofilos, P. Langot, N. Del Fatti, etal. Electron-phonon scattering in metal clusters. Physical Review Letters, 2003, 90 (17): 177401.
    [30] C. Voisin, D. Christofilos, P. A. Loukakos, N. Del Fatti, F. Vallee, etal. Ultrafast electron-electron scattering and energy exchanges in noble-metal nanoparticles. Physical Review B, 2004, 69 (19): 195416.
    [31] V. Halte, J. Y. Bigot, B. Palpant, M. Broyer, B. Prevel, and A. Perez. Size dependence of the energy relaxation in silver nanoparticles embedded in dielectric matrices. Applied Physics Letters, 1999, 75 (24): 3799-3801.
    [32] Q. Darugar, W. Qian, M. A. El-Sayed, and M. P. Pileni. Size-dependent ultrafast electronic energy relaxation and enhanced fluorescence of copper nanoparticles. Journal of Physical Chemistry B, 2006,110 (1): 143-149.
    [33] N. Del Fatti et al. Coherent acoustic mode oscillation and damping in silver nanoparticles. Journal of Chemical Physics, 1999,110,11484-11487.
    [34] Jose H. Hodak et al. Size dependent properties of Au particles: Coherent excitation and dephasing of acoustic vibrational modes. Journal of Chemical Physics, 1999, 111: 8613-8621.
    [35] K. Uchida, K. Kaneko, S. Omi, C. Hata, H. Tanji, Y. Asahara, A. J. Ikushima, etal. Optical nonlinearities of a high-concentration of small particles dispersed in glass-copper and silver particles. Journal of the Optical Society of America B-Optical Physics, 1994,11:1236-1243.
    [36] J. M. Ballesteros, R. Serna and J. Solis, C. N. Afonso, A. K. Petford-Long, etal. Pulsed laser deposition of Cu: Al_2O_3 nanocrystal thin films with high third-order optical susceptibility. Applied Physics Letters, 1997, 71: 2445-2447.
    [37] G.J. You, P. Zhou, Z. W. Dong, C. F. Zhang, L. Y. Chen and S. X. Qian. Ultrafast third-order nonlinear optical response of Cu: Bi_2O_3 nanocomposite films. Physica B, 2007,393:188-194.
    [38] Takashi Tokizaki, Arao Nakamura, Shoji Kaneko, Katsuaki Uchida,etal. Subpicosecond time response of 3~(rd)-order optical nonlinearity of small copper particles in glass. Applied Physics Letters, 1994, 65: 941-943.
    [39] G.Mie. Beitrage zur Optik triiber Medien speziell kolloidaler Metallosungen. Annalen Der Physik 1908, 25: 377.
    
    [40] U. Kreibig, M. Vollmer. Optical Properties of Metal Clusters, Springer: Berlin, 1995.
    [41] R. Rosei, F. Antonangeli, U. M. Grassano. D bands position and width in gold from very low-temperature thermomodulation measurements. Surface Science, 1973, 37: 689-699.
    [42] S. L. Logunov, T. S. Ahmadi, M. A. El-Sayed, J. T. Khoury, and R. L. Whetten. Electron Dynamics of Passivated Gold Nanocrystals Probed by Subpicosecond Transient Absorption Spectroscopy. Journal of Physical Chemistry B, 1997,101: 3713-3719.
    
    [43] M. Perner, P. Bost, U. Lemmer, G.Von Plesson and J. Feldmann, Optically induced damping of the surface plasmon resonance in gold colloids. Physical Review Letters, 1997, 78: 2192-2195.
    [1]钱士雄,王恭明。非线性光学:原理与进展。上海:复旦大学出版社,2001.
    [2]I.E.Hargove,R.L.Fork and M.A.Pollack.Locking of He-Ne laser modes induced by synchronous intracavity modulation.Applied Physics Letters,1964,5:4-5.
    [3]H.M.Zhang,X.Quan,S.Chen et al.Fabrication of needle-like ZnO nanorods arrays by a low-temperature seed-layer growth approach in solution.Applied Physics A,2007,89:673-679.
    [4]B.Postels,H.H.Wehmann,A.Bakin,et al.Properties of V-implanted ZnO nanorods.Nanotechnology,2007,18:195602.
    [5]J.B.Cui,U.Gibson,Low-temperature fabrication of single-crystal ZnO nanopillar photonic bandgap structures.Nanotechnology,2007,18:155302.
    [6]D.Ehrentraut,H.Sato,M.Miyamoto,et al.Fabrication of homoepitaxial ZnO films by low-temperature liquid-phase epitaxy.Journal of Crystal Growth,2006,287:367-371.
    [7]C.X.Xu,A.Wei,X.W.Sun et al.Aligned ZnO nanorods synthesized by a simple hydrothermal reaction.Journal of Physics D,2006,39:1690-1693.
    [8]H.Zhang,D.Yang,X.Y.Ma,et al.Synthesis of flower-like ZnO nanostructures by an organic-free hydrothermal process.Nanotechnology,2004,15:622-626.
    [9]J.C.Ge,B.Tang,L.H.Zhuo,et al.,Nanotechnology,2006,17:1316.
    [10]A.Wei,X.W.Sun,C.X.Xu,et al.Stable field emission from hydrothermally grown ZnO nanotubes.Applied Physics Letters,2006,88:213102.
    [11]J.H.Choy,E.S.Jang,J.H.Won,J.H.Chung,D.J.Jang,Y.W.Kim.Hydrothermal route to ZnO nanocoral reefs and nanofibers.Applied Physics Letters,2004,84:287-289.
    [12]H.Zhang,D.R.Yang,X.Y.Ma,N.Du,J.B.Wu,D.L.Que.Straight and thin ZnO nanorods:Hectogram-scale synthesis at low temperature and cathodoluminescence.Journal of Physical Chemistry B,2006,110:827-830.
    [13]Y.Sun,D.J.Riley,M.N.R.Ashfold.Mechanism of ZnO nanotube growth by hydrothermal methods on ZnO film-coated Si substrates.Journal of Physical Chemistry B,2006,110:15186-15192.
    [14]H.Q.Le,S.J.Chua,K.P.Loh,E.A.Fitzgerald,Y.W.Koh.Synthesis and optical properties of well aligned ZnO nanorods on GaN by hydrothermal synthesis.Nanotechnology,2006,17:483-488.
    [15]E.V.Chelnokov et al.Two-photon pumped random laser in nanocrystalline ZnO.Applied Physics Letters,2006,89:171119.
    [16] Y. F. Zhang, Richard E. Russo and Samuel S. Mao. Femtosecond laser assisted growth of ZnO nanowires. Applied Physics Letters, 2005, 87:133115.
    [17] D. Li and Y. H. Leung et al. Different origins of visible luminescence in ZnO nanostructures fabricated by the chemical and evaporation methods. Applied Physics Letters, 2004,85:1601-1603.
    [18] W. Z. Xu, Z. Z. Ye, D. W. Ma, H. M. Lu, L. P. Zhu, B. H. Zhao, X. D. Yang and Z. Y. Xu. Quasi-aligned ZnO nanotubes grown on Si substrates. Applied Physics Letters, 2005, 87:093110.
    [19] H. Cao et al. Second harmonic generation in laser ablated zinc oxide thin films. Applied Physics Letters, 1998,73:572-574.
    [20] J. C. Johnson et al. Near-field imaging of nonlinear optical mixing in single zinc oxide nanowires. Nano Letters., 2002, 2:279-283.
    [21] Z. C. Zhang, B. B. Huang, Y. Q. Yu, D. L. Cui. Electrical properties and Raman spectra of undoped and Al-doped ZnO thin films by metalorganic vapor phase epitaxy. Materials Science and Engineering B, 2001, 86:109-112.
    [22] X. T. Zhang, Y. C. Liu, Z. Z. Zhi, J. Y. Zhang, Y. M. Lu, D. Z. Shen, W. Xu, G. Z. Zhong, X. W. Fan and X. G. Kong. Resonant Raman scattering and photoluminescence from high-quality nanocrystalline ZnO thin films prepared by thermal oxidation of ZnS thin films. Journal of Physics D-Applied Physics, 2001,34:3430-3433.
    [23] X. Wang, Q. W. Li, Z. B. Liu, J. Zhang, Z. G. Liu and R. M. Wang. Low-temperature growth and properties of ZnO nanowires. Applied Physics Letters, 2004, 84:4941.
    [24] C. A. Arguello, D. L. Rousseau and S. P. S. Porto. First-Order Raman Effect in Wurtzite-Type Crystals. Physical Review, 1969,181:1351-1363.
    [25] Y. J. Xing, Z. H. Xi, Z. Q. Xue, X. D. Zhang, and J. H. Song etal. Optical properties of the ZnO nanotubes synthesized via vapor phase growth. Applied Physics Letters, 2003,83:1689.
    [26]. R. P. Wang, G. Xu and P. Jin. Size dependence of electron-phonon coupling in ZnO nanowires. Physics Review B, 2004,69:113303.
    
    [27] B. H. Bairamov, A. Heinrich, G. Irmer, V. V. Toporov, and E. Ziegler. Raman study of the phonon halfwidths and the phonon - plasmon coupling in ZnO.Physica. Status Solidi B, 1983, 119:227-234.
    [28] Z. W. Dong, C. F. Zhang, H. Deng, G.J. You, and S. X. Qian. Raman spectra of single micrometer-sized tubular ZnO. Materials Chemistry and Physics, 2006, 99 (1): 160-163.
    [29] Z. W. Dong, C. F. Zhang, G.J. You, X. Q. Qiu, K. J. Liu, Y. L. Yan and S. X. Qian. Journal of Physics-Condesed Matter, 2007,19: 216202.
    [30] 张春峰.博士毕业论文.上海:复旦大学,2007.
    
    [31] D. C. Dai, S. J. Xu, S. L. Shi and M. H. Xie. Efficient multiphoton-absorption-induced luminescence in single-crystalline ZnO at room temperature. Optics Letters, 2005, 30: 3377-3379.
    
    [32] J. He, Y. L Qu, H. P. Li, J. Mi and W. Ji. Optics, Express, 2005,13: 9235-9247.
    [33] P. L. Knight and P. W. Milonni. The Rabi frequency in optical-spectra. Physics Reports, 1980,66: 21-107.
    [34] A. Zrenner, E. Beham, S. Stufler, F. Findeis, M. Bichler, and G. Abstreiter. Coherent properties of a two-level system based on a quantum-dot photodiode. Nature, 2002, 418: 612-614.
    [35] J. R. Petta, A. C. Johnson, J. M. Taylor, E. A. Laird, A. Yacoby, M. D. Lukin, C. M. Marcus, M. P. Hanson and A. C. Gossard. Coherent Manipulation of Coupled Electron Spins in Semiconductor Quantum Dots. Science, 2005,309: 2180-2185.
    [36] H. Htoon, T. Takagahara, D. Kulik, O. Baklenov, A. L. Holmes and C. K. Shih. Interplay of Rabi oscillations and quantum interference in semiconductor quantum dots. Physics Review Letters, 2002, 88: 087401.
    [37] A. A. Batista, and D. S. Citrin, Rabi Hopping in a Two-Level System with a Time-Dependent Energy Renormalization: Intersubband Transitions in Quantum Wells. Physics Review Letters, 2004,92:127404.
    [38] S. Stufler, P. Machnikowski, P. Ester, M. Bichler, V.M. Axt, T. Kuhn, and A. Zrenner Two-photon Rabi oscillations in a single InxGa1-xAs/GaAs quantum dot. Physics Review B, 2006,73:125304.
    [39] J. H. Lin, Y. J. Chen, H.Y. Lin and W. F. Hsieh. Two-photon resonance assisted huge nonlinear refraction and absorption in ZnO thin films. Journal of Applied Physics, 2005,97: 033526.
    [40] K. Hazu etal. Phonon scattering of excitons and biexcitons in ZnO. Journal of Applied Physics, 2004, 96:1270-1272.
    [41] J. C. Johnson et al. Ultrafast carrier dynamics in single ZnO nanowire and nanoribbon lasers. Nano Letters., 2004, 4:197-204.
    [42] A. Schuelzgen, R. Binder, M. E. Donovan, M. Lindberg, K. Wundke, H. M. Gibbs, G. Khitrova, and N. Peyghambarian. Direct observation of excitonic Rabi oscillations in semiconductors. Physics Review Letters, 1999, 82: 2346-2349.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700