用户名: 密码: 验证码:
量子点(CdSe)标记糖类分子的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
量子点由于其优良的荧光性能,目前已广泛应用于生物工程领域。CdSe量子点表面经过修饰后,表面带有活性功能基团,通过分子偶联作用,可以连接DNA,蛋白质等。目前在量子点的制备方法中,有机合成法是较成熟的,这种方法可以获得荧光效率高,颗粒均一的量子点。但是有机合成法中存在严重的问题,比如三辛基氧膦(TOPO)等具有较强的毒性,而且操作繁琐,制得的QDs表面有一层TOPO,TOPO不仅具有毒性,而且是疏水性物质,这样使得所制得的量子点不具有水溶性,对于QDs应用于生物学领域是不利的。
     本实验中建立了量子点的水相合成法,并且通过糖类分子修饰量子点从而使得量子点可以通过细胞表面凝集素的作用而进入HepG2细胞中,讨论了在细胞毒性方面,量子点糖基化修饰的优势。
     (1)水相合成量子点条件:400mgSe和400mgNaBH4在1ml水溶液中反应2h后,取0.25ml加入到90ml含有25mg的CdCl2·2.5H2O和0.025ml巯基乙酸的水溶液中,96℃回流2h制得量子点,将制得的量子点通过红外,紫外,电镜以及荧光等方面进行表征,结果证明获得了大小均一,颗粒分散的量子点,并且使用壳聚糖来包裹量子点,实现了量子点对纳米载药分子的标记。
     (2)将量子点与9种糖类分子分别进入连接,并且将连接后的产物加到HepG2细胞培养液中,进行筛选,最终发现甘露糖修饰的量子点可以进入HepG2细胞中,这和文献报道的HepG2细胞表面甘露糖凝集素大量表达相一致,这一结果对于研究癌细胞表面凝集素,以及通过糖类分子来标记癌细胞提供有一定的依据。此外,甘露糖修饰的量子点对HepG2细胞没有表现出细胞毒性,而且仍可长时间的保持荧光特性。通过小鼠的荷瘤模型也发现,在体内实验中,甘露糖修饰的量子点也可以标记HepG2细胞。
     (3)通过量子点以及甘露糖修饰的量子点分别同牛血清白蛋白作用,牛血清白蛋白通常被用做研究药物分子在体内的药物药理等研究,发现量子点被甘露糖修饰后,与BSA的结合明显降低,这对于量子点在体内毒性研究是有利的,在量子点表面降低毒性的修饰是一个补充。另外研究了量子点与牛血清白蛋白的作用,发现量子点可以引起BSA的猝灭,这个猝灭的过程是一个静态的猝灭过程,它们之间以摩尔比1:1结合,根据同步荧光光谱,可以得出,量子点主要与BSA的酪氨酸连接,而不与丝氨酸相作用。根据Foste偶极能量转移理论,可以计算出量子点与BSA的作用距离6.56nm,小于8nm,说明量子点与BSA的结合是个有效结合。这些对于研究量子点的体内毒性及量子点体内药理等,提供一定依据。
Quantum dots, as its excellent fluorescent properties, has been widely used in biological engineering. After the surface modification of CdSe quantum dots, the surface with active functional groups, by the molecular coupling effect, QDs can be connected to DNA, proteins. Currently in preparation methods, quantum dots, organic synthesis had many reports, this method can obtain high efficiency fluorescent particles homogeneous quantum dots. However, in organic synthesis, there are serious problems, such as TOPO has a strong toxicity, the obtained QDs surface layer of TOPO, TOPO is not only toxic, but also hydrophobic substances, which makes the prepared quantum point does not have a water-soluble, the QDs used in the field of biology at a disadvantage.
     In this study, the QDs in the aqueous phase synthesis method was set up, and quantum dots by oligosaccharides molecular modification to make quantum dots can be entered HepG2 cells by cell surface lectin, and also on the toxicity in cells, QDs-Man have the advantage.
     (1) Aqueous-phase synthesis of quantum dots conditions:400 mg Se and 400 mg NaBH4 was added in 1ml aqueous solution,2h latter, take 0.25 ml to 90 ml aqueous solution containing 25mg of CdCl2·2.5H2O and 0.025 ml thioglycolic acid,96℃,2h, QDs was obtained, the quantum dots was tested by infrared, ultraviolet, electron microscopy and fluorescence in areas such as characterization, the results was showed that the uniform size of particles dispersed quantum dots was obtained, and the use of chitosan to coat quantum dots, quantum dots marked the drug carried molecules.
     (2) Quantum dots and 9 kinds of trisaccharides were connected, and the connection of products added to the HepG2 cell culture medium, then screened and found mannose modified quantum dots can entered the HepG2 cells, this result as the literature reported that HepG2 cell surface great expressed mannose lectin which could help carbohydrate molecules through cancer cells. In addition, it was found that mannose modified quantum dots on HepG2 cells showed no cytotoxicity, and still maintain a long fluorescence characteristics. It was also found mannose modification of quantum dots can also be labeled HepG2 cells byy in vivo mice tumor model.
     (3) Mannose modified quantum dots and quantum dots were modified with bovine serum albumin, bovine serum albumin is often used as study drug molecules in vivo pharmacology study, it was found that quantum dots which are modified by mannose, its combination with BSA significantly reduced, it was beneficial for the quantum dots in vivo toxicity studies and a supplement of the quantum dot surface modification. In addition, the quantum dots connected with bovine serum albumin was studied, it was found that quantum dots can lead to quenching, and it was a static quenching process, the molar ratio of 1:1 between them to combine. According to synchronization fluorescence spectroscopy, it can be obtained that quantum dots mainly connected with tyrosine of BSA, but not with the serine. According to Foste dipole energy transfer theory, the distance ofquantum dots connected with BSA can be calculated, it was 6.56nm, less than 8nm, it showed the combination of quantum dots and the BSA was an effective combination. The result could provide some basis information for the study of quantum dots in vivo toxicity and in vivo pharmacology.
引文
[1]A. P. Alivisatos. Semiconductor Clusters, Nanocrystals, and Quantum Dots[J]. Science,1996,271:933-937.
    [2]A. L. Efros, M. Rosen, Annu. Rev. Mater. The electronic structure of semiconductor nanocrystals[J]. Science,2000,30:475.
    [3]X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose,. J. J. Li,l G. Sundaresan, A. M. Wu, S. S. Gambhir, S. Weiss. Quantum Dots for Live Cells, in Vivo Imaging, and Diagnostics[J].Science 2005,307:538-546.
    [4]M. E. Akerman, W. C. W. Chan, P. Laakkonen, S. N. Bhatia, E. Ruoslahti. Nanocrystal targeting in vivo[J]. Proc. Natl. Acad. Sci. U.S.A.2002,99:12617-12621.
    [5]G. P. Mitchell, C. A. Mirkin, R. L. Letsinger. Programmed Assembly Of DNA Functionalized Quantum Dots[J]. J. Am.Chem. Soc.1999,121:8122.
    [6]J. K. Jaiswal, H. Mattoussi, J. M. Mauro, S. M. Simon. Long-term multiple color of live cells using quantum dot bioconjugates[J]. Nature Biotechnol.2003,21: 47-51.
    [7]杨文胜等.纳米材料与生物技术[M],化学工业出版社,2005.
    [8]M. Dahan et al., Watching the dynamics of individual proteins in live cells using quantum dots[J]. Science,2003,302:442-445.
    [9]F. Pinaud, D. King, H.-P. Moore, S. Weiss, Bioactivation and cell targeting of semiconductor CdSe/ZnS nanocrystals with phytochelatin-related peptides[J]. J. Am.Chem. Soc.2004,126:6115-6123.
    [10]X. Y. Wu et al., Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor QDs[J]. Nature Biotechnol.2003,21:41-46.
    [11]A. Mansson et al., In vitro sliding of actin filaments labelled with single quantum dots. Biochem Biophys Res Commun[J]. Biochem. Biophys. Res. Commun.2004,314:529-534.
    [12]C. T. Dameron et al., Biosynthesis of cadmium-sulphide quantum semiconductor crystallites[J], Nature,1989,338:596-597.
    [13]P. Reiss, J. Bleuse, HighlyLuminescent CdSe/ZnSe Core/Shell Nanocrystals of Low Size Dispersion[J]. A. Pron, Nano Lett.2002,2:781-784.
    [14]D. Gerion et al., Synthesis and Properties of Biocompatible Water-soluble Silica-coated CdSe/ZnS Semiconductor Quantum Dots[J]. J. Phys. Chem. B, 2001,105:8861-8871.
    [15]宋国利.量子点的电子结构及量子效应[J],黑龙江大学自然科学学报,2002,19(1):80-83
    [16]彭英才.半导体量子点的自组织生长及其应用[J],半导体杂志,1999,24(3):40-50
    [17]A. Sukhanova et al., Biocompatible fluorescent nanocrystals for immunolabeling of membrane proteins and cells[J]. Anal. Biochem.2004,324: 60-67.
    [18]Dabbousi, B.O.; Murray, C.B.; Rubner, M.F.; Bawendi, M.G. Langmuir-Blodgett Manipulation of Size-Selected CdSe Nanocrystallites[J]. Chem. Mater.1994,6:216-219.
    [19]Danek, M.; Jensen, K.F.; Murray, C.B.; Bawendi, M.G. Electrospray Organometallic Chemical Vapor Deposition—A Novel Technique for Preparation of Ⅱ-Ⅵ Quantum Dot Composites [J]. Appl. Phys. Lett.1994,65: 2795-2797.
    [20]Murray, C.B.; Norris, D.J.; Bawendi, M.G. Synthesis and Characterization of Nearly Monodisperse CdE (E= sulfur, selenium, tellurium) Semiconductor Nanocrystallites[J]. J. Am. Chem. Soc.1993,115:8706-8715.
    [21]Talapin, D.V.; Rogach, A.L.; Kornowski, A.; Haase, M.; Weller, H. Highly Luminescent Monodisperse CdSe and CdSe/ZnS Nanocrystals Synthesized in a Hexadecylamine-Trioctylphosphine Oxide-Trioctylphospine Mixture[J]. Nano Lett.2001,1:207-211.
    [22]周菊红,王涛,陈友存.CdSe纳米粒制备方法的研究进展[J].科技资讯,2007,27:7
    [23]林章碧,苏星光,张皓.用水溶液中合成的量子点作为生物荧光标记物的 研究[J].高等学校化学学报,2003,24:212-220.
    [24]A. L. Efros, M. Rosen, Annu. Rev. Mater. Electronic structure of semiconductor nanocrystals[J]. Science,2000.30:475-521.
    [25]Delerue, M. Lannoo. Nanostructures[M]. Theory and Modelling Springer.2004. 47.
    [26]Silbey,Robert J.; Alberty, Robert A.; Bawendi, Moungi G. Physical Chemistry, 4th ed. [M], John Wiley &Sons.2005, p.835.
    [27]Lee SW, Mao C, Flynn CE, Belcher AM. Ordering of quantum dots using genetically engineered viruses. Science [J],2002,296:5569.
    [28]Van Driel, AF. Frequency-Dependent Spontaneous Emission Rate from CdSe and CdTe Nanocrystals:Influence of Dark States. Physical Review Letters[J], 2005,95:236804
    [29]Tokumasu, F; Fairhurst, Rm; Ostera, Gr; Brittain, Nj; Hwang, J; Wellems, Te; Dvorak, Ja.Band 3 modifications in Plasmodium falciparum-infected AA and CC erythrocytes assayed by autocorrelation analysis using quantum dots[J]. Journal of cell science,2005,118:1091-1098.
    [30]Dahan, M; Levi, S; Luccardini, C; Rostaing, P; Riveau, B; Triller, A. Diffusion dynamics of glycine receptors revealed by single-quantum dot tracking [J]. Science,2003,302:442-445.
    [31]T. Pellegrino et al., Hydrophobic nanocrystals coated with an amphiphilic route to water soluble nanocrystals [J], Nano Lett.2004,4:703-707.
    [32]W. C. W. Chan, S. M. Nie, Quantum Dot Bioconjugates for Ultrasensitive Nonisotopic Detection[J]. Science.1998,281:2016-2018.
    [33]S. Pathak, S. K. Choi, N. Arnheim, M. E. Thompson, Hydroxylated quantum dots as luminescent probes for in situ hybridization[J]. J. Am. Chem. Soc.2001, 123:4103-4104.
    [34]S. Kim, M. G. Bawendi, Oligomeric ligands for luminescent and stable nanocrystal quantum dots [J]. J. Am. Chem. Soc.2003,125:14652-14653.
    [35]W. Guo, J. J. Li, Y. A. Wang, X. G. Peng, Conjugation chemistry and bioapplications of semiconductor box nanocrystals prepared vis dendrimer bridging [J]. Chem. Mater.2003,15:3125-3133.
    [36]X. Y. Wu et al., Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor QDs[J]. Nature Biotechnol.2003,21: 41-46.
    [37]M. Bruchez, M. Moronne, P. Gin, S. Weiss, A. P. Alivisatos. Semiconductor nanocrystals as fluorescent biological labels [J]. Science.1998,281: 2013-2016.
    [38]D. Gerion et al., Synthesis and properties of biocompatible water-soluble silica-coated CdSe/ZnS semiconductor quantum dots [J]. J. Phys. Chem. B. 2001,105:8861-8871.
    [39]B. Dubertret et al., In vivo imaging of quantum dots encapsulated in phospholipid micelles [J]. Science.2002,298:1759-1762.
    [40]X. Gao, W. C. W. Chan, S. Nie, Quantum-dot nanocrystals for ultrasensitive biological and multicolor optical encoding[J]. J. Biomed. Opt.2002,7: 532-537.
    [41]F. Osaki, T. Kanamori, S. Sando, T. Sera, Y. Aoyama, A quantum dot effects of endocytosis in the subviral region[J]. J. Am. Chem. Soc.2004,126:6520-6521.
    [42]H. Mattoussi et al., Self-assembly of CdSe-ZnS quantum dot bioconjugates using an engineered recombinant protein [J]. J. Am. Chem. Soc.2000,122: 12142-12150.
    [43]Service, Rf. meterials Research Society fall meeting. Shortfalls in electron production dim hopes for MEG solar cells[J]. Science,2008,322:1784.
    [44]A. P. Alivisatos, Nanocrystals as a new class of macromolecules[J]. Nature Biotechnol.2004,22:47-52.
    [45]F. Tokumasu, J. Dvorak, Development and application of quantum dots for immunocytochemistry of human erythrocytes [J]. J. Microsc.2003,211: 256-261.
    [46]D.S. Lidke, P. Nagy, R. Heintzmann, D.J. Arndt-Jovin, J.N. Post, H.E. Grecco, E.A. Jares-Erijman and T.M. Jovin, Quantum dot ligands provide new insights into erbB/HER receptor-mediated signal transduction [J], Nat Biotechnol,2004,
    22:198-203.
    [47]Y. Xiao, P. E. Barker, Quantitation of HER2 and telomerase biomarkers in solid tumors with IgY antibodies and nanocrystal detection[J]. Nucleic Acids Res. 2004,32:2178-2186.
    [48]Kuo, Y.-C.; Wang, Q.; Ruengruglikit, C.; Yu, H.; Huang, Q. Antibody Conjugated CdTe Quantum Dots for Escherichia coli Detection [J]. J. Phys. Chem. C 2008,112:4818-4824
    [49]Fournier-Bidoz, S.; Jennings, T.L.; Klostranec, J.M.; Fung, W.; Rhee, A.; Li, D.; Chan, W.C.W. Facile and Rapid One-Step Mass Preparation of Quantum-Dot Barcodes[J]. Angew. Chemie 2008,47:5577-5581.
    [50]Kirchner, C.; Liedl, T.; Kudera, S.; Pellegrino, T.; MunozJavier, A.; Gaub, H.E.; Stolzle, S.;Fertig, N.; Parak, W.J. Cytotoxicity of Colloidal CdSe and CdSe/ZnS Nanoparticles[J]. Nano Lett.2005,5:331-338.
    [51]Gao, X.; Nie, S. Quantum Dot-Encoded Mesoporous Beads with High Brightness and Uniformity [J]. Anal. Chem.2004,76,2406-2410.
    [52]Kirchner, C.; Liedl, T.; Kudera, S.; Pellegrino, T.; MunozJavier, A.; Gaub, H.E.; Stolzle, S.; Fertig, N.; Parak, W.J. Cytotoxicity of Colloidal CdSe and CdSe/ZnS Nanoparticles[J]. Nano Lett.2005,5:331-338.
    [53]Hoshino, A.; Fujioka, K.; Oku, T.; Suga, M.; Sasaki, Y.F.; Ohta, T.; Yasuhara, M.; Suzuki, K.; Yamamoto, K. Physicochemical Properties and Cellular Toxicity of Nanocrystal Quantum Dots Depend on Their Surface Modification[J]. Nano Lett.2004,4:2163-2169.
    [54]Zhang, T.; Stilwell, J.L.; Gerion, D.; Ding, L.; Elboudwarej, O.; Cooke, P.A.; Gray, J.W.; Alivisatos, A.P.; Chen, F.F. Cellular Effect of High Doses of Silica-Coated Quantum Dot Profiled with High Throughput Gene Expression Analysis and High Content Cellomics Measurements[J]. Nano Lett.2006,6: 800-808
    [55]Botsoa, J.; Lysenko, V.; Geloen, A.; Marty, O.; Bluet, J.M.; Guillot, G. Application of 3C-SiC Quantum Dots for Living Cell Imaging [J]. Appl. Phys. Lett.2008,92:173902-173903.
    [56]Cai, W.; Shin, D.-W.; Chen, K.; Gheysens, O.; Cao, Q.; Wang, S.X.; Gambhir, S.S.; Chen, X. Peptide-Labeled Near-Infrared Quantum Dots for Imaging Tumor Vasculature in Living Subjects[J]. Nano Lett.2006,6:669-676.
    [57]Smith, J.D.; Fisher, G.W.; Waggoner, A.S.; Campbell, P.G. The Use of Quantum Dots for Analysis of Chick CAM Vasculature [J]. Microvasc. Res.2007,73: 75-83
    [58]Tada, H.; Higuchi, H.; Wanatabe, T.M.; Ohuchi, N. In Vivo Real-time Tracking of Single Quantum Dots Conjugated with Monoclonal Anti-HER2 Antibody in Tumors of Mice[J]. Cancer Res.2007,67:1138-1144.
    [59]Kobayashi, H.; Hama, Y.; Koyama, Y.; Barrett, T.; Regino, C.A.S.; Urano, Y.; Choyke, P.L. Simultaneous Multicolor Imaging of Five Different Lymphatic Basins Using Quantum Dots[J]. Nano Lett.2007,7:1711-1716
    [60]Yezhelyev, M.V.; Al-Hajj, A.; Morris, C; Marcus, A.I.; Liu, T.; Lewis, M.; Cohen, C.; Zrazhevskiy, P.; Simons, J.W.; Rogatko, A., et al. In Situ Molecular Profiling of Breast Cancer Biomarkers with Multicolor Quantum Dots[J]. Adv. Mater.2007,19:3146-3151
    [61]Murray C B, Norris D J, Bawendi M G. Synthesis and Characterization of Nearly Monodisperse CdE(CdS, Se, Te)Semiconductor Nanccrystallites[J]. J Am Chem,1993,115:8706-8715.
    [62]Hines M A, Guyot Sionnest P. Synthesis and Characterization of Strongly Luminescing ZnS capped CdSe Nanocrystals[J]. J Phys Chem,1996,100: 468471.
    [63]Peng Z A, Peng X G. Formation of high quality CdTe CdSe and CdS[J]. J Am Chem Soc,2001,123:183-184.
    [64]Bruchez, M., Jr.; Moronne, M.; Gin, P.; Weiss, S.; Alivisatos, A.P. Semiconductor Nanocrystals as Fluorescent Biological Labels[J]. Science 1998, 281:2013-2016
    [65]Duan, H.; Nie, S. Cell-Penetrating Quantum Dots Based on Multivalent and Endosome-Disrupting Surface Coatings [J]. J. Am. Chem. Soc.2007,129: 3333-3338.
    [66]Ni Y, Tizard I. Lectin-carbohydrate interaction in the immune system[J]. Vet Immunol Immunopathol,1996,55:205-223.
    [67]Chang, J.-C.; Su, H.-L.; Hsu, S.-h. The Use of Peptide-delivery to Protect Human Adiposederived Adult Stem Cells from Damage Caused by the Internalization of Quantum Dots [J]. Biomaterials 2008,29:925-936.
    [68]P.B. Kandagal, S.M.T. Shaikh, D.H. Manjunatha, J. Seetharamappa, B.S. Nagaralli, Spectroscopic studies on the binding of bioactive phenothiazine compounds to human serum albumin[J]. J. Photochem. Photobiol. A,2007,189: 121-127.
    [69]Yan-Jun Hu, Yi Liu, Jia-Bo Wang, Xiao-He Xiao, Song-Sheng Qu, Study of the interaction between monoammonium glycyrrhizinate and bovine serum albumin [J],2004,36:915-919.
    [70]T. Forster, Zwischenmolekulare Energiewnderung und Fluoreszenz[J], Ann. Phys.1948,2:55-75.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700