一类删失数据的统计推断
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文主要考虑了一类渐进(Progressive)删失数据的统计推断问题.首先,研究了熵损失下渐进Ⅱ型(定数)删失情形威布尔分布尺度参数的估计问题,给出了其熵损失下的最小风险同变(MRE)估计,并证明了这一估计的可容许性;进一步,考虑形状参数的估计方法,给出了两参数都未知时尺度参数的估计,并通过模拟比较了各估计的效果.其次,本文研究了Ⅰ型渐进混合删失情形两参数指数分布参数的精确推断,给出了两参数的极大似然估计(MLE)的精确分布,并在此基础上得到了两参数的精确置信界限,进而得到了p分位数的MLE的精确分布及相应的精确置信界限,并对各置信界限的效果进行了模拟研究.最后,本文讨论了一个误差项为一阶相依的对数正态线性模型,给出了模型中响应变量均值的各种常见估计量的形式及相应的均方误差(MSE)和偏差(Bias),通过最小化渐近均方误差和最小化渐近偏差的方法,得到了两个有效简单易用的估计量,并通过模拟对这些估计量进行了比较.
Censoring data occurs commonly in reliability and survival analysis. Among the different censoring schemes, Type-I and Type-II censoring schemes are the two most popular censoring schemes. In Type-I censoring scheme, the experiment time T is fixed, but the number of failures is random, whereas in Type-II censoring scheme, the experimental time is random but the number of failures m is fixed. Hybrid censoring scheme (Epstein,1954) is a mixture of Type-I and Type-II censoring schemes. In Type-I hybrid censoring scheme, the experimental time is T1*=min{Xm:n,T}; in Type-II hybrid censoring scheme (Childs et al.,2003), the experimental time is T2*max{Xm:n,T}, where T∈(0,∞) and1≤m≤n are prefixed. Xm:n denotes the mth failure time when n units are put on an experiment. One of the common drawbacks of the traditional Type-I,Type-II or hybrid censoring schemes is that they do not have the flexibility of allowing removal of units at points other than the terminal points of the experiment. A natural extension of this point will be a censoring scheme in which units are allowed to be withdrawn from the experiment at different time points, rather than only at the terminal point. Such censoring scheme is referred to progressive censoring scheme (Balakrishnan and Aggarwala,2000).
     Progressive Type-II right censoring is a generalization of conventional Type-II censoring. Specifically, consider the situation in which n identical units, with lifetime cumulative distribution function (cdf) F(x) and probability density function (pdf) f(x), are placed on a life-testing experiment. Then, immediately following the first failure, R1surviving units are removed from the test at random; next, immediately following the second observed failure, R2surviving units are removed from the test at random, and so on; finally, at the time of the mth observed failure, all the remaining Rm=n-R1-...-Rm-1-m surviving units are removed from the test. The common drawback of the progressive Type-II censoring, similar to the conventional Type-II censoring is that it may take a lot of time to get to the mth failure time. Kundu and Joarder (2006) proposed a censoring scheme called Type-I progressive hybrid censoring scheme which is a mixture of progressive Type-II and Type-I hybrid censoring schemes. In this case, the experimental time is T1*=min{Xm;m;n,T}, where X1;m;n≤X2;m;n≤...≤Xm:m:n are the failure times resulting from the progressive Type-II censored experiment and often referred as progressive Type-II censored order statistics. In this paper, we make the statistical inference based on progressive Type-II and Type-I progressive hybrid censoring schemes. In the progressive Type-II censoring scheme, we studied the scale parameter estimation of Weibull distribution under entropy loss function; in the Type-I progressive hybrid censoring scheme, we studied the exact inference of the parameters of two-parameter Exponential distribution.
     The log-normal distribution as a kind of lifetime distribution has been used quite efficiently in analyzing positively skewed data (Johnson et al.,1995). Log-normality is widely found in studies in many fields such as biology (Koch,1966), medicien (Shen et al.,2006), insurance (Doray,1996), geology (Cressie,2006), hydrology (Gilliom and Helsel,1986), environmentalology (Holland et al.,2000), and so on. Researchers discover that linear models are often fitted to the logarithmic transformed response variables very well, and these are the log-normal linear models. However, in many practical cases, like in the investigations in biology or econometrics, or some others, as the samples are time series or spatial data and they have the influence of continuity of time or space for the explanatory variable, the errors of log-normal linear models are serial correlated and the independent assumption can not be satisfied. At this moment, if people continue to use the original models or assumptions, there will lead to larger bias, even wrong inference. Because first-order correlation is the most common serial correlation in practical investigation, we propose the log-normal linear model whose errors are first-order correlated, and derive the efficient mean estimation of the response variable in original scale. The main results of this paper are as follows:
     First of all, we studied the scale parameter estimation of Weibull distribution under entropy loss function based on progressive Type-Ⅱ censoring scheme. Suppose the lifetime of the units Y-Weibull(a, λ), where a is shape parameter, λ is scale parameter. Let Y1:m:n,..., Ym:m:n be m failure times, then Y=(Y1:m:n,...,Ym:m:n) is progressive Type-Ⅱ censored order statistics. When the shape parameter a is fixed, in the progressive Type-Ⅱ censoring scheme, under the entropy loss function the minimum risk equivariant estimator of the scale parameter λ was obtained:
     Theorem1Let Z=(Z1,...,Zm)1, where Zi=Yi:m:n/Ym:m:n(i=1,2,...,m); and under the entropy loss function, there exists a finite risk equivariant estimator σ0(Y) of λ. Then, the MRE of λ is σ*(Y)=σ0(Y)[E1(σ0(Y)[Z)]-1, and it is unique almost everywhere.
     Let Ta(Y)=Σi=1m Yi:m:n a(1+Ri), and take σ0(Y)=1/(Ta(Y)). Because Ta(Y) and
     Z are independent,the exact form of δ*(Y)is
     Theorem2δ*(Y) is the unbiased and consislenl eslimalor of λ. We also investigated the admissibility of a class of estimators of the form [cTα(Y)+d]-1(c,d∈R and c, d can not be0at the same time),and two theorems are given:
     Theorem3Let c*=1/(m-1), m>1, then (1) when c=0,d>0, the estimators [cTα(Y)+d]1are admissible;(2) when00,the eslimalors [cTα(Y)+d]-1are admissible;(3) when c=c*, d>0, the estimators [cTα(Y)+d]1are admissible;(4) when c=C*, d=0,the eslimalor [cTα(Y)+d]-1are admissible.
     Theorem4Under the assumptions of theorem3, As long as one of the following conditions are established, the estimators [cTα(Y)+d]1are not admissible.(1) c<0or d<0;(2)0c*and d>0. When the shape parameter α is unknown,we propose the iterative algorithm and iterative formnula of the maximum likelihood estiimator of α: As the maximum likelihood estimator of α has no explicit forms,we propose the ap-proximate maximum likelihood estimator of α:
     where Furthermore,we suggest to use α AML to replace the fixed value of α in order to get the estimator of λ. In this paper,we also compare the performance of each estimator by simulations.
     Secondly, we studied the exact inference for the two-parameter exponential distri-bution under Type-I progressive hybrid censoring scheme. Suppose the lifetime of the units X~Exp(μ,θ),where μ is the location parameter, θ is the scale parameter. Let X1:m:n,…,Xm:m:n be m failure times, D the number of failures up to time T. In Type-I progressive hybrid censoring scheme,we obtain the maximum likelihood estimators of μ and θ Furthermore,when m≥2and D>0,the joint moment generating function of ((μ μ)/θ,θ/θ) and the marginal density functions of (μ-μ)/θ and θ/θ are
     Theorem5The moment generating function of ((μ-μ)/θ,θ/θ)at (ω1,ω2)is given by
     +(1-(ω1)/n)-1(1-(ω2)/m)-(m-1)(1-qn-ω1)+c1(n,m)(1-ω2/m) where, c1(n,j)=multiply from i=1to∞sum from n=1to∞(Rk+1), q=e-(T-μ)/θ,qj=e-(1-(ω2)/σ)((T-μ)/θ),j=1,2...,m. Let
     Theorem6The probabilit density function of (μ-μ)/θ is where g (x;a,p)=(ap/T(p))e-axxp-1, x>0; a,p>0is the gamma density function. Let Tj,i=(Rj-i+1)/j ((T-μ)/θ), j=1,2,...,m-1, i=0,1,...,j-1,
     Lemma1(Childs et al,2011) Let G (a,p) be a gamma random variable with pdf9(x; a,p). Let U and V be independent random variable such that U~G(a,p) and V~G(β,1). Then, the mgf and pdf of U-V are given by and where pk=(β/(α+β))(α/(α+β))κ.
     Theorem7The pdf of θ/θ is given by Based on the above,we obtained the confidence bounds of μ, θ and the pth quantile quantile for the two-paraimeter exponential distribution, and compared the results by simulations.
     Finally, we proposed the log-normal linear modelswith first-order correlated er-rors, and obtained the efficient estimation of the mean. Let Ζ=(Ζ1,…,Ζ,n)T be the response vector,xi=(1,xi1,…,xip)T be the covariate vector for observation i. A
     log-normal linear model with first-order correlated errors assumes that Y=Δlog(Z)=Xβ+ε,(9)
     where x=(x1,...,xn)T,β=(β0,β1...,βp)T, ε=(ε1,...,εn)T and εi:pηi-1+ηi,ηi~i.i.dN(0,σ2),i=1,...,n, p is a constant.
     Under this assumption, we can casily know that εi~N(0,σ2(1+p2)), ε~N(0,σ2∑), Y~N(Xβ,σ2∑),
     where
     For a new set of covariate values x0, the conditional mean is
     We mainly consider the estimation of μ(x0). When the coefficient ρis known, We have the ML and GLS estimators of μ(x0) and where, β=(XT∑-1X)-1XT∑-1Y, RSS=(Y-Xβ)T∑-1(Y-Xβ),
     The MSE and bias of μML(x0) are For the MSE and bias of μGLS(x0), one can replace n with m.
     Because β and σR2are the complete and sufficient statistics of βand σ2, we derived the UMVUE of μ(x0) and
     where0F1(α;z) is the Hypergeometric function. The EV estimator of μ(x0) is and In the class of estimators:
     we propose two new estimators, one minimizes the MSE approximately and is defined as the other minimizes the bias considerably and is defined as
     When ρ is unknown, we use the moment estimation method to propose ρ to be the estimator of ρ. And then, we replace the known ρ above with ρ in order to obtain the estimator of μ(x0).
引文
[1]李凤,师义民,田亚爱.逐步增加Ⅱ型截尾下Weibull分布的Bayes估计[J].工程数学学报,2008,25(4):641650.
    [2]王炳兴.Weibull分布基于定数逐次截尾寿命数据的统计分析[J].科技通报,2004,20(6):488490.
    [3]王德辉,宋立新.在熵损失函数下定数截尾情形的参数估计指数分布情形[J].应用概率统计,1999,15(2):176186.
    [4]王松桂,史建红,尹素菊,吴密霞.线性模型引论[M].北京:科学出版社,2005.
    [5]谢衷杰.时问序列分析[M].北京:北京大学出版社,1990.
    [6]徐晓玲.Weiull分布逐步增加的Ⅱ型截尾试验的统计分析[J].强度与环境,2003,30(2):31-37.
    [7]AGGARWALA R. Advances in life-testing:Progressive censoring and generalized dis-tributions [D]. Hamilton:McMaster University,1996.
    [8]AGGARWALA R, BALAKRISHNAN N. Recurrence relations for single and product moments of progressive Type-II right censored order statistics from exponential and truncated exponential distributions [J]. Annals of the Institute of Statistical Mathemat-ics,1996,48:757-771.
    [9]AGGARWALA R, BALAKRISHNAN N. Some properties of progressive censored order statistics from arbitrary and uniform distributions with applications to inference and simulation [J]. Journal of Statistical Planning and Inference,1998,70:35-49.
    [10]ARNOLD B C, BALAKRISHNAN N, NAGARAJA H N. A first course in order statis-tics[M]. New York:John Wiley&Sons,1992.
    [11]BAIN L J. Statistical analysis of reliability and life-testing models theory and prac-tice[M]. New York:Marcel Dekker,1978.
    [12]BAIN L J, ENGELHARDT M. Statistical analysis of reliability and life-testing mod-els[M]. New York:Marcel Dekker,1991.
    [13] BALAKRISHNAN, N. Progressive censoring methodology: an appraisal[J]. Test,2007,16:211-296.
    [14] BALAKRISHNAN N, AGGARWALA R. Progressive censoring: theory, methods, andapplications[M]. Boston: Birkh¨auser,2000.
    [15] BALAKRISHNAN N, BASU A P. The exponential distribution: theory, methods andapplications[M]. Newark NJ: Gordon and Breach Science,1995.
    [16] BALAKRISHNAN N, CHILDS A, CHANDRASEKAR B. An efcient computationalmethod for moments of order statistics under progressive censoring[J]. Statist. Probab.Lett.,2002,60:359–365.
    [17] BALAKRISHNAN N, COHEN A C. Order statistics and inference: estimation meth-ods[M]. San Diego: Academic Press,1991.
    [18] BALAKRISHNAN N, ILIOPOULOS G. Stochastic monotonicity of the MLE of expo-nential mean under diferent censoring schemes[J]. Ann. Inst. Statist. Math.,2009,61:753–772.
    [19] BALAKRISHNAN N, SANDHU R A. A simple simulational algorithm for generatingprogressive Type-II censored samples[J]. The American Statistician,1995,49:229–230.
    [20] BALAKRISHNAN N, SANDHU R A. Best linear unbiased and maximum likelihoodestimation for exponential distributions under general progressive Type-II censoredsamples[J]. Sankhyˉa, Series B,1996,58:1–9.
    [21] BALASOORIYA U, LOW C-K. Competing cause of failure and reliability tests forweibull lifetimes under type I progressive censoring[J]. IEEE Transactions on Reliabil-ity,2004,53(1):29–36.
    [22] BALASOORIYA U, SAW S L C, GADAG V. Progressively censored reliability sam-pling plans for weibull distribution[J]. Technometrics,2000,42(2):160–167.
    [23] BANERJEE A, KUNDU D. Inference based on Type-II hybrid censored data from aWeibull distribution[J]. IEEE Trans. Reliab.,2008,57:369–378.
    [24] BARLOW R E, MADANSKY A, PROSCHAN F, SCHEUER E. Statistical estimationprocedures for the “Burn-in” process[J]. Technometrics,1968,10:51–62.
    [25] BARTHOLOMEW D J. The sampling distribution of an estimate arising in life test-ing[J]. Technometrics,1963,5:361–374.
    [26] BLYTH C R. On minimax statistical decision procedures and their admissibility[J].Ann. Math. Statist.,1951,22:22–42.
    [27] BRADU D, MUNDLAK Y. Estimation in lognormal linear models[J]. J. Amer. Statist.Assoc.,1970,65:198–211.
    [28] BROWN L D. Inadmissibility of the usual estimators of scale parameters in problemswith unknown location and scale parameters[J]. Ann. Math. Statist.,1968,39:29–48.
    [29] CACCIARI M, MONTANARI G C. A method to estimate the Weibull parameters forprogressively censored tests[J]. IEEE Transactions on Reliability,1987, R-36:87–93.
    [30] CASELLA G, BERGER R L. Statistical Inference[M]. Belmont: Duxbury Press,2002.
    [31] CHEN S, BHATTACHARYYA, G K. Exact confidence bounds for an exponential pa-rameter under hybrid censoring[J]. Comm. Statist. Theory Methods,1988,17:1857–1870.
    [32] CHILDS A, BALAKRISHNAN N, CHANDRASEKAR B. Exact distribution of theMLEs of the parameters and of the quantiles of two-parameter exponential distributionunder hybrid censoring[J]. Statistics,2011, doi:10.1080/02331888.2010.538476.
    [33] CHILDS A, CHANDRASEKAR B, BALAKRISHNAN N, KUNDU D. Exact likelihoodinference based on Type-I and Type-II hybrid censored samples from the exponentialdistribution[J]. Annals of the Institute of Statistical Mathematics,2003,55:319–330.
    [34] CHILDS A, CHANDRASEKAR B, BALAKRISHNAN N. Exact likelihood inferencefor an exponential parameter under progressive hybrid censoring schemes[M]//VONTAF, NIKULIN M, LIMNIOS N, HUBER-CAROL C. Statistical models and methods forbiomedical and technical systems. Boston: Birkh¨auser,2008:319–330.
    [35] COHEN A C. Progressively censored samples in life testing[J]. Technometrics,1963,5:327–329.
    [36] COHEN A C. Life testing and early failure[J]. Technometrics,1966,8:539–549.
    [37] COHEN A C. Multi-censored sampling in the three parameter Weibull distribution[J].Technometrics,1975,17:347–351.
    [38] COHEN A C. Progressively censored sampling in the three parameter log-normal dis-tribution[J]. Technometrics,1976,18:99–103.
    [39] COHEN A C. Truncated and censored samples—theory and applications[M]. New York:Marcel Dekker,1991.
    [40] COHEN A C, NORGAARD N J. Progressively censored sampling in the three param-eter gamma distribution[J]. Technometrics,1977,19:333–340.
    [41] COHEN A C, WHITTEN B J. Parameter estimation in reliability and life span mod-els[M]. New York: Marcel Dekker,1988.
    [42] CRESSIE N. Block kriging for lognormal spatial processes[J]. Mathematical Geology,2006,38:413–443.
    [43] DAVID H A. Order statistics[M]. New York: John Wiley&Sons,1981.
    [44] DEY D K, GHOSH M, SRINIVASAN C. Simultaneous estimation of parameters underentropy loss[J]. J. Statist. Plann. Inference,1987,15:347–363.
    [45] DEY D K, SRINIVASAN C. Estimation of a covariance matrix under Stein’s loss[J].Ann. Statist.,1985,13:1581–1591.
    [46] DORAY L G. UMVUE of the IBNR reserve in a lognormal linear regression model[J].Insur. Math. Econom.,1996,18:43–57.
    [47] DRAPER N, GUTTMAN I. Bayesian analysis of hybrid life tests with exponentialfailure times[J]. Ann. Inst. Statist. Math.,1987,39:219–225.
    [48] EBRAHIMI N, Estimating the parameter of an exponential distribution from hybridlife test[J]. J. Statist. Plann. Inference,1990,23:255–261.
    [49] EBRAHIMI N. Prediction intervals for future failures in the exponential distributionunder hybrid censoring[J]. IEEE Transitions on Reliability,1992,41:127–132.
    [50] EL-SHAARAWI A H, VIVEROS R. Inference about the mean in log-regression withenvironmental applications[J]. Environmetrics,1997,8:569–582.
    [51] EPSTEIN B. Truncated life tests in the exponential case[J]. The Annals of Mathemat-ical Statistics,1954,25:555–564.
    [52] FAIRBANKS K, MADSON R, DYKSTRA R. A confidence interval for an exponentialparameter from a hybrid life test[J]. J. Amer. Statist. Assoc,1982,77:137–140.
    [53] FINNEY D J. On the distribution of a variate whose logarithm is normally dis-tributed[J]. J. Roy. Statist. Soc.,1941,7:144–161.
    [54] GAJJAR A V, KHATRI C G. Progressively censored samples from log-normal andlogistic distributions[J]. Technometrics,11:793–803.
    [55] GANGULY A, MITRA S, SAMANTA D, KUNDU D. Exact inference for the two-parameter exponential distribution under Type-II hybrid censoring[J]. Journal of Sta-tistical Planning and Inference,2012,142(3):613–625.
    [56] GHOSH M, YANG M C. Simultaneous estimation of Poisson means under entropyloss[J]. Ann. Statist.,1988,16:278–291.
    [57] GIBBONS D I, VANCE L C. Estimators for the2-parameter Weibull distribution withprogressively censored samples[J]. IEEE Transactions on Reliability,1983, R-32:95–99.
    [58] GILLION R J, Helsel D R. Estimation of distributional parameters for censored tracelevel water quality data:1. Estimation techniques[J]. Water Resour. Res.,1986,22:135–146.
    [59] GUPTA R D, KUNDU D. Hybrid censoring schemes with exponential failure distribu-tion[J]. Comm. Statist. Theory Methods,1998,27:3065–3083.
    [60] HAFT L R. Minimax estimators for a multinormal precision matrix[J]. MultivariateAnal.,1977,7:374–385.
    [61] HAFT L R. Estimation of the inverse covariance matrix: Random mixtures of theinverse Wishart matrix and the identity[J]. Ann. Statist.,1979,7:1264–1276.
    [62] HAFT L R. Empirical Bayes estimation of the multivariate normal convariance ma-trix[J]. Ann. Statist.,1980,8:586–597.
    [63] HAFT L R. Identities for the Wishart distribution with applications to regression[J].Sankhya Ser. B,1982,44:245–258.
    [64] HARTER H L. Order statistics and their uses in testing and estimation, Vol.2: Esti-mates based on order statistics of samples from various populations[M]. Washington,D.C.: U.S. Government Printing Ofce,1970.
    [65] HARTER H L, BALAKRISHNAN N. CRC handbook of tables for the use of orderstatistics in estimation[M]. Boca Raton: CRC Press,1996.
    [66] HEIEN D M. A note on log-linear regression[J]. J. Amer. Statist. Assoc.,1968,62(323):1034–1038.
    [67] HERD R G. Estimation of the parameters of a population from a multi-censored sam-ple[D]. Ames: Iowa State College,1956.
    [68] HOLLAND D M, DE OLIVEIRA V, COX L H, SMITH, R L. Estimation of regionaltrends in sulfur dioxide over the eastern United States[J]. Environmetrics,2000,11:373–393.
    [69] IGHODARO A O, SATNER T. Ridge type estimators of muhinormal cell probabili-ties[J]. Statistical Decision Theory and Related Topics III,1982,2:31–53.
    [70] IGHODARO A O, SANTNER T, BROWN L D. Admissibility and complete classresults for the multinomial estimation problem with entropy and squared error loss[J].J. Multivariate Anal.,1982,12:469–479.
    [71] JAMES W, STEIN C. Estimation with quadratic loss[J]. Proc.4th Berkeley Symp.Math. Statist. Probab.,1961,1:361–379.
    [72] JEONG H S, PARK J I, YUM B J. Development of (r, T) hybrid sampling plans forexponential lifetime distributions[J]. J. Appl. Statist.,1996,23:601–607.
    [73] JOHNSON N L, KOTZ S, BALAKRISHNAN N. Continuous univariate distribu-tion[M]. New York: Wiley,1995.
    [74] KAMPS U. A concept of generalized order statistics[M]. Stuttgart: Teubner,1995.
    [75] KAMPS U. A concept of generalized order statistics[J]. Journal of Statistical Planningand Inference,1995,48:1–23.
    [76] KOCH A L. The logarithm in biology1. Mechanisms generating the log-normal distri-bution exactly[J]. J. Theoret. Biol.,1966,12:276–290.
    [77] KUNNDU D, JOARDER A. Analysis of Type-II progressively hybrid censored data[J].Computational Statistics and Data Analysis,2006,50:2258–2509.
    [78] KUNDU D. On hybrid censored Weibull distribution[J]. J. Statist. Plann. Inference,2007,137:2127–2142.
    [79] KUNDU D, PRADHAN B. Estimating the parameters of the generalized exponentialdistribution in presence of hybrid censoring[J]. Comm. Statist. Theory Methods,2009,38:2030–2041.
    [80] LAWLESS J F. Statistical models and methods for lifetime data[M]. New York: JohnWiley&Sons,1982.
    [81] LEHMANN E L, CASELLA G. Theory of Point Estimation[M]. New York: Springer,1982.
    [82] LONDON D. Survival models[M]. Connecticut: Actex Publications,1988.
    [83] MANN N R. Exact three-order-statistic confidence bounds on reliable life for a Weibullmodel with progressive censoring. Journal of the American Statistical Association,1969,64:306–315.
    [84] MANN N R. Optimum estimators for linear functions of location and scale parame-ters[J]. Annals of Mathematical Statistics,1969,40:2149–2155.
    [85] MANN N R. Best linear invariant estimation for Weibull parameters under progressivecensoring[J]. Technometrics,1971,13:521–533.
    [86] MANN N R, SCHAFER R E, SINGPURWALLA N D. Methods for statistical analysisof reliability and life data[M]. New York: John Wiley&Sons,1974.
    [87] MIL-STD-781-C, Reliability design qualification and production acceptance tests: ex-ponential distribution[R]. Washington, D.C.: U.S. Govenment Printing Ofce,1977.
    [88] MOHAMED T M. A note on the equivariant estimation of an exponential scale usingprogressively censored data[J]. Journal of Statistical Planning and Inference,2010,140:1437–1440.
    [89] MONTANARI G C, CACCIARI M. Progressively-censored aging tests on XLPE-insulated cable models[J]. IEEE Transactions on Electrical Insulation,1988,23:365–372.
    [90] NELSON W. Applied life data analysis[M]. New York: John Wiley&Sons,1982.
    [91] PAREEK B, KUNDU D, KUMAR S. On progressively censored competing risks datafor Weibull distribution[J]. Computational Statistics and Data Analysis,2009,53:4083–4094.
    [92] PARSIAN A, NEMATOLLAHI N. Estimation of scale parameter under entropy lossfunction[J]. Journal of Statistical Planning and Inference,1996,52:77–91.
    [93] RINGER L J, SPRINKLE E E. Estimation of the parameter of the Weibull distributionfrom multicensored samples[J]. IEEE Transactions on Reliability,1972, R-21:46–51.
    [94] ROBINSON J A. Bootstrap confsidence intervals in location-scale models with pro-gressive censoring[J]. Technometrics,1983,25:179–187.
    [95] RUKHIN A L, ANANDA M M A. Risk behavior of variance estimators in multivariatenormal distribution[J]. Statist. Probab. Lett.,1992,13:159–166.
    [96] SAMPFORD M R. The estimation of response-time distributions, Part II[J]. Biomet-rics,1952,9:307–369.
    [97] SEABORN J B. Hypergeometric functions and their applications[M]. New York:Springer,1991.
    [98] SEN P K. Progressively censored data analysis[M]//KOTZ S, JOHNSON N L. Ency-clopedia of statistical science—7. New York: John Wiley&Sons,1982:299–303.
    [99] SHEN H P, ZHU Z Y. Efcient mean estimation in log-normal linear models[J]. Journalof Statistical Planning and Inference,2008,138:552–567.
    [100]SHEN H P, BROWN L D, ZHI H. Efficient estimation of log-normal means with ap-plication to pharmacokinetic data[J]. Statist. Med.,2006,25:3023-3038.
    [101]SHERIF A, TAN P. On structural predictive distribution with Type-II progressively censored Weibull data[J]. Statistische Hefte,1978,19:247-255.
    [102]SINGH P K, SINGH S K, SINGH U. Bayes estimator of inverse Gaussian parameters under general entropy loss function using Lindley's approximation[J]. Communications in Statistics-Simulation and Computation,2008,37:1750-1762.
    [103]THOMAS D R, WILSON W M. Linear order statistic estimation for the two-parameter Weibull and extreme value distributions from Type-II progressively censored sam-ples[J]. Technometrics,1972,14:679-691.
    [104]VIVEROS R, BALAKRISHNAN N. Interval estimation of life characteristics from progressively censored data[J]. Technometrics,1994,36:8491.
    [105]WIECZORKOWSKI R, ZIELINSKI R. Minimax estimation of binomial probability with entropy loss function[J]. Statist. Dec,1992,10:39-44.
    [106]WINGO D R. Solution of the three-parameter Weibull equations by constrained mod-ified quasilinearization (progressively censored samples)[J]. IEEE Transactions on Re-liability,1973, R-22:96-102.
    [107]WINGO D R. Maximum likelihood methods for fitting the Burr Type XII distribution to multiply (progressively) censored life test data[J]. Metrika,1993,40:203-210.
    [108]WONG J Y. Simultaneously estimating the three Weibull parameters from progres-sively censored samples [J]. Microelectronics and Reliability,1993,33:2217-2224.
    [109]YANG M C. Ridge estimation of independent Poisson means under entropy loss[J]. Statist. Dec,1992,10:1-23.
    [110]ZHOU X H. Estimation of the log-normal mean[J]. Statist. Med.,1998,17,2251-2264.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700