带有先验信息的动态定位贝叶斯滤波算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在动态定位、导航和卫星定轨中,目标的运动往往受到外部因素的制约,这些制约往往是一些关于未知状态参数的已知函数式或理论关系,它们可以预先获知,我们称之为先验约束信息,如某个参数为非负或整数,状态的上下界,干扰的形式、大小、范围、统计分布特性等。在动态定位时依据客观条件合理利用约束信息,显然可以简化模型,提高状态参数估计的精度,控制滤波的发散。因为状态约束的存在改变了动态定位问题概率方面的结构,给问题的分析及滤波解算带来了一定的难度。在实际处理时,常用的方法一般是通过状态约束方程消去某些状态参数,然后按一般滤波方法进行处理。对于某些非线性情况,这样处理往往使计算显得复杂,同时也使原来的滤波方程发生较大的改变,在实用上显得不方便。由于科学技术的发展,在动态定位中,观测的手段越来越多,观测资料的积累也越来越多,对任意观测目标或对象的物理、力学性质的了解也越来越充分,根据先验信息建立约束的可能性也就越来越大。利用约束可以相对可靠地描述各种先验信息,因而如果能解决具有先验约束信息的动态滤波的计算及精度分析等问题,它将在动态定位的数据处理中得到广泛的应用,同时把滤波理论推广到带有先验约束信息的情形,使动态滤波数据处理理论得到充分的发展和完善。
     本文针对带有先验信息的动态定位滤波算法的现状和存在的问题进行了研究,主要贡献有以下几点:
     1.研究了异常噪声对动态定位的影响以及如何利用观测值和状态预报值的时间序列来消除其影响性。在动态定位中,当观测值被污染时,给出了一种抗差Bayes滤波算法能够很好地抵制这种异常影响,由于粗差是属于测量值被污染的情形,所以给出的方法也能够抵制粗差所带来的影响。由于我们事先并不知道粗差是否存在,也不知道污染率的大小,因此,在线估计是非常重要的。论文提供给出了可以抵制粗差所带来的影响的动态定位方法以及一种在线估计污染率的
     方法。
     2.研究了状态变量存在等式约束时的滤波算法,提出了按序贯平差求解算法以及自适应算法。研究了采用不消去状态参数的方法,在卡尔曼滤波的数学模型中增加约束条件方程,推导出约束状态下的卡尔曼滤波递推方程,其形式与一般的卡尔曼滤波递推方程相似,只要在预报值及其协方差阵中增加一个约束条件改正项即可,因而在应用时非常方便。
     3.研究了状态变量存在不等式约束时的滤波算法,提供了两种处理不等式约束的滤波方法,一是先求解无约束的滤波解,再进行优化,二是针对其不等式约束求增益矩阵,直接求得滤波的状态估计。理论分析和仿真计算表明充分利用约束先验信息可以提高滤波解的精度,从而提高了动态定位的精度。
     4.借鉴了实数中寻找最优解的思想,在整数解的搜索过程中首先寻找局部最优值,然后沿最快下降的方向寻找下一最优解,给出了一个有效求解测量方程中带有未知整参数的动态定位滤波算法。主要贡献:
     1)给出了整型参数θ的浮点解的递推估计。
     2)实现了动态估计整型参数θ的变化区间。
     3)给出了整型参数θ的快速估计算法。实验结果表明,新算法大大提高了传统分枝定界法和已有相关算法的效率,可以用于模糊度未知时的GPS动态定位解算和整周模糊度的确定。
     5.针对道路条件下车辆动态定位问题,提出了带道路约束的H∞滤波算法。该算法利用地面目标的特点建立了带道路约束条件的系统模型,并推导了相应的H∞滤波算法。实验仿真结果表明,论文所提出的带约束条件的H∞滤波算法比标准的H∞滤波算法以及同等条件下的卡尔曼滤波算法具有更好的状态估计性能和更高的滤波精度,对于在复杂环境下车辆动态定位具有现实意义。
     6.为了减少因线性化所产生的系统误差,研究了非线性Bayes滤波和粒子滤波在动态定位中的应用,重点研究了动态方程是线性的而观测方程是非线性的解算方法,并给出了相应的Bayes递推滤波算法和粒子滤波算法。
     论文首次全面系统地研究了带有先验约束信息的动态定位滤波理论,对带有先验约束信息的获取,模型的建立,滤波的解算方法进行了较为详细的研究,并给出了一些新的滤波解算方法,在非线性卡尔曼滤波方面,针对动态导航定位中测量方程非线性的特点,研究了一些新的算法。论文对给出的算法与已有的算法进行了比较,并进行了数据模拟和实例解算,从而验证了算法的有效性,使得算法能够很好地应用于工程计算和军事导航。
In kinematic positioning, navigation and satellite orbit-determination moving of target is often constrained by external factors which are often known functional formulas or theoretical relationships. These factors which may are anticipatory knowledge are known as prior constraint information, such as non-negative parameter, integral parameter, the upper and lower bound of the state, the form of noise interfere, the size of noise interfere, the range of noise interfere and their statistical distribution properties. According to the actual situation of kinematic positioning, it is obvious that making rational use of constraints information which is based on objective conditions can simplify models, improve the accuracy of parameter estimation and well control the filtering. Because the existence of the state constraint condition changes the probability structure of kinematic positioning and brings a certain degree of difficulty of problem analyzing and filtering solving. In practice, the commonly used method is to eliminate some state parameters through the state constraint equations, and then deal with it as an average filtering. For some nonlinear, such treatment often makes the calculation complex, and changes the original filtering equation, therefore it is inconvenient to use in practice. Due to the development of science and technology, in kinematic positioning, there are more means of observing and more observation data accumulated, so that we get increasingly understanding of any observation objects'physical and mechanical properties, and the possibility of establishing constraints according to priori information. It is relatively reliable to describe all kinds of priori information by using constraints. So if you can resolve the calculation and accuracy analysis of the dynamic filtering with priori restraint information, it will be widely applied to data processing in kinematic positioning, and meanwhile can promote the filtering theory to the case with a priori restraint information, so that it can make kinematic filtering data processing theories fully developing and perfecting.
     In this paper, the status and the existing problems of kinematic positioning filtering algorithm with a priori information have been studied, Main contributions are as follows
     1. The study about the effects of kinematic positioning that caused by abnormal noise, and temporal series which know how to use the observations and the predicted value, can eliminate its influence. In kinematic positioning, when the observations were contaminated, we can give a robust Bayes filtering algorithm which can resist the abnormal influence well, gross errors belong to the case that the observations are contaminated, so the method which was referred can resist the effects that caused by gross errors. We don't know either the existence of gross errors or the size of the contaminated rates, consequently, it is very important to on-line estimation. The paper provides us the kinematic positioning method and the way of contamination rates.
     2. This paper studied the filtering algorithm of the state variable which exist equality restriction, and advanced the solution according to sequential adjustment and the adaptive algorithm. This paper also studied the method which introduced to reserve the state parameter, added the restricted conditional equation of the mathematics model in Kalman filtering, and deduced Kalman filtering recurrence equation under the restricted condition, its style was similar to normal Kalman filtering recurrence equation, This paper could add a restricted conditional correction in the predicted value and its covariance matrix, so it is extraordinary convenience in the application.
     3. This paper studied the filtering algorithm of the state variable which existed inequality restriction, and supplied two different filtering methods to deal with inequality restriction, first, solved the nonrestrictive filtering solution, and then continued to optimize it. Second, This paper could get gain matrix in allusion to its inequality restriction, and gained the filtering state estimation. Theoretical analysis and simulating calculation show that we can improve the filtering precision through making the best of restricted priori information, consequently, improve the precision of kinematic positioning.
     4. This paper drew on the idea that we sought the optimum solution in real number, at first, sought the local optimum solution during the searching process for the integer solution, and then sought the next optimum solution along the direction of the fastest decline in, at last, given a filtering algorithm for kinematic positioning of an effective measurement equation, which contained unknown integer parameter. Main contributions are as follows
     1) Given the integer parameter recursive estimation of the float solution.
     2) Achieved to estimate the various interval of integer parameter 9 dynamically.
     3) Given a fast algorithm on estimation of integer parameterθ. The experiment showed that the newly algorithm greatly improved the efficiency of the traditional branch-bound algorithm and existing relevant algorithm. It could be applied to the kinematic positioning solution of GPS as the ambiguity was unknown, and the determination of the integer ambiguity.
     5. For Vehicle Kinematic Positioning under road condition, H∞Filtering algorithm with road constraint is proposed. Using the characteristics of ground targets, the algorithm sets up a system model with road constraints and the corresponding H∞Filtering algorithm is derived. The simulation results show that the proposed H∞Filtering algorithm with constraint condition has a better state estimation performance and higher filtering accuracy than the standard H∞Filtering algorithm and Kalman Filter algorithm. It has practical significance for Vehicle Kinematic Positioning in a complex environment.
     6. In order to reduce the system errors arising from linearization, we studied the application of nonlinear Bayes Filtering and Particle Filtering in Kinematic positioning, focused on the research of the solution that dynamic equation is linear but the observation equation is non-linear, and given the corresponding Bayes Recursive Filtering
     and Particle Filtering algorithm.
     In this paper, the study of the Kinematic Positioning Filtering theory with a priori constraint information is comprehensively and systematically for the first time. This paper carry out a more detailed research in getting information with the priori constraint, model building, resolving methods of the filtering, and giving some new resolving methods of the filtering. In the non-linear Kalman filtering. The papers studied of some new algorithms for the non-linear characteristics in measurement equation of the kinematic positioning and navigation. The paper compared the given algorithm and the existing algorithm, made data simulation and took some solution example, and consequently verified the validity of the algorithm and made the algorithm well be applied to engineering calculations and military navigation.
引文
[1]秦永元,张洪钺,汪叔华.卡尔曼滤波与组合导航原理[M].西安,西北工业大学出版社,1989:124-126.
    [2]杨元喜,宋力杰,徐天河.大地测量相关观测抗差估计理论.测绘学报,2002,31(2):95-99.
    [3]Yang Y X, Song L J, Xu T H. Robust estimator for correlated observations based on bifactor equivalent weights. Journal of Geodesy,2002,76(6-7),353-358.
    [4]Yang Y X, Wen Y L. Synthetically adaptive robust filtering for satellite orbit determination. Science in China Ser. D Earth Science,2004,47(7):585-592.
    [5]欧吉坤,柴艳菊,袁运斌.自适应选权滤波.见:朱耀仲,孙和平编辑,大地测量与地球动力学进展.湖北:科学技术出版社,2004,816-823.
    [6]柴艳菊,欧吉坤.Kalman滤波质量控制的一种改进算法.自然科学进展,2004,14(8):904-909.
    [7]任超,欧吉坤,袁运斌.自适应选权滤波法在GPS高精度动态定位中的应用.自然科学进展,2005,15(7):876-881.
    [8]赵长胜,陶本藻.有色噪声作用下的抗差卡尔曼滤波.武汉大学学报(信息科学版),2007,32(10):880-882.
    [9]赵长胜.非线性静态逐次滤波.测绘通报,2004,6:15-18.
    [10]Mohamed A H, Schwarz K P. Adaptive Kalman filtering for INS/GPS. Journal of Geodesy,1999,73:193-203.
    [11]Wang J, Stewart M P, Tsakiri M. Adaptive Kalman filtering for integration of GPS with GLONASS and INS. In:International Association of Geodesy Symposia, Vol.121; Schwarz (ed.), Geodesy Beyond 2000-The Challenges of the First Decade. Springer-Verlag Heldelberg 2000,325-330.
    [12]杨元喜,高为广.基于方差分量估计的自适应融合导航.测绘学报,2004,33(1):22-26.
    [13]Yang Y X, Cui X Q, Gao W G. Adaptive integrated navigation for multi-sensor adjustment outputs. The Journal of Navigation,2004,57(2):287-295.
    [14]刘基余.GPS卫星导航定位原理与方法[M].科学出版社,2003:289-296.
    [15]Kirubarajan, Y Bar-Shalom,K. R. Pattipati, I. 1(adar,B. Abrams, E. Eadan, Tracking ground target with road constraint using an IMM estimator, Proceedings of IEEE aerospace confet-aee, Snowmass at Aspen, CO, USA,
    21.28 March 1998.
    [16]T. Kirubarajan, Y Bar-shalom and K. R. pattipati, Topography-based VS-IM M estimator for large-scale ground target tracking, IEE colloquium target tracking:algorithms and applications, London, UK,11-12 Nov.1999.
    [17]T. Kirubarajan, Bar-shalom,K.R. patfipaa, and Ⅰ. Kada Ground target tracking with variable slnlctu,re IMM estimator,IEEE Trans. on aerospace and electronics systems, vol.36, no.1, Jan.2000, PP 26-46.
    [18]徐敬,王秀坤,胡家升,等.基于约束的单舰纯方位跟踪算法.系统工程与电子技术,2002,24(9):123-125.
    [19]TahkM, speyer J L. Target tracking problems subject to kinematic constraints[J]. IEEE Tram Automat Cont,1990,35(3):324-326.
    [20]Blair W D, Watson G A, Alouani A T. Tracking constant speed targets using kinematic constraints[C]//Pro=of 23th Symp Syst Theory. California. [S. n.], 1991:233-238.
    [21]Alouani A T, Blair W D. Use of kinematic constraint in tracking constant speed maneuvering targets[C]. Pro=of 30th Cord Decision Contr, Brighton, UK:IEEE Press,1991:2055-2058.
    [22]胡丛伟,刘大杰,姚连璧.带约束条件的自适应滤波及其在GPS中的应用.测绘学报,2002,31(5):39-44.
    [23]党宏社,张震强.一种道路条件下车辆跟踪的多目标数据关联方法.武汉理工大学学报:交通科学与工程版,2004,28(6):903-906.
    [24]Karlsson R, Gustafsson F. Recursive bayesian estimation:bearings-only applications. IEE Proc. Radar Sonar Navig,2005,152(5):305-314.
    [25]Yang Y, Zhang X. Adaptively Constrained Kalman Filtering with Navigation Application,拟投
    [26]Yang Y, W Gao, X Zhang. Robustly Constrained Filtering with Application in Navigation,拟投
    [27]Muske K R, Rawlings J B and& Lee J. H.. Receding horizon recursive state estimation. In American control conference, San Francisco, CA,1993.
    [28]Rao C V and Rawlings J B. Constrained process monitoring:Moving horizon approach. AIChE Journal,2002,48(1):97-109.
    [29]Rao C V, Rawlings J B and Lee J. Constrained linear state estimation-a moving horizon approach. Automatica,2001,37:1619-1628.
    [30]Robertson D G, Lee J and Rawlings J B. A moving horizon-based approach for least-squares estimation. AIChE Journal,1996,42(8):2209-2224.
    [31]Simon D and Chia TL. Kalman filtering with state equality constraints. IEEE, Transactions on Aerospace and Electronic Systems,2002,39(1):128-136.
    [32]Simon D and Simon DL. Aircraft turbofan engine health estimation using constrained Kalman Filtering. Journal of Engineering for Gas Turbines and Power,2004,126(1):1-6.
    [33]任超,欧吉坤,袁运斌.一种用于GPS整周模糊度OTF求解的整数白化滤波改进算法.武汉大学学报(信息科学版),2004,29(11):960-963.
    [34]Mark L. Darby, Michael Nikolaou. A parametric programming approach to moving-horizon state estimation. Automatica,2007,43:885-891
    [35]Christopher V. Rao, James B. Rawlings, Jay H. Lee. Constrained linear state estimation-a moving horizon approach. Automatica,2001,37:1619-1628.
    [36]Peiliang Xu. Voronoi Cells,Probabilistic Bounds, and Hypothesis Testing in Mixed Integer Linear Models. IEEE Transactions on Information Theory,2006, 52(7):3122-3138.
    [37]宋迎春.动态定位中的卡尔曼滤波研究[D].中南大学博士论文,2006.
    [38]刘基余.GPS卫星导航定位原理与方法[M].科学出版社,2003,8.
    [39]Arash Hassibi and Stephen Boyd. Integer Parameter Estimation in Linear Models with Applications to GPS. IEEE Transactions On Signal Processing, Vol.46, NO. 11, November 1998:2938-2952.
    [40]P. L. Xu, E. Cannon, and G. Lachapelle. Mixed Integer Programming for the Resolution of GPS Carrier Phase Ambiguities. IUGG95 Assembly, Boulder, CO, Jul.1995.
    [41]P. L. Xu. Voronoi Cells, Probabilistic Bounds, and Hypothesis Testing in Mixed Integer Linear Models. IEEE Transactions On Information Theory, Vol.52, NO. 7, July 2006:3122-3188.
    [42]E. Frei and G. Beutler. Rapid Static Positioning Based on the Fast ambiguity Resolution Approach "FARA":Theory and First Results. Manuscr. Geod.,1990, vol.15:325-356.
    [43]P. J. G. Teunissen. Least-Squares Estimation of the Integer GPS Ambiguities. Delft, The Netherlands:Delft Univ. Tech., Delft Geodetic Computing Centre, 1993, vol.6, LGR-Series:59-74.
    [44]P. J. G. Teunissen. A new method for fast carrier phase ambiguity estimation, in Proc. IEEE Position, Location and Navigation Symp., Las Vegas, NV,1994.
    [45]P.J. G. Teunissen. The invertible GPS ambiguity transformations. Manu. Geodaetica, Sept.1995, vol.20, no.6:489-497.
    [46]P. L. Xu. A hybrid global optimization method:The multi-dimensional case. J. Comput. Appl. Math.,2003, vol.155:423-446.
    [47]P. L. Xu. Mixed integer geodetic observation models and integer programming with applications to GPS ambiguity resolution. J. Geod. Soc. Japan,1998, vol. 44:169-187.
    [48]P. L. Xu. Mixed Integer Observation Models, GPS Decorrelation and Integer Programming. Stuttgart Univ. Geodetic Inst., Stuttgart, Germany,2000, Tech. Rep.2000.2.
    [49]H. W. Lenstra, Jr.. Integer programming with a fixed number of variables. Tech. Rep.81-03, Dept. Math., Univ. Amsterdam, Amsterdam, The Netherlands,1981.
    [50]H. W. Lenstra, Jr.. Integer programming with a fixed number of variables. Math. Oper. Res.,1983, vol.8,:538-548.
    [51]A. K. Lenstra, H. W. Lenstra, Jr., and L. Lov'asz. Factoring polynomials with rational coefficients. Math. Ann.,1982, vol.261:515-534.
    [52]T.Westerlund and F. Pettersson. A Cutting Plane Method for Solving Convex MINLP Problems. Computers and Chemical Engineering,1995, (19): 5131-5136.
    [53]O.E.Flippo and A.H.G. Rinnoy Kan. A Note on Benders Decomposition in Mixed-Integer Quadratic Programming. Operations on Research Letters,1990, (9):81-53.
    [54]R. Fletcher and S. Leyffer. Solving Mixed Integer Nonlinear Programs by Outer Approximation. Mathematics Programming.1994 (66):327-349.
    [55]B. Borchers and J. E. Mitchell. An Improved Branch and Bound Algorithm for Mixed Integer Nonlinear Programming. Computers and Operations Research, 1994, (21):359-367.
    [56]JAZWINSKI A H.Stochastic processes and filtering theory [M]. NewYork:Academic Press,1970.
    [57]TANIZAKI H.Nonlinear filters:estimation and applications [M]. NewYork: Springer,1996.
    [58]PACHTER M,CHANDLER P R.Universal linearization con-cept for extended Kalman filters [J].IEEE Trans.on Aero-space and Electronic System,1993,29(3): 946-961.
    [59]van derMERWE R,DOUCETA, de FREITAS N, et al. The unscented particle filter[R/OL].Technical Report CUED/F-INFENG/TR 380[2000-08-16]. http://www.researchindex.com.
    [60]HUE C, PL J,PEREZ P. Sequential Monte Carlo method for multi target tracking and data fusion[J].IEEE Trans. on signal Processing,2002,50(2): 309-325.
    [61]DJURIC PM, JOON-HWA C. An MCMC sampling approach to estimation of nonstationary hidden Markov models[J]. IEEE Transactions on Signal Processing,2002,50(5):1113-1123.
    [62]RADFORD M N. Probabilistic inference using Markov chain Monte Carlo methods[R/OL].Canada:Department of computer science University of Toronto[2003-05-18]. http://www.google.com.
    [63]DOUCET A,LOGOTHETIS A,KRISHNAMURTHY V. Stochastic sampling algorithms for state estimation of jump markov linear system[J].IEEE Trans.on Automatic Control,2000,45(2):188-201.
    [64]MEHRAR K. On the identification of variances and adaptive Kalman filtering[J].IEEE Trans. on Automatic Control,1970,15(2):175-184.
    [65]MYERS K A, TAPLEY B T. Adaptive sequential estimation with unknown noise statistics[J].IEEE Trans.on Automatic Control,1976,21(4):520-523.
    [66]MAYBECK P. Stochastic models, estimation, and control (Vol.2)[M]. NewYork:Academic Press,1972.
    [67]BAR-SHALOM Y, LI X R,KIRUBARAJAN T. Estimation with applications to tracking and navigation[M]. New York:John Wiley& Sons, Inc,2001.
    [68]BUSSE F D, HOW J P. Demonstration of adaptive extended Kalman filter for low earth orbit estimation using DGPS[C]//Institute of Navigation GPS Meeting, September,2002.
    [69]Kalman R E. A new approach to linear filtering and prediction problems[J]. Transactions of the ASME, Journal of Basic Engineering,1960,82:34-35.
    [70]Yang Y, He H, Xu G. A new adaptively robust filtering for kinematic geodetic positioning[J]. Journal of Geodesy,2001,75(2):109-116.
    [71]Yang Y, Xu T. An adaptive kalman filter based on sage windowing weights and variance components [J]. The Journal of Navigation,2003,56(2):231-240.
    [72]Koch K R, Yang Y. Robust kalman filter for rank deficient observation models[J]. Journal of Geodesy,1998,72:436-441.
    [73]李博峰,沈云中,周泽波.GPS伪距动态定位结果的移动窗口逼近模型[J].大地测量与地球动力学,2007,27(4):62-66.
    [74]Yang Yuanxi. Robust bayesian estimation. Journal of Geodesy,1991,65(3): 145-150.
    [75]王志军,朱建军.污染模型下的最优估计.测绘学报,1999,28(1):51-56.
    [76]田铮,肖华勇.一类动态模型状态参数的稳健贝叶斯估计.数理统计与应用概率,1995,10(3):35-42。
    [77]孙志东,孙增圻.一种对成片野值不敏感的鲁棒卡尔曼滤波.清华大学学报,1994,34(1):55-61.
    [78]R. Fruhwirth. Track fitting with non-Gaussian noise. Computer Physics Communication.1997,100:1-16.
    [79]崔希璋,於宗俦,陶本藻,等.广义测量平差[M].武汉测绘科技大学,2000.
    [80]Yang Y X, He H B, Xu G C. Adaptively robust filtering for kinematic geodetic positioning. Journal of Geodesy,2001,75(2/3):109-116.
    [81]P. L. Xu, E. Cannon, and G. Lachapelle. Mixed Integer Programming for the Resolution of GPS Carrier Phase Ambiguities. IUGG95 Assembly, Boulder, CO, Jul.1995
    [82]P. L. Xu. Voronoi Cells, Probabilistic Bounds, and Hypothesis Testing in Mixed Integer Linear Models. IEEE Transactions On Information Theory, Vol.52, NO. 7, July 2006:3122-3188.
    [83]Arash Hassibi and Stephen Boyd. Integer Parameter Estimation in Linear Models with Applications to GPS. IEEE Transactions On Signal Processing, Vol. 46, NO.11, November 1998:2938-2952.
    [84]E. Frei and G. Beutler. Rapid Static Positioning Based on the Fast ambiguity Resolution Approach "FARA":Theory and First Results. Manuscr. Geod.,1990, vol.15:325-356.
    [85]P. J. G. Teunissen. Least-Squares Estimation of the Integer GPS Ambiguities. Delft, The Netherlands:Delft Univ. Tech., Delft Geodetic Computing Centre, 1993, vol.6, LGR-Series:59-74.
    [86]P. J. G. Teunissen. A new method for fast carrier phase ambiguity estimation, in Proc. IEEE Position, Location and Navigation Symp., Las Vegas, NV,1994.
    [87]P. J. G Teunissen. The invertible GPS ambiguity transformations. Manu. Geodaetica, Sept.1995, vol.20, no.6:489-497.
    [88]P. L. Xu. A hybrid global optimization method:The multi-dimensional case. J. Comput. Appl. Math.,2003, vol.155:423-446.
    [89]P. L. Xu. Mixed integer geodetic observation models and integer programming with applications to GPS ambiguity resolution. J. Geod. Soc. Japan,1998, vol. 44:169-187.
    [90]P. L. Xu. Mixed Integer Observation Models, GPS Decorrelation and Integer Programming. Stuttgart Univ. Geodetic Inst., Stuttgart, Germany,2000, Tech. Rep.2000.2.
    [91]H. W. Lenstra, Jr.. Integer programming with a fixed number of variables. Tech. Rep.81-03, Dept. Math., Univ. Amsterdam, Amsterdam, The Netherlands,1981.
    [92]H. W. Lenstra, Jr.. Integer programming with a fixed number of variables. Math. Oper. Res.,1983, vol.8,:538-548.
    [93]A. K. Lenstra, H. W. Lenstra, Jr., and L. Lov'asz. Factoring polynomials with rational coefficients. Math. Ann.,1982, vol.261:515-534.
    [94]T.Westerlund and F. Pettersson. A Cutting Plane Method for Solving Convex MINLP Problems. Computers and Chemical Engineering,1995, (19): 5131-5136.
    [95]O.E.Flippo and A.H.G. Rinnoy Kan. A Note on Benders Decomposition in Mixed-Integer Quadratic Programming. Operations on Research Letters,1990, (9):81-53.
    [96]R. Fletcher and S. Leyffer. Solving Mixed Integer Nonlinear Programs by Outer Approximation. Mathematics Programming.1994 (66):327-349.
    [97]B. Borchers and J. E. Mitchell. An Improved Branch and Bound Algorithm for Mixed Integer Nonlinear Programming. Computers and Operations Research, 1994, (21):359-367.
    [98]P.L.Xu. A hybrid Global Optimization Method:The One-dimensional Case. J.Comput.Appl.Math.147 (2002):301-314.
    [99]P.L.Xu. Numerical Solution for Bounding Feasible Point Sets. J.Comput.Appl.Math.147 (2002):301-314.
    [100]Avriel M. Nonlinear Programming, Analysis and Methods. New Jersey: Prentice-Hall Englewood Cliffs,1976.
    [101]中国科学院数学所概率组.离散时间系统滤波的数学方法.国防工业出版社,1975年.
    [102]汪咬元.含参向量随机序列的递推估计统一处理.数学物理学报,1993,13(3):338-344.
    [103]陈永奇,Lutes J.单历元GPS变形监测数据处理方法的研究[J].武汉测绘科技大学学报,1998,23(4):324-328.
    [104]余学祥,徐绍铨等.GPS变形监测信息的单历元解算方法研究[J].测绘学报,2002,31(2):123-127.
    [105]戴吾蛟,朱建军,丁晓利,陈永奇.GPS建筑物振动变形监测中的单历元算法研究[J].武汉大学学报·信息科学版,2007,32(3):234-237.
    [106]戴吾蛟,丁晓利,朱建军.基于观测值质量指标的GPS观测量随机模型分析[J].武汉大学学报·信息科学版,2008,33(7):718-722
    [107]余学祥,吕伟才.抗差卡尔曼滤波模型及其在GPS监测网中的应用[J].测绘学报,2001,30(1):27-31.
    [108]HE Xiufeng, CHEN Yongqi. Application of interval Kalman filter to an integrated GPS/INS system[J]. Transactions of Nanjing University of Aeronautics& Astronaut,1999,16(1):39-45.
    [109]Maybeck P S. Stochastic models estimation and control[M]. New York: Acdemic,1982.
    [110]Jazwinski A H. Stochastic processes and filtering theory [M]. NewYork: Academic,1970.
    [111]Caballero-Gil P, Fuster-Sabater A. A wide family of nonlinear filter functions with a large linear span[J]. Information Sciences,2003,164(1-4):197-207.
    [112]Julier S. J. and Uhlmann. J. K. A New Extension of the Kalman Filter to Nolinear Systems[A]. In the Proc of Aerosense:The 11th Int Symposium Aerospace/Defense Sensing, Simulation and Controls[C], Orlando,1997:54-65
    [113]杨元喜,张双成,高为广.GPS导航解算中几种非线性Kalman滤波的理论分析与比较.测绘工程,2005,14(3):4-7.
    [114]茅旭初.一种用于GPS定位估计滤波算法的非线性模型[J].上海交通大学学报,2004,(4):610-615.
    [115]王新洲.非线性模型参数估计理论与应用[M].武汉:武汉大学出版社,2002.
    [116]彭竞,李献球,王飞雪.基于UKF的GPS非线性动态滤波算法.全球定位系统,2005,6:30-33.
    [117]Julier S. J., Uhlmann. J.K. and Durrant-Whyten H F. A new approach for filtering nolinear system[A]. Proc of the American Control Conf[C]. Washington: Seattle,1995:1628-1632.
    [118]宋迎春,刘庆元,曾联斌,陈宇波.测量噪声污染时的一种动态滤波算法.测绘学报,2009,38(2):433-437.
    [119]康健,司锡才,芮国胜.基于贝叶斯原理的粒子滤波技术概述.现代雷达,2004,26(1):34-36.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700