图像超分辨率重建算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
图像超分辨率(Super-Resolutin, SR)重建是为了满足人们对高质量图像的需求而产生的一类方法。该方法于20世纪60年代首次提出,目标是使用一幅或多幅低分辨率(Low Resolution, LR)图像中的隐含信息生成一幅或多幅高分辨率(High Resolution, HR)图像。图像超分辨率重建的重要意义在于能够在给定水平的图像采集设备的基础上重建出更高分辨率的图像。
     超分辨率重建的主要任务是提高图像的空间分辨率。其基本思想是从输入的低分辨率图像(或图像序列)中寻找高分辨率图像丢失的的高频分量,并进行合理的建模和预测。然而超分辨率重建问题是不适定的,因此需要对该问题的解进行先验约束。可能的约束条件有LR图像之间的时空互补信息,HR图像特征的先验知识以及低分辨率和高分辨率(LR-HR)图像之间的非线性映射关系等。
     论文在基于小波变换的金字塔结构下,假设低分辨率图像是小波金字塔的较低层次,采用求解小波金字塔的较高层次的方式获取高分辨率图像。论文应用亚像素位移、梯度以及自相似性等先验约束,使用基于重构和基于学习这两类主流方法分别针对多幅和单幅LR图像开展了超分辨率重建的研究。主要研究工作和创新点如下:
     (1)提出了一种基于循环平移的超分辨率(Cycle-Spinning Super-Resolution, CSSR)重建算法。该算法将多幅LR图像经过小波域零填充方法生成多幅HR图像,在充分研究了多幅LR图像之间逆平移运算、平移方向和平移量大小以及取平均运算的基础上,以LR图像之间的亚像素位移作为先验约束,应用图像去噪中的Cycle-Spinning方法改善人工假象对图像分辨率的影响。仿真结果表明,该算法可以有效消除伪吉布斯现象。
     (2)提出了一种基于局部李普希兹和梯度先验(Local Lipschitz and Gradient Prior, LLGP)重建算法。该算法将单幅图像分解到小波金字塔结构中,同时计算出不同尺度Lipschitz正则化系数的变化规律,充分考虑了边缘像素沿水平、垂直和对角方向的细节信息,并将其作为HR图像特征的梯度先验,最后使用梯度下降算法获取HR图像。仿真结果表明,该算法可以有效加强图像边缘的锐化效果。
     (3)提出了一种基于人工神经网络的自相似性(Self-Similarity by Artificial Neural Network, SS-ANN)重建算法。该算法首先通过对单幅图像进行小波变换,建立包含不同尺度图像的金字塔结构;其次,将这种相同和不同尺度上LR-HR图像块之间细节信息的相似性作为先验约束对人工神经网络(Artificial Neural Network, ANN)进行训练;最后从训练好的ANN模型中预测因降质丢失的高频分量,再经过小波逆变换获得HR图像的初始估计,并应用误差函数对该初始估计进行约束。仿真结果表明,该算法可以有效逼近真实的HR图像。
     综上所述,论文在基于小波变换的金字塔结构下,对LR图像之间的时空互补信息、HR图像特征的先验知识和LR-HR图像之间的非线性映射关系这三种先验约束分别进行了研究,同时将Cycle-Spinning、Lipschitz正则化和ANN等方法应用于问题的建模和求解中,提出了新的超分辨率重建算法,取得了较有价值的研究成果。
Super-resolution image reconstruction is a kind of method that satisfies the demand for high quality images. First proposed in the1960s, its goal is to reconstruct one or a series of high resolution (HR) image(s) by exploiting hidden information from one or a sequence of low resolution (LR) original image(s). The significance of super-resolution image reconstruction lies in its ability to reconstruct higher resolution images on top of image acquisition devices with inherently restricted resolution capacity.
     The main task of super-resolution image reconstruction is to elevate the spatial resolution of images. The basic idea is to find the high-frequency constituents in the high resolution image that was lost from one or a sequence of low resolution image(s) and then perform reasonable modeling and predicting. However, super-resolution image reconstruction is an ill-posed problem, so prior constraints are required to be imposed on its solution. Possible constraints include time-space complementary information among LRs, prior knowledge on the characteristics of the HRs and non-linear mapping relationships between LRs and HRs.
     Rested on the wavelet transform based pyramid framework, the thesis assumes that the LR images were located at the lower level of the pyramid and reconstructs HR images by solving the higher levels of the wavelet pyramid. The research is conducted on two mainstream approaches, reconstruction based and learning based, with sub-pixel shifts, gradients and self-similarity as prior constraints. The major research work and contributions are listed as follows:
     (1) Propose a reconstruction based algorithm CSSR (Cycle-Spinning Super-Resolution). CSSR is based on a thorough investigation on the inverse translation operation, the translation direction and amount along with the averaging among multiple LRs, and applies Cycle-Spinning in image denoising to improve the image resolution by eliminating the impacts by artifacts, taking sub-pixel shift as the prior constraint. Simulation results indicate that CSSR algorithm could eliminate Pseudo-Gibbs phenomenon effectively.
     (2) Propose a learning based algorithm LLGP (Local Lipschitz and Gradient Prior). LLGP incorporates the way that Lipschitz regularization coefficients varies w.r.t different scales into the wavelet pyramid structure first, then takes gradients from a full analysis of detailed information of the edge pixels along horizontal, vertical and diagonal directions as the prior of image characteristics, and finally reconstructs HR by means of gradient descent method. Simulation results show that LLGP algorithm can remarkably enhance the sharpness at edge pixels.
     (3) Propose a learning based algorithm SS-ANN (Self-Similarity by Artificial Neural Network). SS-ANN constructs a pyramid structure containing images of different scales by wavelet transform of a single image first, then trains ANN taking the similarity of the detailed information among LR-HR image patches with the same and different scales as a prior, subsequently predicts high-frequency constituents lost by quality degrading from the ANN model, figures initial estimation of HR by inverse wavelet transform as the next step, and finally applies error function to constrain the initial estimation. Simulation experiments demonstrate that SS-ANN algorithm can approximate the real HR image much effectively.
     To sum up, based on the pyramid framework of wavelet transform, the thesis has conducted researches on three kinds of priors:time-space complementary information among LRs, characteristics of HRs and the non-linear mapping relationship between LRs and HRs, applied Cycle-Spinning, Lipschitz regularization and ANN to the modeling and resolving of super-resolution image reconstruction, and proposed novel algorithms whose effectiveness have been well demonstrated by simulation experiments.
引文
[1]J. L. Harris. Diffraction and Resolving Power[J]. Journal of the Optical Society of America,1964,54(7):931-936.
    [2]J. W. Goodman. Introduction to Fourier Optics[M]. New York:McGraw-Hill, 1968.
    [3]L. A. Klein. Sensor and data fusion:A tool for information assessment and decision making[M]. USA:SPIE Press,2004.
    [4]S. C. Park, M. K. Park, M. G. Kang. Super-resolution image reconstruction:a technical review[J], IEEE Signal Processing Magazine,2003,20(3):21-36.
    [5]Patrick Vandewalle, Sabine Siisstrunk, Martin Vetterli. A Frequency Domain Approach to Registration of Aliased Images with Application to Super-resolution[J]. EURASIP Journal on Applied Signal Processing,2006: 1-14.
    [6]W. F. Schreiber. Fundamentals of Electronic Imaging Systems[M]. Springer-Verlag, New York,1986.
    [7]R. R. Schultz, R. L. Stevenson. A Bayesian Approach to Image Expansion for Improved Definition[J]. IEEE Transactions on Image Processing,1994,3(3): 233-242.
    [8]B. Morse, D. Schwartzwald. Image magnication using level set reconstruction[A]. In:Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition[C],2001,1:333-340.
    [9]苏秉华,金伟其,牛丽红等.超分辨率图像复原及其进展[J].光学技术.2001,27(1):6-9.
    [10]H. A. Brown. Effect of truncation on image enhancement by prolate spheroidal function[J]. Journal of the Optical Society of America,1969,59:228-229.
    [11]C. K. Rusforth. In Image Reconstruction, Theory and Application[M]. Academic Press, New York,1987.
    [12]R. Tsai, T. Huang. Multi-frame image restoration and registration[J]. Advances in Computer Vision and Image Processing,1984, (1):317-339.
    [13]S. P. Kim, N. K. Bose, H. M. Valenzuela. Recursive reconstruction of high resolution image from noisy under-sampled multi-frames[J]. IEEE Transactions on Acoustics, Speech and Signal Processing,1990,38(6):1013-1027.
    [14]B. R. Hunt. Super-resolution of imagery:Understanding the basis for recovery of spatial frequencies beyond the diffraction limit[J]. In:Proceedings of the IEEE Conference on Information, Decision and Control, Adelaide, Australia, 1999:243-248.
    [15]B. R. Frieden, H. G. Aumann. Image reconstruction from multiple 1-D scans using filtered localized projection[J]. Applied Optics,1987,26 (17):3615-3621.
    [16]H. Stark, P. Oskoui. High-resolution image recovery from image-plane arrays, using convex projections[J]. Journal of the Optical Society of America,1989, 6(11):1715-1726.
    [17]M. Elad, A. Feuer. Superresolution restoration of an image sequence:adaptive filtering approach[J]. IEEE Transactions on Image Processing,1999,8(3): 387-395.
    [18]M. C. Hong, M. G. Kang, A. K. Katsaggelos. Aniterative weighted regularized algorithm for improving the resolution of video sequences[A]. In:Proceedings of the IEEE International Conference on Image Processing[C],1997, B(10): 474-477.
    [19]R. R. Schultz, R. L. Stevenson. Extraction of high-resolution frames from video sequences[J]. IEEE Transactions on Image Processing,1996,5(6):996-1011.
    [20]R. C. Hardie, K. J. Barnard, E. E. Armstrong. Joint MAP registration and high-resolution image estimation using a sequence of under sampled images[J]. IEEE Transactions on Image Processing,1997,6(12):1621-1633.
    [21]B. A. Olshausen, D. J. Field. Sparse coding of sensory inputs[J]. Current Opinion in Neurobiology,2004,14:481-487.
    [22]S. Mallat, Z. Zhang. Matching pursuit with time-frequency dictionaries[J]. IEEE Transactions on Signal Processing,1993,41(12):3397-3415.
    [23]M. Irani, S. Peleg. Improving resolution by image registration[J]. Computer Vision, Graphics and Image Processing,1991,53(3):231-239.
    [24]D. Capel, A. Zisserman. Super-resolution enhancement of text image sequences [A]. In:Proceedings of the IEEE International Conference on Pattern Recognition[C],2000,1:600-605.
    [25]荆国栋.基于压缩感知的图像超分辨率重建方法研究[D].博士学位论文,北京工业大学,2012.
    [26]刘贤明.基于自适应回归的图像超分辨率:算法与应用[D].博士学位论文,哈尔滨工业大学,2012.
    [27]Peyman Milanfar. Super-resolution imaging[M]. CRC press,2010.
    [28]Tony F. Chan, Michael K. Ng, Andy C. Yau, et al. Superresolution Image Reconstruction Using Fast Inpainting Algorithms [J]. Applied and Computational Harmonic Analysis, Special issue on Mathematical Imaging, July 2007,23(1):3-24.
    [29]Wen Yi Zhao, Harpreet S. Sawhney. Is Super-Resolution with Optical Flow Feasible?[A]. Lecture Notes in Computer Science:Computer Vision[C],2002, 2350:599-613.
    [30]Michael K. Ng, Raymond H. Chan, Tony F. Chan, et al. Cosine transform preconditioners for high resolution image reconstruction[J]. Linear Algebra and its Applications,2000,316(1-3):89-104.
    [31]M. Elad, A. Feuer. Super-resolution restoration of continuous image sequence using the LMS algorithm[A]. In:Proceedings of the Eighteenth Convention of Electrical and Electronics Engineers in Israel[C],1995,2.2.5:1-5.
    [32]A. N. Rajagopalan, S. Chaudhuri. Recursive computationof maximum likelihood function for blur identificationfrom multiple observations[J]. IEEE Transactions on Image Processing,1998,7:1075-1079.
    [33]H. W. Kim, J. H. Jang, K. S. Hong. Edge-enhancingsuper-resolution using anisotropic diffusion[A]. In:Proceedings of the IEEE International Conference on Image Processing[C],2001:130-133.
    [34]R. C. Gonzalez, R. E. Woods, S. L. Eddins. Digital image processing using MATLAB[M]. Beijing:Publishing House of Electronics Industry,2007.
    [35]S. Mallat.信号处理的小波导引(第二版)[M].北京:机械工业出版社,2002.
    [36]张旗,梁德群,李文举等.面向图象压缩的图象分类及压缩结果预测[J].中国图象图形学报,2003,8(1):409-414.
    [37]J. Hadamard. Lectures on the Cauchy problem in Linear partial Differential Equations[M]. Yale University Press, New York,1923.
    [38]B. A. Olshausen, D. J. Field. Emergence of simple-cell receptive field properties by learning a sparse code for natural images [J]. Nature,1996,381:607-609.
    [39]A. Buades, B. Coll, J. M. Morel. A review of image denoising algorithms, with a new one[J]. Multiscale Modeling and Simulation,2005,4(2):490-530.
    [40]L. Rudin, S. Osher, E. Fatemi. Nonlinear total variation based noise removal algorithms[J], Journal of Physica D,1992,60:259-268.
    [41]Y. Meyer. Oscillating Patterns in Image Processing and Nonlinear Evolution Eq-uations[M], University Lecture Series, American Mathematical Society,2001: 22.
    [42]J. L. Starck, M. Elad, D. L. Donoho. Redundant multiscale transforms and their application for morphological component analysis[J]. Advances in Imaging and Electron Physics,2004,132:287-348.
    [43]R. Fattal. Image upsampling via imposed edge statistics[J]. ACM Transactions on Graphics(TOG),2007,26(3):95.
    [44]S. Carlsson. Sketch based coding of gray level images[J]. IEEE Transations on Image Processing,1988,15(1):57-83.
    [45]S. Mallat, S. Zhong. Wavelet transform maxima and multiscale edges[M]. In Wavelets and Their Applications, Boston:Jones and Bartlett,1992.
    [46]A. Cohen, B. Matei. Compact representation of images by edge adapted multiscale transforms[A]. In:Proceedings of the IEEE International Conference on Image Processing, Special Session on Image Processing and Non-Linear Approxirrmtion[C], Thessaloniki, Greece, invited paper,2001.
    [47]P. L. Dragotti, M. Vettedi. Footprints and edgeprints for image denoising and compression[A]. In:Proceedings of the IEEE International Conference on Image Processing[C]. Thessaloniki, Greece,2001:237-240.
    [48]R. Shukla, P. L. Dragntti, M. N. Do, et al. Rate-distortion optimized tree structured compression algorithms for piecewise smooth images[J]. IEEE Transactions on Image Processing,2005,14(3):343-359.
    [49]X. Ran, N. Favardin. A perceplually motivated three component image model Part 1:description of the model[J]. IEEE Transactions on Image Processing, 1995,4(3):430-447.
    [50]D. H. Hubel, T. N. Wiesel. Receptive fields, binocular intemction and functional architecture in the cat's visual cortex[J]. Journal of Physiology,1962,160(1): 106-154.
    [51]F. W. Campbell, J. G. Robson. Application of Fourier Analysis to the Visibility of Gratings[J]. Journal of Physiology,1968,197:551-566.
    [52]David L. Donoho, Ana Georgina Flesia. Can recent innovations in harmonic analysis 'explain' key findings in natural image statistics[J]. Network: Computation in Neural Systems,2001,12(3):371-393.
    [53]J. C. Yang, T. Huang. Image Super-resolution. Historical Overview and Future Challenges[M]. Super-Resolution Imaging, CRC Press, New York,2011.
    [54]A. M. Tekalp, M. K. Ozkan, M. I. Sezan. High-resolution image reconstruction from lower-resolution image sequences and space-varying image restoration[A]. In:Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing[C],1992,3:169-172.
    [55]S. P. Kim, W. Su. Recursive high-resolution reconstruction of blurred multiframe images[J]. IEEE Transactions on Image Processing,1993,2(4): 534-539.
    [56]N. K. Bole, H. C. Kim. Recursive implementation of total least squares algorithm for image reconstruction from noisy, under sampled multiframes[A]. In:Proceedings of the IEEE Conference on Acoustics, Speech and Signal Processing[C],1993,5(4):269-272.
    [57]E. Kaltenbacher, R. C. Hardie. High resolution infrared reconstruction using multiple, low resolution[A]. In:Proceedings of the SPIE, Hybrid Image and Signal Processing V[C],1996,2751:142-152.
    [58]M. S. Alam, J. G. Bognar, R. C. Hardie, et al. Infrared image registration and high-resolution reconstruction using multiple translationally shifted aliased video frames[J]. IEEE Transactions on Instrumentation and Measurement,2000, 49:915-923.
    [59]J. Morlet, G. Arens, E. Fourgeau, et al. Wave Propagation and Sampling Theory[J]. Journal of Geophysics,1982,47:203-236.
    [60]D. Keren, S. Peleg, R. Brada. Image sequence enhancement using sub-pixel displacements[A]. In:Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition[C],1988:742-746.
    [61]K. Aizawa, T. Komatsu, T. Saito. Acquisition of very high resolution images using stereo cameras [A].In Proceedings of the SPIE[C],1991,1605:318-328.
    [62]N. Nguyen, P. Milanfar. Wavelet-based interpolation-restoration method for superresolution [J]. IEEE Transactions on Circuits, Systems and Signal Processing,2000,19(4):321-338.
    [63]N. Nguyen, P. Milanfar. An efficient wavelet-based algorithm for image superresolution[A]. In:Proceedings of the IEEE International Conference on Image Processing[C],2000,2:351-354.
    [64]D. C. Youla, H. Webb. Image restoration by the method of convex projections: part 1 theory[J]. IEEE Transactions on Medical Imaging,1982,1(2):81-94.
    [65]A. J. Patti, M. I. Sezan, A. Murat Tekalp. Superresolution video reconstruction with arbitrary sampling lattices and nonzero aperture time[J]. IEEE Transactions on Image Processing,1997,6(8):1064-1076.
    [66]S. Mallat, W. L. Hwang. Singularity detection and processing with wavelets[J]. IEEE Transactions on Information Theory,1992,38(2):617-643.
    [67]C. Ford, D. M. Etter. Wavelet basis reconstruction of nonuniformlv sampled data[J]. IEEE Transactions on Circuits,System Ⅱ:Analog, Digital Signal Processing,1998,45(8):1165-1168.
    [68]S. Baker, T. Kanade. Hallucinating faces[A]. In:Proceedings of the IEEE International Conference on Automatic Face and Gesture Recognition[C],2000: 83-88.
    [69]S. Baker, T. Kanade. Limits on Super-resolution and How to Break Them[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,24(9): 1167-1183.
    [70]W. T. Freeman, E. C. Pasztor. Learning low-level vision[A]. In:Proceedings of the IEEE International Conference on Computer Vision[C],1999,40(1):25-47.
    [71]Christopher M. Bishop, Andrew Blake, Bhaskara Marthi. Super-resolution Enhancement of Video[A]. In:Proceedings of the IEEE International Conference on Artificial Intelligence and Statistics[C],2003,2.
    [72]J. Sun, J. Sun, Z. B. Xu, et al. Gradient profile prior and its applications in image super-resolution and enhancement[J]. IEEE Transactions on Image Processing,2011,20(6):1529-1542.
    [73]S. G. Chang, Z. Cvetkovic, M. Vetterli. Resolution enhancement of images using wavelet transform extrema extrapolation[A]. In:Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing[C],1995, 4:2379-2382.
    [74]Yu-Wing Tai, Wai-Shun Tong, Chi-Keung Tang. Perceptually-inspired an Edge-directed color image super-resolution[A]. In:Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition[C],2006, 2:1948-1955.
    [75]Manjunath V. Joshi, Subhasis Chaudhuri, Rajkiran Panuganti. A learning-based method for image superresolution from zoomed observations [J]. IEEE Transactions on Systems, Man, and Cybernetics Part B:Cybernetics,2005, 35(3):527-537.
    [76]Zhouchen Lin, Heung-Yeung Shum. Fundamental Limits of Reconstruction-Based Superresolution Algorithms under Local Translation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2004,26(1): 83-97.
    [77]A. Hertzmann, C. E. Jacobs, N. Oliver, et al. Image Analogies[A]. In: Proceedings of the International Conference on Special Interest Group for Computer Graphics and Interactive Techniques[C], ACM Press, New York, 2001:327-340.
    [78]A. Temizel, T. Vlachos. Wavelet Domain Image Resolution Enhancement Using Cycle-Spinning[J]. Electronics Letters,2005,41(3):119-120.
    [79]Z. Wang, A. C. Bovik, H. R. Sheikh, et al. Image quality assessment:From error visibility to structural similarity[J]. IEEE Transaction on Image Processing, 2004,13(4):600-612.
    [80]胥妍,段会川.小波图像融合评价方法的综合比较研究[J].科技信息,2007,16:24-26.
    [81]Z. Wang, A. C. Bovik. Mean squared error:Love it or leave it? A new look at Signal Fidelity Measures[J]. Signal Processing Magazine,2009,26(1):98-117.
    [82]马平.数字图像处理和压缩[M].北京:电子工业出版社,2007.
    [83]D. Donoho, I. Johnstone, G. Kerkyacharian, et al. Wavelet shrinkage: Asymptotia?[J]. Journal of the Royal Statistical Society, Series B (Methodological),1995,57:301-369.
    [84]R. Devore, B. Jawerth, V. A. Popov. Compression of wavelet decompositions[J]. American Journal of Mathematics,1992,114:737-785.
    [85]R. R. Coifman, Y. Meyer, V. M. Wickerhauser. Entropy-based algorithms for best basis selection[J], IEEE Transactions on Information Theory,1992, IT-38: 713-718.
    [86]G. M. Davis, S. G. Mallat, Z. Zhang. Adaptive time-frequency decompositions[J]. Optical Engineering,1994,33(7):2183-2191.
    [87]M. Farge, E. Gorgand, Y. Meyer, et al. Improved predictability of two-dimensional turbulent flows using wavelet packet compression[J]. Fluid Dynamics Research,1992,10(4):229-250.
    [88]F. W. Campbell, J. G. Robson. Application of Fourier Analysis to the Visibility of Gratings[J]. Journal of Physiology,1968,197:551-566.
    [89]Henry Wilbraham. On a certain periodic function[J]. The Cambridge and Dublin Mathematical Journal,1848,3:198-201.
    [90]A. A. Michelson, S. W. Stratton. A new harmonic analyser[J]. Philosophical Magazine,1898,5(45):85-91.
    [91]J. Willard Gibbs. Fourier's Series[J]. Nature,1899,59(1539):606.
    [92]J. Willard Gibbs. Fourier's Series[J]. Nature,1898,59(1522):200.
    [93]Maxime Bocher. Introduction to the theory of Fourier's series[J]. Annals of Mathethematics, Second Series, April 1906,7(3):81-152.-
    [94]G. G. Walter, H. T. Shim. Gibbs phenomenon for sampling series and what to do about it[J]. Journal of Fourier Analysis and Applications,1998,4(3):357-375.
    [95]G. Hemlberg. The Gibbs phenomenon for Fourier interpolation[J]. Journal of Approximation Theory,1994,78(1):41-63.
    [96]C. Karankis. Karanikas C. Gibbs phenomenon in wavelet analysis[J]. Results in Mathematics,1998,34(3-4):330-341.
    [97]Sylvain Durand, Jacques Froment. Artifact Free Signal Denoising with Wavelets[A]. In:Proceedings of the International Conference on Acoustics, Speech and Signal Processing[C], Salt Lake City, Utah (USA),2001.
    [98]A. Cohen, J. P. D'Ales. Nonlinear approximation of random functions[J]. SIAM Journal on Applied Mathematics,1997,57(2):518-540.
    [99]S. Jaffard. Algorithmes de Transformation ell Ondelettes[J]. Ann. Des Ponts et Chaussees,1989,3:10-30.
    [100]H. O. Rasmussen. The wavelet Gibbs phenomenon[J]. Wavelets, Fractals, and Fourier Transforms (M. Farge, JCR Hunt, and JC Vassilicos, eds.),1993: 123-142.
    [101]S. Kelly. Gibbs phenomenon for wavelets[J]. Applied and Computational Harmonic Analysis,1996,3(1):72-81.
    [102]H. T. Shim, H. Volkmer. On the Gibbs phenomenon for wavelet expansions[J]. Journal of Approximation Theory,1996,84(1):74-95.
    [103]Kourosh Raeen. A Study of The Gibbs Phenomenon in Fourier Series and Wavelets[D]. Master of Science Mathematics, University of New Mexico Albuquerque, New Mexico, August 2008.
    [104]I. Daubechies. Orthonormal bases of compactly supported wavelets[J]. Communications on pure and applied mathematics,1988,41(7):909-996.
    [105]G. G. Walter. A general approach to Gibbs phenomenon[J]. Complex Variables, 2002,47(8):731-743.
    [106]R. R. Coifman, D. L. Donoho. Translation-invariant denoising[J]. Lecture Notes in Statistics:Wavelets and Statistics, New York:Springer Verlag,1995,103: 125-150.
    [107]A. Nosratinia. Postprocessing of JPEG-2000 images to removecompression artifacts[J]. IEEE Signal Processing Letters,2003,10(10):296-299.
    [108]A. Temizel, T. Vlachos. Wavelet domain image resolution enhancement using cycle-spinning[J]. Electronics Letters,2005,41(3):119-121.
    [109]C. Yan, X. Fang, J. Hou, et al. Multiframe super-resolution reconstruction based on cycle-spinning[A]. In:Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing[C],2007,1:557-560.
    [110]T. Gautama, M. M. Vhulle. A phase-based approach to the estimation of the optical flow field using spatial filtering[J]. IEEE Transactions on Neural Networks,2002,13(5):1127-1136.
    [111]胥妍,段会川.基于小波变换的Cycle Spinning图像融合的扩展研究[J].计算机工程与应用,2007,43(27):47-49.
    [112]梁栋,沈敏,高清维等.一种基于Contourlet递归Cycle Spinning的图像去噪方法[J].电子学报,2005,33(11):2044-2046.
    [113]Oliver Rockinger. Image Sequence Fusion Using a Shift-Invariant Wavelet Transform[A]. In:Proceedings of the IEEE International Conference on Image Processing[C],1997,3:288-291.
    [114]R. Eslami, H. Radha. The Contourlet Transform for Image De-noising Using Cycle Spinning[A]. In:Proceedings of the Asilomar Conference on Signals, Systems and Computers[C]. Pacific Grove, USA,2003:1982-1986.
    [115]K. Kinebuchi, D. D. Muresan, T. W. Parks. Image interpolation using wavelet-based hidden Markov trees [A]. In:Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing[C], Salt Lake City, UT, USA, May 2001,3:1957-1960.
    [116]D. H. Woo, I. K. Eom, Y. S. Kim. Image interpolation based on inter-scale dependency in wavelet domain[A]. In:Proceedings of the IEEE International Conference on Image Processing[C],2004,3:1687-1690.
    [117]S. Mallat, W. L. Hwang. Singularity detection and processing with wavelets[J]. IEEE Transactions on Information Theory,1992,38(2):617-643.
    [118]M. N. Do, M. Vetterli. The contourlet transform:an efficient directional multi resolution image representation[J]. IEEE Transactions on Image Processing, 2005,14(12):2091-2106.
    [119]V. Velisavljevic. Edge-preservation resolution enhancement with oriented wavelets[A]. In:Proceedings of the IEEE International Conference on Image Processing[C],2008:1252-1255.
    [120]I. Daubechies. Ten lectures on wavelets[M]. SIAM,1992.
    [121]W. K. Carey, D. B. Chuang, S. S. Hemami. Regularity-preserving image interpolation[J]. IEEE Transactions on Image Processing,1999,8(9): 1295-1297.
    [122]A. Grossmann, J. Morlet. Decomposition of Hardy functions into square integrable wavelets of constant shape[J]. SIAM Journal on Mathematical Analysis,1984,15(4):723-736.
    [123]M. Holschneider, P.Tchamitchian.Regularite locale de la fonction 'non-differentiable de Riemann'[J]. Les ondelettes en 1989,1989:102-124.
    [124]A. Pentland. Fractal-based descriptions of natural scenes[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1984,6:661-674.
    [125]O. Rioul. Simple regularity criteria for subdivision schemes[J]. SIAM Journal on Mathematical Analysis,1992,23(6):1544-1576.
    [126]S. Dai, M. Han, W. Xu, et al. Soft edge smoothness prior for alpha channel super resolution[A]. In:Proceedings of the International Conference on Computer Vision and Pattern Recognition[C],2007:1-8.
    [127]E. P. Simoncelli. Statistical models for images:Compression, restoration and synthesis[A]. In:Proceedings of the Asilomar Conference on Signals Systemsand Computers[C], Pacific Grove, CA,1997:673-678.
    [128]J. G. Huang, D. Mumford. Statistics of natural images and models[A]. In: Proceedings of the International Conference on Computer Vision and Pattern Recognition[C],1999,1:541-547.
    [129]M. F. Tappen, B. C. Russell, W. T. Freeman. Exploiting the sparse derivative prior for super-resolution and image demosaicing[A]. In:Proceedings of the IEEE Workshop on Statistical and Computational Theories of Vision[C],2003.
    [130]A. L. Yuille, T. Poggio. Fingerprints theorems for zero crossings[J]. Journal of the Optical Society of America,1985,2(5):683-692.
    [131]J. Sun, J. Sun, Z. B. Xu, et al. Image super-resolution using gradient profile prior[A]. In:Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition[C],2008:1-8.
    [132]O. Rioul. Simple regularity criteria for subdivision schemes[J]. SIAM Journal on Mathematical Analysis,1992,23(6):1544-1576.
    [133]W. T. Freeman, T. R. Jones, E. C. Pasztor. Example-based super-resolution[J]. IEEE Transactions on Computer Graphics and Applications,2002,22(2):56-65.
    [134]D. Glasner, S. Bagon, M. Irani. Super-resolution from a single image[A]. In: Proceedings of the IEEE International Conference on Computer Vision[C], 2009:349-356.
    [135]W. T. Freeman, E. C. Pasztor, O. T. Carmichael. Learning Low-Level Vision[J]. International Journal of Computer Vision,2000,40(1):25-47.
    [136]S. Arya, D. M. Mount. Approximate nearest neighbor queries in fixed dimensions[A]. In:Proceedings of the annual ACM-SIAM Symposium on Discrete Algorithms, Society for Industrial and Applied Mathematics[C],1993: 271-280.
    [137]C. Y. Yang, J. B. Huang, M. H. Yang. Exploiting Self-similarities for Single Frame Super-resolution[A]. In:Proceedings of the Asian Conference on Computer Vision, Queenstown, NZ,2010:497-510.
    [138]J. Mairal, F. Bach, J. Ponce, et al. Non-local sparse models for image restoration[A]. In:Proceedings of the IEEE International Conference on Computer Vision[C],2009:2272-2279.
    [139]W. S. McCulloch, W. Pitts. A logical calculus of the ideas immanent in nervous activity[J]. The Bulletin of Mathematical Biophysics,1943,5(4):115-133.
    [140]D. O. Hebb. The Organization of Behavior:A Neuropsychological Theory[M]. New York:Wiley and Sons,1949.
    [141]F. Rosenblatt. The perceptron:A probabilistic model for information storage and organization in the brain[J]. Psychological Review,1958,65(6):386-408.
    [142]D. E. Rumelhart, J. L. McClelland, the PDP Research Group. Parallel Distributed Processing:Explorations in the Microstructure of Cognition. Volume 1:Foundations[M]. Cambridge, MA:MIT Press,1986.
    [143]J. L. McClelland, D. E. Rumelhart, the PDP Research Group. Parallel Distributed Processing:Explorations in the Microstructure of Cognition. Volume 2:Psychological and Biological Models[M]. Cambridge, MA:MIT Press,1986.
    [144]H. Han, S. B. Zhao, S. L. Peng. A New Super-resolution Algorithm for A Single Image[A]. In:Proceedings of the Academic Annual Conference and Symposium on Automation and IT Development Strategy of Institute of Automation (Chinese Academy of Sciences)[C], Beijing, CN,2003:631-643.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700