前向纠错技术在高速光纤通信中对改善信号传输性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文研究高速光纤通信系统中信号传输受偏振模色散(PMD)限制的情况下,由于PMD导致脉冲展宽,引起码间干扰,将严重影响信号的传输性能。通过使用前向纠错技术(FEC)来进行信道编码,在接收端译码,用适量的冗余比特来达到纠一定数目错误的目的,提高了信号的传输性能。并将FEC技术与单信道PMD补偿技术相结合,进行了数值模拟,和图形仿真,得到了很好的接收效果。另外对一些码型(如占空比为50%的)归零码(RZ)、载波抑制归零码(CSRZ)和不归零码(NRZ)分别进行了比较,获得了较好的方案。本论文的主要工作如下:
     (?)简明扼要的介绍了FEC技术的背景和各种编码技术的基本概念,详细说明了RS码的背景及算法。
     (?)回顾和总结了偏振模色散的基本概念、数值计算模型、统计分布情况和补偿方案。
     (?)在高速光纤通信系统受PMD限制的信道中传输信号时,观察加入FEC技术前后接收端接收到信号的变化,对信道的传输情况进行了仿真,讨论了FEC技术对于提高信号传输有效性的实际效果。通过作图比较了FEC技术对减小信号传输误码率的效果。
     (?)对占空比为50%的归零码(RZ)、载波抑制归零码(CSRZ)和不归零码(NRZ)的单信道PMD补偿情况进行了数值模拟,并通过眼图,DGD分别图对补偿效果进行了讨论。
     (?)将FEC技术和补偿技术相结合,通过将DGD与Q值曲线进行比对,讨论了FEC与补偿结合对于提高信道容限的作用,即验证了两种技术相结合对于提高信号传输性能的影响。
In high speed and polarization-mode dispersion(PMD) limited fiber optic communication systems,PMD will expanse the pulse , induce high bit error rate(BER) and terribly disturb the transmission property. In this dissertation, forward error correction(FEC) technique is used to combat the performance of PMD.By adding some redundant bits in transmission and decoding at the receiver, the BER will greatly reduced and the transmission property will enhanced a lot. At the same time,the single-channel PMD compensation technique is also added to the system, then a numerical simulation is listed to show the improvement of the transmission effect. In addition, the simulation based on PMD compensation of some formats:such as return zero format (RZ) with 50% duty cycle, carrier suppressed RZ format(CSRZ) and return to zero format(NRZ) in a single-channel system is given,and the greatest scheme can be received.The research works in the dissertation are summarized as follows:
     The basic concepts of FEC and different coding technique are introduced briefly,while the knowlodge of the RS is mainly discussed.
     The basic concepts of PMD, their numerical models used as emulation, the distribution of the first- and higher-order PMD and compensation schemes are reviewed and summarized compendiously.
     In PMD limited systems, the signal received with or without FEC are compared, and the tranmission simulation is given to show the effect of adding FEC to the systems.
     The simulation based on PMD compensation of some new-style formats such as return zero format (RZ) with 50% duty cycle respectively, carrier suppressed RZ format(CSRZ) and return to zero format(NRZ) in a single-channel system is given.
     Combine FEC and compensation technique in PMD limited systems to see how the combination can improve the PMD tolerance by see the relationship between the DGD and Q value,then
引文
[1] 张煦, OFC-2003关于传输系统的报道, 《光通信技术》, 2003年第6期, pp6-7.
    
    [2] M. I. Schwartz, W. A. Reenstra, J. H. Mullins, and J. S. Cook, Chicago lightwave communications project, Bell Sys. Tech. J., 1978, 57:1881-1888.
    [3] K.Fukuchi, T.Kasamatsu, et al., 10.92 Tbit/s (273×40 Gbit/s) triple-band/ultra-dense WDM optical repeated transmission experiment, OFC'2001, paper PD24, 2001.
    [4] Y.Frignac, G. Charlet, W.Idler, et al., Transmission of 256 wavelength-division and polarization-division-multiplexed channels at 42.7Gb/s (10.2Tb/s capacity) over 3×100km of TeraLightTM fiber, OFC'2002, paper FC5, 2002.
    
    [5] P.S.J. Russell, J.C.Knight, T.A.Birks et al, photonic crystal fibers, ECOC'97,1997, vol.1: 63-64
    [6] A.Cucinotta, F.Poli, S.Selleri, L.Vincetti, M. Zoboli, Amplification properties of Er/sup 3+/-doped photonic crystal fibers, IEEE J.Lightwave Technol., 2003, 21(3): 782-788
    [7] K.G. Hougaard, J. Broeng, A. Bjarklev, Low pump power photonic crystal fibre amplifiers,IEEE Electron. Lett., 2003, 39(7): 599-600
    [8] C.Peucheret, B.Zsigri, P.A.Andersen et al, 40 Gbit/s transmission over photonic crystal fibre using mid-span spectral inversion in highly nonlinear photonic crystal fibre, IEEE Electron.Lett., 2003, 39(12): 919-921
    [9] A.Peyrilloux, T.Chartier, A.Hideur et al, Theoretical and experimental study of the birefringence of a photonic crystal fiber, IEEE J. Lightwave Technol., 2003, 21(2): 536-539
    [10] B.Zsigri, C.Peucheret, M.D.Nielsen, P.Jeppesen, Transmission over 5.6 km large effective area and low-loss (1.7 dB/km) photonic crystal fibre, Electronics Lett., 2003, 39(10): 796-798
    
    [11] C.Peucheret, B.Zsigri, P.A.Andersen, K.S.Berg, A.Tersigni, Jeppesen, P., Hansen, K.P.,Nielsen, M.D., Transmission over photonic crystal fiber at 40 Gbit/s using midspan spectral inversion in a highly photonic crystal fiber, CLEO'03,2003,CThPDB4.
    
    [12] A.Ortigosa-Blanch, A.Diez, M. Delgado-Pinar, J.L.Cruz, M.V.Andres, Temperature independence of birefringence and group velocity dispersion in photonic crystal fibres, IEEE Electron. Lett., 2004, 40(21): 1327-1329.
    [13] M.Tanaka, S.Kawanishi, Fabrication of dispersion controlled and polarization maintaining photonic crystal fiber for high performance systems and devices, OFC2005, OWL3.
    [14] Ming-Yang Chen, Rong-Jin Yu, An-Ping Zhao, Confinement losses and optimization in rectangular-lattice photonic-crystal fibers, IEEE J. Lightwave Technol., 2005, 23(9):2707-2712.
    
    [15] T. Matsui, J. Zhou, K.Nakajima, I.Sankawa, Dispersion-Flattened Photonic Crystal Fiber With Large Effective Area and Low Confinement Loss, IEEE J.Lightwave Technol., 2005,23(12):4178-4183.
    [16] K. Saitoh, M. Koshiba, Numerical Modeling of Photonic Crystal Fibers, IEEE J.Lightwave Technol., 2005, 23(11): 3580-3590.
    [17] Sang-Yuep Kim, Sang-Hoon Lee, Sang-Soo Lee, Jae-Seung Lee, Upgrading WDM networks using ultradense WDM channel groups, IEEE Photon. Technol. Lett., 2004, 16(8): 1966-1968
    [18] Y.Yang, J. Wang, Cost-effective designs of WDM optical interconnects, IEEE Transactions on Parallel and Distributed Systems, 2005,16(1): 51-66.
    [19] Y.Suzaki, H.Yasaka, H.Mawatari, K.Yoshino et al, Monolithically integrated eight-channel WDM modulator with narrow channel spacing and high throughput, IEEE Journal of Selected Topics in Quantum Electronics, 2005, 11(1): 43-49.
    [20] Yoon-Suk Hurh, Gyo-Sun Hwang, Jin-Young Jeon et al, 1-Tb/s (100/spl times/12.4 gb/s) transmission of 12.5-GHz-spaced ultradense WDM channels over a standard single-mode fiber of 1200 km, IEEE Photon. Technol.Lett., 2005,17(3): 696-698.
    [21] M.Scheutzow, P. Seeling, M.Maier, M Reisslein., Multicast capacity of packet-switched ring WDM networks, IEEE Proceedings of 24th Annual Joint Conference of the IEEE Computer and Communications Societies, 2005, 1(13-17): 706-717.
    [22] N. Ghani, S. Dixit, Ti-Shiang Wang, On IP-over-WDM integration, IEEE Communications Magazine, 2000, 38(3): 72-84.
    [23] L.Sahasrabuddhe, S.Ramamurthy, B.Mukherjee, Fault management in IP-over-WDM networks: WDM protection versus IP restoration, IEEE Journal on Selected Areas in Communications, 2002, 20(1):21-33.
    [24] G.H. Sasaki, Ching-Fong Su, "The interface between IP and WDM and its effect on the cost of survivability, IEEE Communications Magazine, 2003, 41(1): 74-79.
    [25] A. Brzezinski, E. Modiano, Dynamic reconfiguration and routing algorithms for IP-over-WDM networks with stochastic traffic, IEEE J.Lightwave Technol., 2005, 23(10):3188-3205.
    [26] M. Karasek, J. Kanka, J. Radii, Analysis of channel addition/removal response in all-optical gain-clamped cascade of lumped Raman fiber amplifiers, IEEE J. Lightwave Technol., 2004,22(10): 2271-2278.
    [27] M.Bottacini, F.Poli, A.Cucinotta, S.Selleri, Modeling of photonic crystal fiber Raman amplifiers, IEEE J. Lightwave Technol., 2004,22(7): 1707-1713.
    [28] H.H. Lee, J.M. Oh, D.Lee et al, A variable-gain optical amplifier for metro WDM networks with mixed span losses: a gain-clamped semiconductor optical amplifier combined with a Raman fiber amplifier, IEEE Photon.Technol. Lett., 2005, 17(6): 1301-1303.
    [29] M.Karasek, J.Kanka, G.R. Khan, J. Radii, Design of all-optical gain-clamped lumped Raman fibre amplifier for optimal dynamic performance, IEE Proceedings of Optoelectronics, 2005,152(4): 223-229.
    [30] Xiang Zhou, M.Feuer, M. Birk, Submicrosecond transient control for a forward-pumped Raman fiber amplifier, IEEE Photon.Technol. Lett., 2005, 17(10): 2059-2061.
    [31] C.A. Codemard, J.K. Sahu, J. Nilsson, Cladding-pumped Raman fiber amplifier for high-gain,high-energy single-stage amplification, OFC2005, OTuF5.
    [32] H.H.Lee, J.M.Oh, D. Lee, J.S.Han, H.S.Chung, K.Kim, A variable gain optical amplifier for metro WDM networks with mixed span losses: a gain-clamped semiconductor optical amplifier combined with a raman fiber amplifier, OFC2005, OME44:130-132.
    [33] Yoshiaki Kisaka, Masahito Tomizawa, Shoichiro Kuwahara et al, First- and higher-order PMD tolerance of carrier-suppressed return-to-zero format with forward error correction, ECOC'01, We.P.30: 438-439.
    [34] David Sandel, Frank Wust, Vitali Mirvoda, and Reinhold Noe, Standard (NRZ 1 40 Gb/s, 210 km) and Polarization Multiplex (CS-RZ, 2 40 Gb/s, 212 km) Transmissions With PMD Compensation, IEEE Photon. Technol.Lett., 2002, 14(8): 1181-1183.
    [35] J. Yan, M. Chen, S. Xie and B. Zhou, Performance evaluation of standard FEC in 40 Gbit/s systems with high PMD and prechirped CS-RZ modulation format, IEE Proc. Optoelectron.,2004,151(1):37-40.
    [36] Y. Su, L. Moller, R. Ryf et al, A 160-gb/s group-alternating-phase CSRZ format, IEEE Photon. Technol. Lett., 2005,17(10): 2233-2235.
    [37] A. Chowdhury, G Raybon, R.-J. Essiambre et al, WDM CSRZ 40 Gbit/s pseudo-linear transmission over 4800 km using optical phase conjugation, Electron. Lett., 2005, 41(3):151-152.
    [38] J. Leibrich, C. Wree, W. Rosenkranz, CS-RZ-DPSK for suppression of XPM on dispersion-managed longhaul optical WDM transmission on standard singlemode fiber, IEEE Photon. Technol. Lett., Vol. 14, No. 2, ppl55-157, 2002.
    [39] Z. Pan, Y.Wang, Y.Song et al, Monitoring chromatic dispersion and PMD impairments in optical differential phase-shift-keyed(DPSK) systems, OFC2003, paper WPl,402-403.
    [40] Xiang Liu,Chongjin Xie, and Adriaan J. van Wijngaarden, Multichannel PMD Mitigation and Outage Reduction Through FEC With Sub-Burst-Error-Correction Period PMD Scrambling, IEEE Photon. Technol.Lett., 2004,16(9): 2183-2185.
    [41] Hosung Yoon, Na Young Kim, and Namkyoo Park, Study on the PMD Impairment of Optical Multilevel DPSK Systems and its Mitigation Methods, IEEE Photon.Technol. Lett., 2005, 17(12): 2577-2579.
    [42] Johannes K. Fischer, Sebastian Randel, and Klaus Peterman, PMD Outage Probabilities of Optical Fiber Transmission Systems Employing Bit-to-Bit Alternate Polarization, IEEE Photon.Technol. Lett., 2005, 17(8): 1647-1649.
    [43] G. J. Foschini, C. D. Poole, Statistical theory of polarization dispersion in single mode fibers,J. Lightwave Technol., 1991,9(11):1439-1456.
    [44] R. M. Jopson, L. E. Nelson, H. Kogelnik, et al., Probability densities of depolarization associated with second-order pmd in optical fibers, OFC'2001, ThA4-1
    [45] G. J. Foschini, L. E. Nelson, R. M. Jopson, et al., Probability densities of second order polarization mode dispersion including polarization dependent chromatic fiber dispersion,IEEE Photon. Technol. Lett., 2000, 12(3):293-295.
    [46] G. Shtengel, E. Ibragimov, M. Rivera et al, Statistical dependence between first and second-order PMD, OFC'2001, MO3-1
    [47] N. Gisin, J. P. Pellaus. Polarization mode dispersion: Time versus frequency domains, Opt.Commun.1992, 89, pp316-323
    [48] C. D. Poole, R. E. Wagner, Phenomenological approach to polarization dispersion in long single-mode fibers, Electron. Lett., 1986,22(19):1029-1030.
    
    [49] N. Gisin, Statistics of polarization dependent losses, Opt. Commun.1995, 114, pp399-405
    [50] A. El Amari, N. Gisin, B. Perny, et al, Statistical prediction and experimental verification of concatenations of fiber optic components with polarization dependent loss, J. Lightwave Technol., 1998, 16(3):332-339.
    [51] L. Chen, J. Cameron and X. Bao, Statistics of polarization mode dispersion in presence of the polarization dependent loss in single mode fibers", Opt. Commun.1999, 169, pp69-73
    [52] B. L. Heffner, Automated measurement of polarization mode dispersion using Jones matrix eigenanalysis, IEEE Photo. Tech. Lett., 1992, 4:1066-1069.
    [53] K. Mochizuki, Y. Namihira, H. Wakabayashi, Polarisation mode dispersion measurements in long single mode fibres, Electron. Lett., 1981, 17:153-154.
    [54] C. D. Poole, D. L. Favin, Polarization mode dispersion measurements based on transmission spectra through a polarizer, J.Lightwave.Technol., 1994,12:917-929.
    [55] S. G. Evangelides, L. F. Mollenauer, J. P. Gordon et al., Polarization Multiplexing with soliton,J.Lightwave.Technol., 1992,10:28-35.
    [56] D. Andresciani, F. Curti, F. Matera, B. Daino, Measurement of the group delay difference between the principle states of polarization on a low birefringence terrestrial fiber cable, Opt. Lett., 1987, 12: 844-846.
    [57] H.F.Haunstein and H.M.Kallert, Influence of PMD on the performance of optical transmission systems in the presence of PDL, OFC2001, 3: 17-22. paper WT4.
    [58] W. Shieh and S. D. Dods, Robustness of Polarization-Mode-Dispersion Compensation in the Presence of Polarization-Dependent Loss, IEEE, Photon. Technol. Lett., 2005,17(3):573-575.
    [59] R. Khosravani, Y. Xie, L.-S. Yan et al, Limitations to first-order PMD compensation in WDM systems due to XPM-induced PSP changes, OFC2001, WAA5-1.
    [60] Z. Pan, Q. Yu, and A.E. Willner, Fast XPM-induced polarization-state fluctuations in WDM systems and their mitigation, OFC2002, ThA7.
    [61] H. Sunnerud, J. Hansryd, P. A. Andrekson and M. Karlsson, Impact of PMD on FWM crosstalk in WDM Systems, OFC2000, ThB5-l.
    [62] R. E. Schuh, Xuekang Shan, and A. S. Siddiqui, Polarization mode dispersion in spun fibers with different linear birefringence and spinning parameters, J. Lightwave Technol., 1998, 16(9): 1583-1588.
    [63] T.Ono,Y.Yano,L.D.Garett, J.A.Nagel et al, 10Gb/s PMD compensation field experiment over 452 km using principal state transmission method, in Proc Conference on Optical Fiber communication ,2000. post deadline paper,PD44.
    [64] Xiaoguang Zhang, Yuan Zheng, Yu Shen, Jianzhong Zhang, and Bojun Yang, Particle Swarm Optimization Used as a Control Algorithm for Adaptive PMD Compensation, IEEE Photon.Technol.Lett., 2005,17(1): 85-87.
    [65] Sven Kieckbusch, Sebastian Ferber, Harald Rosenfeldt et al, Automatic PMD Compensator in a 160-Gb/s OTDM Transmission Over Deployed Fiber Using RZ-DPSK Modulation Format, IEEE, J. Lightwave Technol., 2005, 23(1): 165-171.
    [66] H.Sunnerud, J.Li, C.Xie and P.A.Andrekson, Experimental quantification of soliton robustness to polarization mode dispersion in conventional and dispersion-managed systems,J.Lightwave Technol., 2001,19:1453-1461.
    [67] Nelson L.E., Karlsson, M., Chowdhury D.Q., Guest editorial special issue on polarization-mode dispersion, J. Lightwave Technol., 2004, 22(4):951-952.
    [68] C.D. Poole, R.E.Wagner, Phenomenological approach to polarization dispersion in long single-mode fibers, Electron.Lett., 1986, 22(19): 1029-1030.
    [69] D. Chowdhury, PMD induced system impairments in long-haul optical communication system, LEOS'99: 147-148.
    [70] D. Chowdhury, Polarization mode dispersion in optical communication systems,OFC2001,MD1-1.
    [71]Chongjin Xie,Mollenauer,L.F.,Moiler,L.,Pulse distortion induced by polarization-mode dispersion and polarization-dependent loss in lightwave transmission systems,IEEE Photonics Technology Letters,2003,15(8):1073-1075.
    [72]S.Z.Pilinsky,Z.Sipus,L.Sumichrast,The influence of polarization mode dispersion on high bit-rate optical transmission systems,IEEE Proceedings of 2004 6th International Conference on Transparent Optical Networks(ICTON),2004.Tu.A1.6,Vol 1:195-201.
    [73]Guodong Zhang,J.T.Stango,Xiupu Zhang,Chongjin Xie,Impact of fiber nonlinearity on PMD penalty in DWDM transmission systems,IEEE Photonics Technology Letters,2005,17(2):501-503.
    [74]A.O.Lima,I.T.Lima,Jr.,T.Adali,C.R.Menyuk,A novel polarization diversity receiver for PMD mitigation,IEEE Photonics Technology Letters,2002,14(4):465-467.
    [75]R.Noe,D.Sandel,V.Mirvoda,PMD in high-bit-rate transmission and means for its mitigation",IEEE Selected Topics in Quantum Electronics,2004,10(2):341-355.
    [76]Sangin Kim,Optimal choice of compensation PMD vector in feedforward-type second-order PMD compensation,IEEE J.Lightwave Technology,2004,22(8):1872-1876.
    [77]Xiang Liu,Chongjin Xie,van Wijngaarden A.J.,Multichannel PMD mitigation and outage reduction through FEC with sub-burst-error-correction period PMD scrambling,IEEE Photonics Technology Letters,2004,16(9):2183-2185.
    [78]X.Liu,C.R.Giles,X.Wei et al,Demonstration of broad-band PMD mitigation in the presence of PDL through distributed fast polarization scrambling and forward-error correction,IEEE Photonics Technology Letters,2005,17(5):1109-1111.
    [79]张晓光,光纤偏振模色散自适应补偿系统的研究,[学位论文],北京,北京邮电大学,2004年
    [80]龚岩栋,关雅莉,简水生,光纤偏振模色散的测量,《光学学报》,Vol.17,1997,pp.731-736
    [81]刘秀敏,李朝阳,李荣华,杨伯君,张晓光,偏分复用孤子测量差分群时延,《半导体光电》,Vol.22,No.5,2001,PP.331-334
    [82]刘秀敏,李朝阳,李荣华,杨伯君,张晓光,用Sagnac干涉法和固定分析法测量光纤偏振模色散,《中国激光》,Vol.A29,No.5,2002,pp.455-458
    [83]夏月辉,黄永清,张霞,陈雪,任晓敏,一种测量偏振模色散的新方法,《光学学报》,Vol.22,No.11,2002,pp.1350-1353
    [84]刘开贤,张霞,赵京玺,黄永清,张晓光,任晓敏,田庞加莱球法测量二阶偏振模色散,《光学学报》,Vol.24,No.5,2004,pp.583-586
    [85]刘剑飞,于晋龙,王剑,胡浩,杨恩泽,刘仲恒,10Gbit/s的光纤通信系统中一阶偏振模色散自动补偿技术的研究,《中国激光》,Vol.30,No.4,2003,PP.349-352
    [86]Xiaoguang Zhang,Li Yu,Guangtao Zhou,Yu Shen,Yuan Zheng,Chaoyang Li,Yumin Liu,Lin Chen,Bojun Yang,Adaptive PMD compensation in 10-Gb/s RZ optical communication system,Chin.Opt.Lett.2003,1(8):447-450.
    [87]Xiaoguang Zhang,Li Yu,Yuan Zhang,Yu Shen,Guangtao Zhou,Lin Chen,Lixia Xi,Tiecheng Yuan,Jianzhong Zhang,and Bojun Yang,Two-stage adaptive PMD compensation experiment for 10-Gb/s optical communication system,Chin.Opt.Lett.,2003,1(11):630-633.
    [88]Xiaoguang Zhang,Li Yu,Yuan Zhang,Yu Shen,Guangtao Zhou,Lin Chen,Lixia Xi,Tiecheng Yuan,Jianzhong Zhang,and Bojun Yang,Two-stage adaptive PMD compensation in a 10Gbit/s optical communication system using particle swarm optimization algorithm,Opt.Commun.,2004,231:233-242.
    [89]Yuan Zheng,Xiaoguang Zhang,Guangtao Zhang,Yu Shen,Lin Chen,Li Yu,Lixia Xi,and Bojun Yang,Automatic PMD compensation experiment with particle swarm optimization and adaptive dithering algorithms for 10-Gb/s NRZ and RZ formats,IEEE Journal of Quantum Electronics,2004,40(4):427-435.
    [90]Lixia Xi,Xiaoguang Zhang,Li Yu,Guangtao Zhou,Hongimng Zhang,Na Zhang,Jianzhong Zhang,Bin Wu,Tiecheng Yuan,Minyu Yao,and Bojun Yang,An experiment of automatic PMD compensation in 40-Gb/s RZ optical communication system,Chinese Optics Letters,2004,2(5):262-264.
    [91]Xiaoguang Zhang,Li Yu,Yuan Zheng,Yu Shen,Guangtao Zhou,and Bojun Yang,Adaptive PMD compensation using PSO algorithm,OFC'2004,Los Angeles,CA,Paper ThF1,2004.
    [92]Xiaoguang Zhang,Lixia Xi,Li Yu,Guangtao Zhou,Jianzhong Zhang,Na Zhang,Bin Wu,Tiecheng Yuan,Lin Chen,Hongming Zhang,Shuo Chen,Minyu Yao,and Bojun Yang,Two-stage adaptive PMD compensation in 40-Gb/s OTDM optical communication system,Chin.Opt.Lett.,2004,2(6):316-319.
    [93]姚敏玉,徐千帆,黄开平,“利用挤压光纤双折射效应的自适应偏振控制器,” 《高技术通讯》,Vol.11,No.2,45-47,2001
    [94]Chang-Xi Yang,Shi-Guang Li,Hou-Xun Miao et al,Compact first-order polarization mode dispersion compensator based on birefringent crystals,Chin.Phys.Lett.,2004,21(2):326-328.
    [95]Andrew Schmitt,Improving optical networking with forward error correction,Electronic Engineering 2000,3:87-90.
    [96]ZaiChen Zhang and Li V O K,Layered multicast with forward error correction(FEC)for internet video,GLOBECOM 2002,2:1465-1469.
    [97]lshizaki R and Hattori T,Forward link capacity evaluation for W-CDMA with amplitude limiter and forward error correction,VTC 2001,1:439-443.
    [98]Linder H,Miloucheva I and Clausen H D,A forward error correction based multicast transport protocol for multimedia applications in satellite environments, IPCCC 1997, 419-425.
    [99] Wayne D Grover, Forward Error Correction in Dispersion-Limited Lightwave Systems, J. Lightwave Technol. 1988, 6 (5): 643-653.
    
    [100] Leilei Song, Meng Lin Yu and Shaffer M S, 10- and 40-Gb/s forward error correction devices for optical communications, J. Solid-State Circuits 2002, 37(11): 1565-1573.
    [1]陈宗杰,左孝彪,纠错编码技术,人民邮电出版社,1987。
    [2]刘玉君,信道编码,河南科学技术出版社,1992。
    [3]王新梅,纠错码与差错控制,人民邮电出版社,1989。
    [4]王新梅,肖国镇,纠错码—原理与方法,西安电子科技大学出版社,2001。
    [5]ITU-T Recommendation G.975,Forward error correction for submarine systems,1996.
    [6]Berrou C,Glavieux A and Thitimajshima P,Near Shannon Limit error-correcting coding and decoding:Turbo-codes,ICC 1993,1064-1070.
    [7]Saband O A and Lemarie V,Block turbo code performance for long-haul DWDM optical transmission systems,OFC 2001,3:280-282.
    [8]Akita M,Fujita H,Mizuochi T,et al.,Third generation FEC employing Turbo product code for long-haul DWDM transmission systems.OFC 2002,WP:289-290.
    [9]Vasic B and Djordjevic I B,A forward error correction scheme for ultra long haul optical transmission systems based on low-density parity-check codes,ICC 2003,2:1489-1493.
    [10]Djordjevic Ivan B and Vasic B,Projective geometry LDPC codes for ultralong-haul WDM high-speed transmission,IEEE Photon.Technol.Lett.2003,15(5):784-786.
    [11]Mackkay D J C and Davey M,Evaluation of Gallager codes for short block length and high rate applications,IMA Workshop on Codes,Systems and Graphical Models,1999.
    [12]Agata A,Tanaka K and Edagawa N,Study on the optimum Reed-Solomon-based FEC codes for 40-Gb/s-based ultralong-distance WDM transmission,J.Lighwave Thechnol.2002,20(12):2189-2195.
    [13]Tezuka H,Matsuoka I,et al.,2.677Gbit/s throughput forward error correction LSI for long-haul optical transmission systems,ECOC 1998,561-562.
    [14]Masahito Tomizawa,Yoshiaki Yamabayashi,et al.,Forward error correcting codes in synchronous fiber optic transmission systems,J.Lightwave Technol.1997,15(1):43-51.
    [15]OmarA S,FEC techniques in submarine transmission systems,OFC 2001,2:TuF.
    [16]Xiang Liu,Zheng Zheng,et al.,Enhanced FEC OSNR gains in dispersion-uncompensated 10.7-Gb/s duobinary transmission over 200-km SSMF,IEEE Photon.Technol.Lett.2003,15(8):1162-1164.
    [17]Yamamoto S,Takahira H and Tanaka M,5Gbit/s optical transmission terminal equipment using forward error correcting code and optical amplifier,Electron.Lett.1994,30(3):254-255.
    [18]Saint-Dizier E,Brandon E,et al.,2.5Gbit/s unrepeatered transmission with directly modulated laser and without dispersion compensating fiber over 385 km(412km with FEC)of pure silica core fiber,Electron.Lett.1996,32(15):1383-1384.
    [19]Sun Y,Sulhoff J W,Srivastava A K,et al.,A gain-flattened ultra wide band EDFA for high capacity WDM optical communication systems, ECOC 1998, 53-54.
    [20] Wysocki P F, Judikins J B, et al., Broad-band erbium-doped fiber amplifier flattened beyond 40nm using long-period grating fiber, IEEE Photon. Technol. Lett. 1997, 9(10): 1343-1345.
    [21] Kidorf H, Ramanujam N, Hayee I, et al., Performance improvement in high capacity, ultra-long distance, WDM systems using forward error correction codes, OFC 2000, 3: 274-276.
    [22] Benyuan Zhu, Knudsen S N, et al., 80×10.664 Gbit/s wavelength division multiplexed transmission over 5200 km of fiber with 100 km amplified spans and 50GHz channel spacing is demonstrated. Error-free operation of all 80 channels is achieved by using dispersion-managed fiber spans, Electron. Lett. 2001, 37(24): 1467-1469.
    [23] Taga H, Yamauchi H, et al., Performance improvement of highly nonlinear long-distance optical fiber transmission system using novel high gain forward error correcting code, OFC 2001, 2: TuF3.
    [24] Tadao Kasami and Shu Lin, On the probability of undetected error for the maximum distance separable codes, IEEE Trans. Commun. 1984, 32(9): 998-1006.
    [25] Robert J. M and Swanson L, On the decoder error probability for Reed-Solomon codes, IEEE Trans. on Inform. Theory 1986, 32(5): 701-703.
    [26] Gulliver T A, Jorgenson M and Moreland W K, Performance of Reed-Solomon codes with dependent symbol errors, IEEE Proc.-Commun. 1996,143(3): 117-121.
    [27] Abdel-Ghani and Daraiseh A., Advances in the performance of Reed-Solomon codes, IEEE Trans. Commun. 1999, 47(1): 1-5.
    [28] Torrieri Don, The information-bit error rate for block codes, IEEE Trans. Commun. 1984, 32(4): 474-476.
    [29] Torrieri Don, Information-bit, information-symbol, and decoded-symbol error rates for linear block codes, IEEE Trans. Commun. 1988, 36(5): 613-617.
    [30] Stephen B. Wicker, Reed-Solomon error control coding for Rayleigh fading channels with feedback, IEEE Trans. Vehicular Technol. 1992,41(2): 124-133.
    [31] William J. Ebel and William H. Tranter, The performance of Reed-Solomon codes on a bursty-noise channel, IEEE Trans. Commun. 1995, 43(2-4): 298-306.
    [1]王延恒,光纤通信技术基础,天津大学出版社,1990,pp41-52.
    [2]M.C.de Lignie,H.G.J.Nagel,Large polarization mode dispersion in fiber optic cables,IEEE J.Lightwave Technol.,1994,12:1325-1329.
    [3]S.Grindstaff,J.Hill,O.Daneshvar,Extrinsic stress effects on polarization mode dispersion in optical fiber cables,IWCS'42,1993,pp647-653.
    [4]A.M.Vengsarkar,A.H.Moesle,L.G.Cohen et al.,Polarization mode dispersion in dispersion-shifted fibers:An exact analysis,Opt.Lett.,1993,18:1412-1414.
    [5]A.Galtarossa,G.Gianello,C.G.Someda,Stress investigation in optical fiber ribbon cable by means of polarization sensitive technique,IEEE Photon.Technol.Lett.,1994,5:1232-1234.
    [6]R.E.Schuh,E.S.R.Sikora,N.G.Walker et al.,Theoretical analysis measurement of effects on polarization mode dispersion in optical fiber cables,IWCS'42,1993:647-653.
    [7]L B.Jeunhomme著,周海溢译,单模纤维光学原理与应用,广西师范大学出版社,1988,pp88-93.
    [8]T.Sekito,Y.Suetsugu,Bending induced PMD with random mode coupling,IWCS'43,1994.
    [9]C.D.Poole,Statistical treatment of polarization dispersion in single-mode fiber,Opt.Lett.,1988,13(8):687-689.
    [10]G.J.Foschini,C.D.Poole,Statistical theory of polarization dispersion in single mode fibers,IEEE J.Lightwave Technol.1991,9(11):1439-1456.
    [11]L.Gleeson,E.Sikora and M.J.O'Mahoney,Experimental and numerical investigation into the penalties induced by second-order polarization mode dispersion at 10Gb/s,Proc.ECOC'97,pp.15-18.
    [12]H.Bulow,System outage probability due to first-and second-order PMD,IEEE Photon.Technol.Lett.1998,23(9):696-698.
    [13]J.P.Gordon and H.Kogelnik,PMD fundamentals:Polarization mode dispersion in optical fibers,Proc.Nat.Acad.Sci.2000,97:4541-4550.
    [14]F.Curti,B.Daino,G.De Marchis,and F.Matera,Staticstical treatment of the evolution of the principal states of polarization in single-mode fibers,IEEE,J.Lightwave Technol.1990,8(8):1162-1166.
    [15]F.Bruyere,Impact of first- and second-order PMD in optical digital transmission systems,Optic.Fiber Technol.,1996,2:269-280.
    [16]D.Penninckx and V.Morenas,Jones matrix of polarization mode dispersion,Opt.Lett.,1999,24(13):875-877.
    [17] A. Eyal, W.K. Marshall, M.Tur and A.Yariv, Representation of second-order polarization mode dispersion, Electron.Lett., 1999, 35(19):1658-1659.
    [18] H. Kogelnik, L.E.Nelson, J.P.Gordon and R.M.Jopson, Jones matrix for second-order polarization mode dispersion, Opt.Lett., 2000, 25(1):19-21.
    [19] C. D. Poole, J. H.Winters, A.Nagel, Dynamical equation for polarization dispersion, Optics Letters,1987,16(6):372-374.
    [20] W. Weiershausen, R. Leppla, F.Kuppers, H.Scholl, Polarization-mode dispersion in fiber transmission theretical approach,impact on system and suppression of signal degradation effects, ECOC'99,1999,2:30-133.
    [21] A. O. Dal Forno, A.Paradisi, R.Passy, von der Weid. Experimental and theoretical modeling of polarization-mode dispersion in single-mode fiber, IEEE Photonics Technology Letters,2000, 12(3): 296-298.
    [22] D.S. Waddy, Liang Chen, Xiaoyi Bao. Thoretical and experimental study of the dynamics of polarization-mode dispersion, IEEE Photonics Technology Letters, 2002,14(4):468-470.
    [23] R.D. Desbruslais, P.R. Morkel, Simulation of polarization mode dispersion and its effects in long-haul optically amplified lightwave system, IEE Colloquium on International Transmission System,1994:6/1-6/6.
    [24] O. Leminger, R. Leppla, Statistical modeling of a higher order PMD emulator, ECOC'01,2001,3:344-345.
    [25] A. Orlandini, L. Vincetti, A simple and useful model for Jones matrix to evaluate higher order polarization-mode dispersion effects, IEEE Photonics Technology Letters, 2001,13(11):1176-1178.
    [26] E. Forestieri, L. Vincetti. Extract evalution of the Jones matrix of a fiber in the presence of polarization mode dispersion of any order, Journal of Lightwave Technology,2001,19(12):1898-1909.
    [27] A. Orlandini, L. Vincetti., Jones transfer matrix for polarization mode dispersion fibers,LEOS 2000,1:218-219.
    [28] H. Kogelnik and R.M. Jopson, Polarization Mode Dispersion, in Optical Telecommunications IVB.I.P.Kaminow and T.Li, eds, Academic Press, San Diego, Chapter 15,2002.
    [29] G.J. Foschini, L.E. Nelson, R.M. Jopson et al, Probability densities of second-order polarization mode dispersion including polarization dependent chromatic fiber dispersion, IEEE Photonics Technology Letters, 2000, 12 (3): 293-295.
    [30] R. E. Schuh, Xuekang Shan, and A. S. Siddiqui, Polarization mode dispersion in spun fibers with different linear birefringence and spinning parameters, J. Lightwave Technol., 1998, 16(9): 1583-1588.
    [31] R. Noe, D. Sandel, M. Yoshida-Dierolf, S. Hinz, V. Mirvoda, A.Schopflin, C. Glingener, E. Gottwald, C. Scheerer, G. Fisher, T.Weyrauch, and W. Haase, Polarization mode dispersion compensation at 10, 20, and 40 Gbit/s with various optical equalizers, J. Lightwave Technol.,1999, 17(9): 1602-1616.
    [32] B. W. Hakki, Polarization mode dispersion compensation by phase diversity detection, IEEE Photon. Technol. Lett., 1997, 9: 121-123.
    [33] Na Young Kim, Jaehyoung Park, Hyunho Kim, and Namkyoo Park, Second order PMD compensation using correlation factor between degree of polarization and depolarization rate,OFC2002, WI6: 239-241.
    [34] L. Moller, Filter synthesis for broad-band PMD compensation in WDM systems, IEEE Photon. Technol. Lett., 2000, v12, n9, pp1258-1260.
    [35] R. Khosravani, S. A. Havstad, Y. W. Song et al, Polarization mode dispersion compensation in WDM systems, IEEE Photon. Technol. Lett., 2001, 13(12): 1370-1372.
    [36] H. Bulow, PMD mitigation techniques and their effectiveness in installed fiber, OFC2000,ThH1.
    [37] H. Y. Pua, K. Peddanarappagari, B. Y. Zhu, et. al, An adaptive first-order polarization mode dispesion compensation system aided by polarization scrambling: theory and demonstration, J.Lightwave TechnoL, 2000,18(6): 832-841.
    [38] H. Sunnerud, M. Karlsson and P. A. Andrekson, Analytical theory for PMD-compensation,IEEE Photon. Technol. Lett. 2000,12(1): 50-52.
    [39] Y. Namihira, J. Maeda, Polarization mode dispersion measurements in optical fibers, Symp.Optical Fiber Measurements, NIST, Boulder, Co., 1992, pp145-150.
    [40] M. Karlsson, C. Xie, H. Sunnerud and P. A. Andrekson, Higher order polarization mode dispersion compensator with three degrees of freedom, OFC2001, MO1-1.
    
    [41] D. Wang and C. R. Menyuk, Calculation of Penalties Due to Polarization Effects in a Long-Haul WDM System Using a Stokes Parameter Model, J. Lightwave Technol., 2001,19(4): 487-494.
    [42] Q. Yu, L. S. Yan, Y. Xie, et al, Higher order polarization mode dispersion compensation using a fixed time delay followed by a variable time delay, IEEE Photon. Technol. Lett., 2001,13(8):863-865.
    [43] X. M. Liu, B. J. Yang and X. G. Zhang, Polarization mode dispersion in WDM systems,Optical and Quantum Electronics, 2002, 34: 677-685.
    [44] Na Young Kim, Jaehyoung Park, Hyunho Kim, and Namkyoo Park, Second order PMD compensation using correlation factor between degree of polarization and depolarization rate,OFC2002,WI6.
    [45]N.Kikuchi,Analysis of signal degree of polarization degradation used control signal for optical polarization mode dispersion compensation,J.Lightwave Technol.,2001,19:480-486.
    [46]张晓光,《光纤偏振模色散自适应补偿系统的研究》,[学位论文],北京,北京邮电大学,2004年
    [47]C.D.Poole and R.E.Wagner,Phenomenological approach to polarization dispersion in long single-mode fibers,Electron.Lett.,1986,22(19):1029-1030
    [48]H.C.Lefevre,Single mode fiber fractional wave devices and polarization controllers,Electron.Lett.,1980,16(20):778-780.
    [49]E.R.Lyons and H.P.Lee,An efficient electrically tunable all-fiber polarization controller,OFC2001,WJ2-1
    [50]T.Chiba,Y.Ohtera and S.Kawakami,Polarization stabilizer using liquid crystal rotatable waveplates,J.Lightwave Technol.,1999,17(5):885-890.
    [51]N.G.Walker,G.R.Walker,J.Davidson,D.C.Cunningham,A.R.Beaumont and R.C.Booth,Lithium niobate waveguide polarization convertor,Electron.Lett.,1988,24(2):103-105.
    [52]N.G.Walker and G.R.Walker,Polarization control for coherent communications,J.Lightwave Technol.,1990,8(3):438-458.
    [1]E.Desurvire and J.R.Simpson,"Amplification of spontaneous emission single mode fibers",J.Lightwave Technol.,1989,v7,n5,pp835-845
    [2]C.R.Giles and E.Desurvire,"Modeling Erbium-doped fiber amplifiers",J.Lightwave Technol.,1991,v9,n2,pp271-280
    [3]Mohs G,Furst C,Geiger H,et al.,Advantages of nonlinear RZ over NRZ on 10 Gb/s single-span links,OFC 2000,4:35-37.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700