食管上皮癌变不同时期差异表达基因与基因表达概况的分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Differential Expressed Genes and Gene Expression Profiles in Different Stages of Carcinogenesis of Esophageal Mucosa
  • 作者:周津
  • 论文级别:博士
  • 学科专业名称:细胞生物学
  • 学位年度:2000
  • 导师:吴旻
  • 学科代码:071009
  • 学位授予单位:中国协和医科大学
摘要
为了解食管癌发生的分子遗传学机理,分离食管癌中差异表达的基因,本研究应用抑制消减杂交并与PCR合成双链cDNA、反Northern筛选SSH克隆相结合,自微克级总RNA中分离出多个食管癌中差异表达的基因,其中表达明显下调的Lipocortin I、Cystatin A、Cystatin B、Cytokeratin 13等可能与食管癌的去分化、恶性增殖转化有关。应用RACE等方法,获得了一个全长866bp的新基因,命名为NMES1(Normal mucosa of esophagus specific 1),编码一个含83个氨基酸的蛋白质。Northern及RT-PCR分析显示该基因在食管癌中表达明显下调,应用RH定位的方法,NMES1定位于15q21.1。蛋白质序列同源分析显示可能与NADH:泛醌氧化还原酶MLRQ亚基(CI-MLRQ)功能相关,但不属于氧化还原呼吸链的组分,以NMES1转染人食管癌细胞系9706,可导致细胞生长减缓,显示该基因可能在食管、胃、小肠、结肠等消化道粘膜具有特殊的功能,且与食管癌的发生发展有关。
     为全面了解癌与癌旁组织以及从正常食管粘膜、癌变过程中的各个阶段到食管癌发生基因表达谱的改变,应用近年来发展的微阵列技术,分析和比较了588个肿瘤相关基因在食管癌和对应癌旁组织,以及在正常成人食管粘膜、基底细胞增生Ⅱ级、重度不典型增生、原位癌、早期侵润癌组织中的表达状况,结果发现从正常食管粘膜发展成食管癌的各个阶段都有上百个基因表达发生变化,而且基因表达谱在癌变过程中随着细胞表型的演变而变化。这些基因及其在一定时期、一定组织中的表达变化组成了癌与癌旁组织,及各
In an effort to isolate genes with different expression level in esophageal cancer, we performed suppression subtractive hybridization in combination with PCR-based cDNA synthesis and reverse Northern on the cancer tissues and matched adjacent normal mucosa using 5 microgram of total RNA as starting material. Among the differentially expressed genes identified, Lipocortin I、 Cystatin A、 Cystatin B、 Cytokeratin 13 are down regulated substantially. Also a cDNA ful-length of 866bp corresponding to a novel gene has been obtained by RACE, expression of which was observed in 11/12 adjacent normal esophageal mucosa, while the matched cancer tissues showed a drastic reduction or a complete lack of its expression. The corresponding gene is designated NMES1 (normal mucosa of esophagus specific 1). Sequence analysis of its full-length cDNA revealed a novel gene with a predicted polypeptide of 9 kD and sharing a 31 ~34% similarity with the NADH.ubiquinone oxidoreductase MLRQ subunit in mouse, bovine and human. Northern blot showed that NMES1 distributed mainly in alimentary tract, such as esophagus, stomach, small intestine, and colon. Expression in other tissues tested was only observed in placenta and lung, which is quite different from that of the members of mitochondrial respiratory chain which are always present in all tissues, with higher expression level in heart, skeletal
引文
1 李连弟,张思维,鲁凤珠等.中国恶性肿瘤死亡率 20年变化趋势和近期预测分析.中华肿瘤杂志,1997;19:323
    2 李连弟,张思维,鲁凤珠等.中国恶性肿瘤死亡谱及分类构成特征研究.中华肿瘤杂志,1996;18:403
    3 曾益新.肿瘤学.北京:人民卫生出版社,1999
    4 Shih C and Weinberg RA. Isolation of a transforming sequence from a human bladder carcinoma cell line. Cell, 1982; 29: 161
    5 Pulciani S, Santos E, Lauver AV et al. Oncogenes in human tumor cell lines: molecular cloning of a transforming gene from human bladder carcinoma cells. Proc Natl Acad Sci USA, 1982; 79: 2845
    6 Friend SH, Bemards R, Rogelj S et al. A human DNA segment with properties of the gene that predisposes to retinoblastoma and osteosarcoma. Nature, 1986; 323: 643
    7 Lee WH, Bookstein R, Hong F et al. Human retinoblastoma susceptibility gene cloning, identification, and sequence. Science, 1987; 235: 1394
    8 Baker S J, Markowitz S Fearon ER et al. Suppression of human colorectal carcinoma cell growth by wild-type p53. Science, 1990; 249: 912
    9 Miki Y, Swensen J, Shattuch-Eidens D et al. A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science, 1994; 266: 66
    10 Vogelstein B and Kinzler KW. The multistep nature of cancer. Trends Genet, 1993; 9: 138
    11 Watson JD. The human genome project: past, present, and future. Science, 1990; 248: 44
    12 Collins FS, Patrinos A, Jordan E, et al. New goals for the U. S. human genome project: 1998-2003. Science, 1998; 282: 682-689
    13 Adams MD, Kelley JM, Gocayne JD, et al. Complementary DNA sequencing: expressed sequence tags and human genome project. Science, 1991, 252: 1651-1656
    14 hnp://www.nebi.nlm.nih.gov/dbEST/dbEST_summary.html
    15 Schuler GD. Pieces of the puzzle: expressed sequence tags and the catalog of human genes. J Mol Med, 1997; 75(10): 694-698.
    16 http://www.ncbi.nlm.nih.gov/UniGene/Hs.stats.shtml
    17 O'Brien C. Cancer genome anatomy project launched. Mol Med Today, 1997; 3(3): 94
    18 Kuska B. Cancer genome anatomy project set for take-off. J Natl Cancer Inst, 1996; 88(24): 1801-3
    19 http://www.ncbi.nlm.nih.gov/ncicgap/humanTGI.html20 http://www.ncbi.nlm.nih.gov/ncicgap/cgapba.cgi
    
    21 Kousaku O, Naohiro H, Ryo M, et al. Large scale cDNA sequencing for analysis of quantitative and qualitative aspects of gene expression. Nature Genet, 1992,2: 173-179
    
    22 Gress TM, Muller-Pillasch F, Geng M, et al. A pancreatic cancer-specific expression profile. Oncogene, 1996, 13: 1819-1830
    
    23 Huang GM, Ng WL, Farkas J, et al. Prostate cancer expression profiling by cDNA sequencing analysis. Genomics, 1999, 59(2): 178-186
    
    24 Ji H, Liu YE, Jia T, et al. Identification of a breast cancer-specific gene, BCSG1, by direct differential cDNA sequencing. Cancer Res, 1997, 57(4): 759-764
    
    25 Adams MD. Serial analysis of gene expression: ESTs get smaller. Bioessays, 1996, 18(4): 261-262
    
    26 Velculescu VE, Zhang L, Vogelstein B, et al. Serial analysis of gene expression. Science, 1995 , 270(5235):484-487
    
    27 Bertelsen AH, Velculescu VE. High throughput gene expression analysis using SAGE. Elsevier trends J, 1998, 3(4): 152-159
    
    28 Velculescu VE, Zhang L, Zhou W, et al. Characterization of the yeast transcriptome. Cell 1997,88(2):243-251.
    
    29 Goffeau A, Barrell BG, Bussey H, et al. Life with 6000 genes. Science, 1996,274(5287):546-567.
    
    30 Lyer V, Struhl K. Absolute mRNA levels and transcriptional initiation rates in saccharomyces cerevisiae. Proc Natl Acad Sci USA, 1996,93(11):5208-5212.
    
    31 Zhang L, Zhou W, Velculescu VE, et al. Gene expression profiles in normal and cancer cells. Science, 1997,276(5316): 1268-1272.
    
    32 Hibi K, Liu Q, Beaudry.GA, et al. Serial analysis of gene expression in non-small cell lung cancer. Cancer Res, 1998 , 58(24):5690-5694.
    
    33 Nacht M, Ferguson AT, Zhang W, et al. Combining serial analysis of gene expression and array technologies to identify genes differentially expressed in breast cancer. Cancer Res, 1999, 59(21):5464-5470.
    
    34 Madden SL, Gallella EA, Zhu J, et al. SAGE transcript profiles for p53- dependent growth regulation. Oncogene , 1997,15(9):1079-1085.
    
    35 Polyak K, Xia Y, Zweier JL, et al. A model for p53-induced apoptosis. Nature, 1997,389(6648):300-305.
    
    36 Hermeking H, Lengauer C, Polyak K, et al. 14-3-3σ is a p53-regulated inhibitor of G2/M progression. Mol.Cell ,1997,1(1):3-11.37 Kurian KM, Wastson CJ and Wyllie AH. DNA chip technology. J. Pathol. 1999, 187: 267-271.
    38 Schena M, Shalon D, Davis RW, et al. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science, 1995; 270: 467-469
    39 Drmanac R, Drmanac S, Labat J, et al. Sequencing by hybridization: towards an automated sequencing of one million M13 clones arrayed on membranes. Electrophoresis, 1992; 13: 566-573
    40 Shalon M, Smith JS, Brown PO. A DNA microarray system for analyzing complex. DNA samples using two-color fluorescent probe hybridization. Genome Res, 1996; 6: 639-645
    41 Kurian KM, Watson CJ, Wyllie AH. DNA chip technology. J Pathol, 1999; 187: 267-271
    42 Kononen J, Bubendorf L, Kallioniemi A, et al. Tissue microarrays for high-throughput molecular profiling of tumor specimens. Nat Med, 1998, 4(7): 844-847.
    43 http://www.clontech.com/atlas
    44 http://www.resget.com/
    45 Khan J, Simon R, Bitter M, et al. Gene expression profiling of alveolar rhabdomyosarcoma with cDNA microarrays. Cancer Res. 1998 Nov 15; 58(22): 5009-5013.
    46 DeRisi JL, Penland L, Brown PO, et al. Use of cDNA microarray to analyse gene expression patterns in human cancer. Nat Genet, 1996; 14: 457
    47 Maniotis A J, Folberg R, Hess A, et al. Vascular channel formation by human melanoma cells in vivo and in vitro: vasculogenic mimicry. Am J Pathol. 1999 Sep; 155(3): 739-752
    48 Wang K, Gan L, Jeffery E, et al. Monitoring gene expression profile changes in ovarian carcinomas using cDNA microarray. Gene. 1999 Mar 18; 229(1-2): 101-8.
    49 http://www.affymetrix.com/
    50 http://www.Incyte.com/
    51 http://www.synteni.com/
    52 Marshall E. Do-it-yourself gene watching. Science, 1999, 286(5439): 444-447
    53 Duguid JR, Dinauer MC. Library subtraction of in vitro cDNA libraries to identify differentially expressed genes in scrapie infection. Nucleic Acids Res, 1990, 18: 2789-2792
    54 Hara E, Kato T, Nakada S, et al. Subtractive cDNA cloning using??oligo(dT)30-latex and PCR: isolation of cDNA clones specific to undifferentiated human embryonal carcinoma cells. Nucleic Acids Res, 1991,7097-7104
    
    55 Sargent TD, Dawid IB. Differential gene expression in the gastrula of Xenopus laevis. Science, 1983, 222(4620): 135-139.
    
    56 Davis MM, Cohen DI, Nielsen EA, et al. Cell-type-specific cDNA probes and the murine I region: the localization and orientation of Ad alpha. Proc Natl Acad Sci U S A. 1984, 81(7):2194-2198.
    
    57 Hubank M and Schatz DG. Identifying differences in mRNA expression by representational difference analysis of cDNA. Nucleic Acids Res, 1994,22:5640-5648
    
    58 Liang P and Pardee. Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science, 1992, 257(5072):967-971.
    
    59 Welsh J, Chada K, Dalai SS, et al. Arbitrarily primed PCR fingerprinting of RNA. Nucleic Acids Res, 1992, 20(19):4965-70.
    
    60 Sompayrac L, Jane S, Burn TC, et al. Overcoming limitations of the differential display technique. Nucleic Acids Res, 1995, 23(22): 4738- 4739
    
    61 Bertioli dJ, Schichter UHA, Adams MJ, et al. An analysis of differential display shows a strong bias towards high copy number mRNAs. Nucleic Acids Res, 1995, 23(21): 4520-4523
    
    62 Diatchenko L, Lau YFC, Campbell AP, et al. Suppression subtractive hybridization: A method for generating differentially regulated or tissue- specific cDNA probes and libraries. Proc Natl Acad Sci USA, 1996, 93: 6025-6030.
    
    63 Diatchenko L, Lukyanov S, Lau YF, et al. Suppression subtractive hybridization: a versatile method for identifying differentially expressed genes. Methods Enzymol, 1999, 303: 349-380.
    
    64 Von Stein OD, Thies WG, Hofmann M. A high throughput screening for rarely transcribed differentially expressed genes. Nucleic Acids Res, 1997, 25(13): 2598-2602
    
    65 Pitzer C, Stassar M, Zoller M. Identification of renal-cell -carcinoma- related cDNA clones by suppression subtractive hybridization. J Cancer Res Clin Oncol, 1999, 125(8-9): 487-492.
    
    66 Hufton SE, Moerkerk PT, Brandwijk R, et al, A profile of differentially expressed genes in primary colorectal cancer using suppression subtractive hybridization. FEBS Lett, 1999, 463(1-2): 77-821.李连弟,鲁凤珠,张思维,等。中国恶性肿瘤死亡率 20年变化趋势和近期预测分析。中华肿瘤杂志,1997,19(1):3-9
    2.王瑞林主编,食管癌研究进展。河南医科大学出版社,郑州,1996,第一版。
    3. Montesano R, Hollstein M, Hainaut P. Genetic alterations in esophageal cancer and their relevance to etiology and pathogenesis: a review. Int. J. Cancer, 1996, 69: 225-235.
    4.杨文献,浦炯,陆士新,等。食管癌高发区居民胃内亚硝胺的暴露水平及其阻断的研究。中华肿瘤杂志,1992,14(6):407-410
    5. Li JY, Tayor PR, Li B, et al. Nutrition intervention trials in Linxian, China; multiple vitamine/mineral supplementation, cancer incidence and disease-specific mortality among adults with esophageal dysplasia. J Natl Cancer Inst, 1993, 85: 1492-1498
    6. Lu SH, Ohshima H, Fu HM, et al. Urinary excretion of N- notrosamino acids and nitrate by inhabitants of the high and low-risk areas for esophageal cancer in Northern China: endogenous formation of nitrosoproline and its inhibition by vitamin C. Cancer Res, 1986, 46: 1485-1491
    7.丁家桓,吴旻,王秀琴,等。林县食管癌的遗传易感性。中华医学杂志,1983,63:213-215
    8.胡楠,贺立绩,韩小友,等。山西阳城622个食管癌阳性家族十年后随访。中华医学杂志,1990,70:679-681
    9. Hu N, Dawsey SM, Wu M, et al. Familial aggregation of esophageal cancer in Yangcheng county, Shanxi province, China. International Epidermilogical Association, 1992, 21(5): 817-822
    10. Carter CL, Hu N, Wu M, et al. Segregation analysis of esophageal cancer in 221 high-risk Chinese families. J Natl Cancer Inst, 84(10): 771-776 (1992)
    11.吴旻,肖枫,王秀琴。人食管癌细胞和分子遗传学研究。中华肿瘤杂志,1996,18(1):73-75
    12. Su Y, Wang XQ, Hu N, et al. G-banded chromosome analysis of mucosal epithelium adjacent to esophageal cancer(EC)—some??consistent chromosomal changes. Sci Sin (B), 1988, 31: 710-718
    13.萧广惠,李万波,黄建华,等。食管癌的杂和性丢失。科学通报,1991,36(24):1886-1889
    14.李万波,王秀琴,吴旻,等。食管癌第3和第9号染色体上频发的等位基因缺失。自然科学进展-国家国家重点实验室通讯,1994,4(4):461-465
    15. Wang L, Li WD, Wang XQ, et al. Genetic alterations on chromosomes 3 and 9 of esophageal cancer tissues in China. Oncogene, 1996, 12: 699-703
    16. Li WD, Wang L, Wang XQ, et al. Loss of heterozygosity and microsatellite DNA instability on chromosome 3 and 9 in esophageal cancer tissues. Progress in Nature Science, 1996, 6(5): 591-595
    17. Montesano R, Hollatein M, Hainaut P. Genetic alterations in esophageal cancer and their relevance to etiology and pathogenesis: A review. Int J Cancer (Pred Oncol), 1996, 69: 225-235
    18. Liang P and Pardee AB. Differential display of eukaryotic messager RNA by means of the polymerase chain reaction. Science, 1992, 257(14): 967-971
    19. Ito K, Kito K, Adati N, et al. Fluorescent differential display: arbitrarily primed TR-PCR fingerprinting on an automated DNA sequencer. FEBS letters, 1994, 351: 231-236
    20. Buess M, Moroni C and Hirsch HH. Direct identification of differentially expressed genes by cycle sequencing and cycle labellingusing the differential display PCR primer. Nucleic Acids Res, 1997, 25: 2233-2235
    21. Hubank M and Schatz DG. Identifying differences in mRNA expression by representational difference analysis of cDNA. Nucleic Acids Res, 1994, 22 (25): 5640-5648
    22. Dong JT, Lamb PW, Rinker-Schmeffer CW, et al. KAI1, a metastasis suppressor gene for prostate cancer on chromosome 11p11. 2. Science, 1995, 268: 884-886
    23. Dalal SS, Welsh J, Tkachenko A, et al. Rapid isolation of tissue-specific and developmentally regulated brain cDNAs using RNA arbitrarily primed PCR (RAP-PCR). J Mol Neurosci. 1994 Summer; 5(2): 93-104.
    24. Bauer D, Warthoe P, Rohde L, et al. PCR methods and applications. Cold Spring Harbor Lab. Press. Plainview. 1994, Supplement:??97-108.
    
    25. Sompayrac L, Jane S, Burn TC, et al. Overcoming limitations of the mRNA differential display technique. Nucleic Acids Res. 1995 Nov 25;23 (22):4738-9.
    
    26. Bertioli DJ, Schlichter UH, Adams MJ, et al. An analysis of differential display shows a strong bias towards high copy number mRNAs. Nucleic Acids Res. 1995 Nov 11;23(21):4520-3.
    
    27. Diatchenko, L., Lau, Y.F., Campbell, A.P., et al. Suppression subtractive hybridization: a methods for generating differentially regulated or tissue- specific cDNA probes and libraries. Proc. Natl. Acad. Sci., 1996, 93: 6025-6030
    
    28. Siebert, P.D., Chenchik, A., Kellogg, D.E., et al. An improved PCR method for walking in uncloned genomic DNA. Nucleic Acids Res. 1995,23:1087-1088.
    
    29. J.E. Hansen, O. Lund, N. Tolstrup.et al. NetOglyc: Prediction of mucin type O-glycosylation sites based on sequence context and surface accessibility. Glycoconjugate Journal, 15: 115-130, 1998.
    
    30. Raynal P, Pollard HB. Annexins: the problem of assessing the biological role for a gene family of multifunctional calcium- and phospholipid-binding proteins. Biochim Biophys Acta 1994 Apr 5;1197(1):63-93.
    
    31. Mollenhauer J. Annexins: what are they good for? Cell Mol Life Sci 1997 Jun;53(6):506-7.
    
    32. RO Morgan and MP Fernandez. Molecular phylogeny of annexins and identification of a primitive homologue in Giardia lambi ia. Molecular Biology and Evolution, 1995, Vol 12, 967-979.
    
    33. Seaton BA, Dedman JR. Annexins. Biometals 1998 Dec;11 (4):399-404
    
    34. Goulding N, Podgorski M, Hall N, et al. Autoantibodies to recombinant lipocortin-1 in rheumatoid arthritis and systemic lupus erythematosus. Ann Rheum Dis 43:843-850.
    
    35. Perretti M, Flower RJ. Modulation of IL-1-induced neutrophil migration by dexamethasone and lipocortin 1. J Immunol 1993 Feb 1;150(3):992-9 .
    
    36. Perretti M, Ahluwalia A, Harris JG, et al. Lipocortin-1 fragments inhibit neutrophil accumulation and neutrophil- dependent edema in the mouse. A qualitative comparison with an anti-CD11b monoclonal antibody. J Immunol 1993 Oct??15;151(8):4306-14.
    
    37. Cuzzocrea S, Tailor A, Zingarelli B, et al. Lipocortin 1 protects against splanchnic artery occlusion and reperfusion injury by affecting neutrophil migration.J Immunol 1997 Nov 15; 159(10):5089-97 .
    
    38. Croxtall J, Choudhury Q, Newman S, et al. Lipocortin 1 and the control of cPLA2 in A549 cells. Biochem Pharm, 1996, 52: 351-356.
    
    39. Alldridge L, Harris II, Plevin R, et al. The Annexin protein Lipocortin 1 regulates the MAPK/ERK pathway . J Biol Chem, Vol. 274, Issue 53, 37620-37628, December 31, 1999
    
    40. Frey BM, Reber BF, Vishwanath BS, et al. Annexin I modulates cell functions by controlling intracellular calcium release. FASEB J, 1999, 13(15): 2235-2245.
    
    41. Wallner BP, Mattaliano RJ, Hession C, et al. Cloning and expression of human lipocortin, a phospholipase A2 inhibitor with potential anti-inflammatory activity. Nature. 1986 Mar 6-12:320(6057):77-81.
    
    42. Violette SM, King I, Browning JL, et al. Role of lipocortin I in the glucocorticoid induction of the terminal differentiation of a human squamous carcinama. J Cell Phys, 1990, 142: 70-77.
    
    43. Solito E, de Coupade C, Parente L, et al. Human annexin 1 is highly expressed during the differentiation of the epithelial cell line A 549: involvement of nuclear factor interleukin 6 in phorbol ester induction of annexin l.Cell Growth Differ. 1998 Apr;9(4):327-36.
    
    44. Croxtall JD and Flower RJ. Lipocortin 1 mediates dexamethasone-induced growth arrest of A549 lung adenocarcinama cell line. Proc Natl Acad Sci USA, 1992, 89: 3572-3575.
    
    45. Turk V, Bode W. The cystatins: protein inhibitors of cysteine proteinases. FEBS Lett. 1991 Jul 22;285(2):213-9. Review.
    46. Bobek LA, Levine MJ. Cystatins—inhibitorsw of cysteine proteinases. Crit Rev Oral Biol Med 1992, 3(4):307-332.
    47. Calkins CC, SloaneBF. Mammalian cysteine protease inhibitors: biochemical properties and possible roles in tumor progression. Biol Chem Hoppe Seyler. 1995 Feb;376(2):71-80. Review.48. Kos J, Lah TT. Cysteine proteinases and their endogenous inhibitors: target proteins for prognosis, diagnosis and therapy in cancer (review). Oncol Rep. 1998 Nov- Dec;5(6):1349-61. Review.
    
    49. Soderstrom KO, Laato M, Wu P, et al. Expression of acid cysteine proteinase inhibitor (ACPI) in the normal human prostate, benign prostatic hyperplasia and adenocarcinoma. Int J Cancer. 1995 Jul 4:62(1):1-4.
    
    50. Strojnik T, Zajc I, Bervar A, et al.Cathepsin B and its inhibitor stefin A in brain tumors. Pflugers Arch. 2000;439(3 Suppl):R122-3.
    
    51. Hawley-Nelson P, Roop DR, Cheng CK, et al. Molecular cloning of mouse epidermal cystatin A and detection of regulated expression in differentiation and tumorigenesis. Mol Carcinog. 1988:1(3):202-ll.
    
    52. Shiraishi T, Mori M, Tanaka S, et al. Identification of cystatin B in human esophageal carcinoma, using differential displays in which the gene expression is related to lymph- node metastasis. Int J Cancer. 1998 Apr 17;79(2):175-8.
    
    53. Robinson PA, MarleyJJ, High AS, et al. Differential expression of protease inhibitor and small proline-rich protein genes between normal human oral tissue and odontogenic keratocysts. Arch Oral Biol. 1994 Mar;39(3):251-9.
    
    54. Ebert E, Werle B, Julke B, et al. Expression of cysteine protease inhibitors stefin A, stefin B, and cystatin C in human lung tumor tissue. Adv Exp Med Biol, 1997, 421:259-265.
    
    55. Kastelic L, Turk B, Kopitar-Jerala N, et al. Stef in B, the major low molecular weight inhibitor in ovarian carcinoma. Cancer Lett. 1994 Jul 15:82(1):81~8.
    
    56. Budihna M, Strojan P, Smid L, et al. Prognostic value of cathepsins B, H, L, D and their endogenous inhibitors stefins A and B in head and neck carcinoma. Biol Chem Hoppe Seyler. 1996 Jun;377(6):385-90
    
    57. Virtaneva K, D'Amato E, Miao J, et al. Unstable minisatellite expansion causing recessively inherited myoclonus epilepsy, EPMl.Nat Genet. 1997 Apr; 15(4):393-6.
    
    58. Virtaneva K, Paulin L, Krahe R, et al.The minisatellite expansion mutation in EPM1: resolution of an initial
    discrepancy. Mutatations in brief no. 186. Online. Hum Mutat. 1998; 12(3): 218.
    59. Larson GP, Ding S, Lafreniere RG, et al. Instability of the EPM1 minisatellite, Hum Mol Genet. 1999 Oct; 8(11): 1985-8.
    60. Lalioti MD, Scott HS, Antonarakis SE. Altered spacing of promoter elements due to the dodecamer repeat expansion contributes to reduced expression of the cystatin B gene in EPM1. Hum Mol Genet. 1999 Sep; 8(9): 1791-8.
    61. Tallquist, M. D., Yun, T. J. and Pease, L. R. A single T cell receptor recognizes structurally distinct MHC/peptide complexes with high specificity. J. Exp. Med., 184, 1017-1026(1996).
    62. Walker, J. E., Arizmendi, J. M., Dupuis, et al. Sequence of 20 subunits of NADH: ubiquinone oxidoreductase from bovine heart mitochondria. Application of a novel strategy for sequencing proteins using the polymerase chain reaction. J. Mol. Biol., 226, 1051-1072(1992).
    63. Kim, J. W., Lee, Y., Kang, H. B., et al. Cloning of the human cDNA sequence encoding the NADH: ubiquinone oxidoreductase MLRQ subunit. Biochem. Mol. Biol. Int., 43, 669-675(1997)
    64. Pata, I., Tensing, K., Metspalu, A. A human cDNA encoding the homologue of NADH: ubiquinone oxidoreductase subunit B13. Bioch. Biophys. ACTA, 115-118(1997).
    65.何其杨,张鸿卿,薛绍白等。活细胞的分子探针——绿色荧光蛋白.国外医学分子生物学分册,1997,19(6):279-283.
    66.何凯莉,顾柏炜,张庆华等.辐射杂交细胞系技术在基因定位中的应用.中国科学(C辑),1999,29(1):108-112.
    67. Cox DR, Burmeister M, Price E, et al. Radiation hybrid mapping: a somatic cell genetic method for construction high-resolution maps of mammalian chromosomes. Science, 1990, 250: 245-250.
    68. Walter Mm Spillett Dm Thomas P et al. A method for constructing radiation hybrid maps of whole genomes. Nat Genet, 1994, 7: 22-28.
    69. Schuler G, Boguski M, Stewart E, et al. A gene map of the human genome. Science, 1996, 274: 540-546.
    70. Hu N, Roth MJ, Polymeropolous M, et al. Identification of novel regions of allelic loss from a genomewide scan of esophageal squamous-cell carcinoma in a high-risk Chinese population. Genes Chromosomes Cancer. 2000 Mar; 27(3): 217-28.
    71. Walch AK, Zitzelsberger HF, Bruch J, et al. Chromosomal??imbalances in Barrett' s adenocarcinoma and the metaplasia- dysplasia-carcinoma sequence. Am J Pathol. 2000 Feb;156(2):555-66
    
    72. Hu N, Roth MJ, Emmert-Buck MR, Tang ZZ,et al. Allelic loss in esophageal squamous cell carcinoma patients with and without family history of upper gastrointestinal tract cancer. Clin Cancer Res. 1999 Nov;5(ll):3476-82.
    
    73. van Dekken H, Vissers CJ, Tilanus HW,et al. Clonal analysis of a case of multifocal oesophageal (Barrett's) adenocarcinoma by comparative enomic hybridization. J Pathol. 1999 Jul;188(3):263-6.
    1 Montesano R, Hollstein M and Hainaut P. Genetic alterations in esophageal cancer and their relevance to etiology and pathogenesis: a review. Int.J.Cancer.l996,69:225-235.
    
    2 侯萍,王志华,徐昕,等.人食管癌中缺失基因片段的分离利鉴定.中华医学杂忠,1997,10(10):737-741.
    
    3 Takamura H, Fushida S, Hashimoto T, Yagi M, Miyazaki I. [Analysis of the p16INK4, p15INK4B genes abnormality and the amplification of cyclin D1 gene in esophageal cancer]. Nippon Rinsho. 1996 Apr;54(4):1043-8. Review.
    
    4 Miura K, Okita K, Furukawa Y, Matsuno S, Nakamura Y. Deletion mapping in squamous cell carcinomas of the esophagus defines a region containing a tumor suppressor gene within a 4-centimorgan interval of the distal long arm of chromosome 9. Cancer Res. 1995 May 1;55(9): 1828-30.
    
    5 Hu N, Roth MJ, Polymeropolous M, Tang ZZ, Emmert-Buck MR, Wang QH, Goldstein AM, Feng SS, Dawsey SM, Ding T, Zhuang ZP, Han XY, Ried T, Giffen C, Taylor PR. Identification of novel regions of allelic loss from a genomewide scan of esophageal squamous-cell carcinoma in a high-risk Chinese population. Genes Chromosomes Cancer. 2000 Mar;27(3):217-28.
    
    6 Montesano R, Hollstein M, Hainaut P. Molecular etiopathogenesis of esophageal cancers.Ann Ist Super Sanita. 1996;32(l):73-84. Review.
    
    7 Kuska B. Cancer genome anatomy project set for take-off. J Natl Cancer Inst. 1996 Dec 18;88(24):1801-3.
    
    8 O'Brien C. Cancer genome anatomy project launched. Mol Med Today. 1997 Mar;3(3):94.
    
    9 http//www.ncbi.nlm.nih.gov./ncicgap/intro.html
    
    10 Velculescu VE, Zhang L, Vogelstein B, et al. Serial Analysis of gene expression. Science ,1995,270:484-487.
    
    11 Zhang L, Zhou W, Velculescu VE, et al. Gene expression profiles in normal and cancer cells. Science, 1997,276(5316): 1268-1272.
    
    12 Neilson L, Andalibi A, Kang D, et al. Molecular Phenotype of the Human Oocyte by PCR-SAGE. Genomics. 2000 Jan l;63(l):13-24.
    
    13 Chen JJ, Rowley JD, Wang SM. Generation of longer cDNA fragments from serial analysis of gene expression tags for gene identification. Proc Natl Acad Sci USA. 2000 Jan 4;97(1):349-53.
    
    14 Virlon B, Cheval L, Buhler JM, et al. Serial microanalysis of renal transcriptomes. Proc Natl Acad Sci U S A. 1999 Dec 21;96(26): 15286-91.
    
    15 Nacht M, Ferguson AT, Zhang W, et al. Combining serial analysis of gene expression and array technologies to identify genes differentially expressed in breast cancer. Cancer Res. 1999 Nov l;59(21):5464-70.
    
    16 Madden SL, Gallella EA, Zhu J, et al. SAGE transcript profiles for p53- dependent growth regulation. Oncogene , 1997,15(9):1079-1085.
    
    17 Polyak K, Xia Y, Zweier JL, et al. A model for p53-induced apoatosis. Nature, 1997,389(6648):300-305.
    
    18 Schena M, Shalon D, Davis RW, et al. Quantitative monitoring of gene
    expression patterns with a complementary DNA microarray. Science, 1995; 270: 467-469
    
    19 Sgroi DC, Teng S, Robinson G, et al. In vivo gene expression profile analysis of human breast cancer progression. Cancer Res. 1999 Nov 15;59(22):5656-61.
    
    20 Pollack JR, Perou CM, Alizadeh AA, et al. Genome-wide analysis of DNA copy-number changes using cDNA microarrays. Nat Genet. 1999 Sep;23(l):41-6.
    
    21 Wang T, Hopkins D, Schmidt C,et al. Identification of genes differentially over-expressed in lung squamous cell carcinoma using combination of cDNA subtraction and microarray analysis. Oncogene. 2000 Mar 16;19(12):1519-28.
    
    22 Collins FS, Patrinos A, Jordan E, et al. New goals for the U.S. human genome project: 1998-2003.Science,1998 Oct 23,282:682-689.
    
    23 DeRisi J, Penland L, Brown PO, et al. Use of a cDNA microarray to analyse gene expression patterns in human cancer. Nat Genet. 1996 Dec;14(4):457-60.
    
    24 Sehgal A, Boynton AL, Young RF, et al. Application of the differential hybridization of Atlas Human expression arrays technique in the identification of differentially expressed genes in human glioblastoma multiforme tumor tissue. J Surg Oncol 1998, 67(4):234-241.
    
    25 Sehgal A, Keener C, Boynton AL, et al. CXCR-4, a chemokine receptor, is overexpressed in and required for proliferation of glioblastoma tumor cells. J Surg Oncol. 1998 Oct;69(2):99-104
    
    26 Fuller G, Rhee C, Hess K, et al . Reactivation of insulin-like growth factor binding protein 2 expression on glioblastoma multiforme: a revelation by parallel gene expression profiling. Cancer Res, 1999, 59:4228-4232.
    
    27 http://atlasinfo.clontech.com/ver2/AtlasInfo2/dynamicFolder/queryList.stm
    
    28 Porte H, Triboulet JP, Kotelevets L, et al. Overexpression of stromelysin-3, BM-40/SPARC, and MET genes in human esophageal carcinomars implications for prognosis. Clin Cancer Res, 1998, 4(6):1375- 1382.
    
    29 Birchmeier C, Gherardi E. Developmental roles of HGF/SF and its receptor, the c-Met tyrosine kinase. Trends Cell Biol 1998 Oct;8(10):404-10. Review.
    
    30 Birchmeier W, Brinkmann V, Niemann C, et al. Role of HGF/SF and c-Met in morphogenesis and metastasis of epithelial cells. Ciba Found Symp 1997;212:230-40; discussion 240-6. Review.
    
    31 Wallenius V, Hisaoka M, Helou K, et al. Overexpression of the hepatocyte growth factor (HGF) receptor (Met) and presence of a truncated and activated intracellular HGF receptor fragment in locally aggressive/malignant human musculoskeletal tumors. Am J Pathol. 2000 Mar;156(3):821-9
    
    32 Sawatsubashi M, Sasatomi E, Mizokami H, et al. Expression of c-Met in laryngeal carcinoma.Virchows Arch. 1998 Apr;432(4):331-5.
    
     33 Galeazzi E, Oliverp M, Gervasio FC, et al. Detection of MET oncogene/hepatocyte growth factor receptor in lymph node metastases from head and neck squamous cell carcinomas. Eur Arch Otorhinolaryngol Suppl. 1997;l:S138-43.
    
    34 Ichimura E, Maeshima A, Nakajima T, et al. Expression of c-met/HGF receptor in human non-small cell lung carcinomas in vitro and in vivo and its prognostic significance. Jpn J Cancer Res. 1996 Oct;87(10):1063-9.
    
    35 Marshall DD, Kornberg LJ. Overexpression of scatter factor and its receptor(c-met) in oral squamous cell carcinoma. Laryngoscope. 1998 Sep; 108(9): 1413-7.
    
    36 Oda Y, Sakamoto A, Saito T, et al. Expression of hepatocyte growth factor (HGF)/scatter factor and its receptor c-MET correlates with poor prognosis in synovial sarcoma. Hum Pathol. 2000 Feb;31(2): 185-92.
    37 Camp RL, Rimm EB, Rimm DL. Met expression is associated with poor outcome in patients with axillary lymph node negative breast carcinoma. Cancer. 1999 Dec 1;86(11):2259-65.
    
    38 Day RM, Cioce V, Breckenridge D, et al. Differential signaling by alternative HGF isoforms through c-Met: activation of both MAP kinase and PI 3-kinase pathways is insufficient for mitogenesis. Oncogene. 1999 Jun 3;18(22):3399- 406.
    
    39 Garcia-Guzman M, Dolfi F, Zeh K, et al. Met-induced JNK activation is mediated by the adapter protein Crk and correlates with the Gab1 - Crk signaling complex formation. Oncogene. 1999 Dec 16;18(54):7775-86.
    
    40 Tulasne D, Paumelle R, Weidner KM, et al. The multisubstrate docking site of the MET receptor is dispensable for MET-mediated RAS signaling and cell scattering. Mol Biol Cell. 1999 Mar; 10(3):551 -65.
    
    41 Bardelli A, Basile ML, Audero E, et al. Concomitant activation of pathways downstream of Grb2 and PI 3-kinase is required for MET-mediated metastasis. Oncogene. 1999 Feb 4; 18(5): 1139-46.
    
    42 Yang E, Zha J, Jockel J, Boise LH, et al. Bad, a heterodimeric partner for Bcl- XL and Bcl-2 , displaces Bax and promotes cell death. Cell,1995,80(20):285- 291.
    
    43 Datta SR, Dudek H, Tao X, et al. Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell, 1997, 91(2):231- 241.
    
    44 del Peso L, Gonzalez-Garcia M, Page C, et al. Interleukin-3-induced phosphorylation of BAD through the protein kinase Akt. Science 1997 Oct 24;278(5338):687-9.
    
    45 Cohen GM. Caspases: the executioners of apoptosis. Biochem J 1997 Aug 15;326(Pt1):1-16. Review.
    
    46 Hilbi H, Moss JE, Hersh D, et al. Shigella-induced apoptosis is dependent on caspase-1 which binds to IpaB. J Biol Chem. 1998 Dec 4;273(49):32895-900.
    
    47 William R, Watson G, Totstein OD, et al. The IL-1beta -converting enzyme (caspase-1) inhibits apoptosis of inflammatory neutrophils through activation of IL-lbeta. J Immunol ,1998, 161(2):957-962.
    
    48 Thomberry NA, Molineaux SM. Inerleukin-1 beta converting enzyme: a novel cysteine protease required for II-1 beta production and implicated in programmed cell death. Protein Sci 1995 Jan;4(l):3-12. Review.
    
    49 Estrov Z, Talpaz M. Role of inerleukin-1 beta converting enzyme (ICE) in acute myelogenous leukemia cell proliferation and programmed cell death. Leuk Lymphoma 1997 Feb;24(5-6):379-91. Review.
    
    50 Estrov Z, Talpaz M. Role of inerleukin-1 beta converting enzyme (ICE) in leukemia. Cytokines Mol Ther 1996 Mar;2(l):l-11. Review.
    
    51 von Biberstein SE, Soiro ID, Lindouist R, et al. Interleukin-1 receptor antagonist in head and neck squamous cell carcinoma. Arch Otolaryngal Head Neck Surg, 1996, 122(7): 751-759.
    
    52 Lu FM, Lux SE. Constitutively active human Notchl binds to the transcription
    factor CBF1 and stimulates transcription through a promoter containing a CBF1-responsive element. Proc Natl Acad Sci U S A 1996 May 28;93(11):5663-7.
    
    53 Carlesso N, Aster JC, Sklar J, Scadden DT. Notch 1-induced delay of human hematopoietic progenitor cell differentiation is associated with altered cell cycle kinetics. Blood 1999 Feb 1;93(3):838-48.
    
    54 Logeat F, Bessia C, Brou C, et al. The Notchl receptor is cleaved constitutively by a furin-like convertase. Proc Natl Acad Sci U S A 1998 Jul 7;95(14):8108-12.
    
     55 Aster JC, Rovbrtson ES, Hasserjian Rp, et al. Oncogenic forms of NOTCH1 lacking either the primary binding site for RBP-Jkappa or nuclear localization sequences retain the ability to associate with TBP-Jkappa and activate transcription. J Biol Chem , 1997 , 272(17): 11336-43.
    
    56 Luo B , Aster JC, Hasserjian RP, et al. Isolation and functional analysis of a cDNA for human Jagged2, a gene encoding a ligand for the Notchl receptor. Mol Cell Biol, 1997, 17(10): 6057-6067.
    
    57 Li L, Milner LA, Deng Y, et al. The human homolog of rat Jaggedl expressed by marrow stroma inhibits differentiation of 32D cells through interaction with Notchl. Immunity 1998 Jan;8(l):43-55.
    
    58 Capobianco AJ, Zagouras P, Blaumueller CM, et al. Neoplastic transformation by truncated alleles of human NOTCH1/TAN1 and NOTCH2. Mol Cell Biol 1997 Nov;17(ll):6265-73.
    
    59 Moon RT, Brown JD, Torres M. WNTs modulate cell fate and behavior during vertebrate development. Trends Genet 1997 Apr; 13(4): 157-62. Review.
    
    60 Wakeman JA, Walsh J, Andrews PW. Human Wnt-13 is developmentally regulated during the differentiation of NTERA-2 pluripotent human embryonal carcinoma cells. Oncogene 1998, 17(2):179-186.
    
    61 Katoh M, Hirai M, Sugimura T, et al. Cloning. Expression and chromosomal localization of Wnt-13, a novel member of the Wnt gene family. Oncogene,1996, 13(4):873 876.
    
    62 Jones JL, Walker RA. Control of matrix metalloproteinase activity in cancer. J Pathol, 1997, 183(4):377-379.
    
    63 Polette M, Birembaut P. Membrane-type metalloproteinases in tumor invasion. Int J Biochem Cell Biol 1998 Nov;30(11):1195-202. Review.
    
    64 Rooprai HK, McCormick D. Proteases and their inhibitors in human brain tumours: a review. Anticancer Res 1997 Nov-Dec;17(6B):4151-62. Review.
    
    65 Sato H, Okada Y, Seiki M Membrane-type matrix metalloproteinases (MT- MMPs) in cell invasion. Thromb Haemost 1997 Jul;78(1):497-500. Review.
    
    66 Nakada M, Nakamura H, Ikeda E,et al. Expression and tissue localization of membrane-type 1, 2, and 3 matrix metalloproteinases in human astrocytic tumors. Am J Pathol 1999 Feb;154(2):417-28.
    
    67 Murry GI, Duncan ME, O'Neil P, et al. Matrix metalloproteinase-1 is associated with poor prognosis in oesophageal cancer. J Pathol, 1998, 185(3): 256-261.
    
    1.肿瘤病理学.刘复生,刘彤华主编.北京,北京医科大学、中国协和医科大学联合出版社,1997年,第一版,p662-704.
    2. Huang S. Gene expression profiling, genetic networks, and cellular states: an integrating concept for tumorigenesis and drug discovery. J Mol Med. 1999 Jun; 77(6): 469-80. Review.
    3. Shah A. Gene regulation and the origin of carcinoma: a new model. Med Hypotheses. 1995 Oct; 45(4): 398-402.
    4. Waliszewski P. Complexity, dynamic cellular network, and tumorigenesis. Pol J Pathol. 1997; 48(4): 235-41. Review.
    5. Hartwell LH, Szankasi P, Roberts CJ, et al.. Integrating genetic approaches into the discovery of anticarcinoma drugs. Science. 1997 Nov 7; 278(5340): 1064-8. Review.
    6. White K, Rifkin S, Hurban P, et al. Microarray Analysis of Drosophila development during metamorphosis. Science, 1999, 286(5447): 2170-2184.
    7. Moll R. [Cytokeratins as markers of differentiation. Expression profiles in epithelia and epithelial tumors]. Veroff Pathol. 1993; 142: 1-197. Review.
    8. Bloor BK, Su L, Shirlaw PJ, et al. Gene expression of differentiation-specific keratins (4/13 and 1/10) in normal human buccal mucosa. Lab Invest 1998 Jul; 78(7): 787-95.
    9. Yuspa SH, Kilkenny A, Cheng C, et al. Alterations in epidermal biochemistry as a consequence of stage-specific genetic changes in skin carcinogenesis. Environ Health Perspect 1991 Jun; 93: 3-10. Review.
    10. Paramio JM, Lain S, Segrelles C, et al. Differential expression and functionally co-operative roles for the retinoblastoma family of proteins in epidermal differentiation. Oncogene 1998 Aug 27; 17(8): 949-57.
    11. Kartasova T, Roop DR, Yuspa SH. Relationship between the expression of differentiation-specific keratins 1 and 10 and cell proliferation in epidermal tumors. Mol Carcinog. 1992; 6(1): 18-25.
    12. Heikinheimo K, Sandberg M, Happonen RP, Virtanen I, Bosch FX. Cytoskeletal gene expression in normal and neoplastic human odontogenic epithelia. Lab Invest. 1991 Dec; 65(6): 688-701.
    13. Smedts F, Ramaekers FC, Vooijs PG. The dynamics of keratin expression in malignant transformation of cervical epithelium: a review. Obstet Gynecol. 1993 Sep; 82(3): 465. Review.
    14. Kannan S, Balaram P, Chandran GJ, et al. Alterations in expression of??terminal differentiation markers of keratinocytes during oral carcinogenesis. Pathobiology. 1994;62(3): 127-33.
    
    15. Narumiya S, Ishizaki T, Watanabe N. Rho effectors and reorganization of actin cytoskeleton. FEBS Lett 1997 Jun 23;410(1):68-72. Review.
    
    16. Ishizaki T, Naito M, Fujisawa K, et al. p160ROCK, a Rho-associated coiled- coil forming protein kinase, works downstream of Rho and induces focal adhesions. FEBS Lett 1997 Mar 10;404(2-3): 118-24.
    
    17. Fujisawa K, Fujita A, Ishizaki T, et al. Identification of the Rho-binding domain of p160ROCK, a Rho-associated coiled-coil containing protein kinase. J Biol Chem. 1996 Sep 20;271(38):23022-8.
    
    18. Maekawa M, Ishizaki T, Boku S, et al. Signaling from Rho to the actin cytoskeleton through protein kinases ROCK and LIM-kinase. Science. 1999 Aug 6;285(5429):895-8.
    
    19. Niggli V. Rho-kinase in human neutrophils: a role in signalling for myosin light chain phosphorylation and cell migration. FEBS Lett. 1999 Feb 19;445(l):69-72.
    
    20. Itoh K, Yoshioka K, Akedo H, et al. An essential part for Rho-associated kinase in the transcellular invasion of tumor cells. Nat Med. 1999 Feb;5(2):221-5.
    
    21. Altun-Gultekin ZF, Chandriani S, Bougeret C, et al. Activation of Rho- dependent cell spreading and focal adhesion biogenesis by the v-Crk adaptor protein. Mol Cell Biol. 1998 May;18(5):3044-58.
    
    22. Katoh H, Aoki J, Ichikawa A, et al. p160 RhoA-binding kinase ROKalpha induces neurite retraction. J Biol Chem. 1998 Jan 30;273(5):2489-92.
    
    23. Hirose M, Ishizaki T, Watanabe N, et al. Molecular dissection of the Rho- associated protein kinase (p160ROCK)-regulated neurite remodeling in neuroblastoma N1E-115 cells. J Cell Biol. 1998 Jun 29;141(7):1625-36.
    24. Genda T, Sakamoto M, Ichida T, et al. Cell motility mediated by rho and Rho- associated protein kinase plays a critical role in intrahepatic metastasis of human hepatocellular carcinoma. Hepatology. 1999 Oct;30(4):1027-36.
    
    25. Whitmarsh AJ, Davis RJ. Transcription factor AP-1 regulation by mitogen- activated protein kinase signal transduction pathways. J Mol Med 1996 Oct;74(10):589-607. Review.
    
    26. Uciechowski P, Saklatvala J, von der Ohe J, et al. Interleukin 1 activates jun N-terminal kinases JNK1 and JNK2 but not extracellular regulated MAP kinase (ERK) in human glomerular mesangial cells. FEBS Lett 1996 Oct 7;394(3):273-8.
    
    
    27. Sluss HK, Barrett T, Derijard B, et al. Signal transduction by tumor necrosis??factor mediated by JNK protein kinases. Mol Cell Biol 1994 Dec;14(12):8376-84.
    
    28. Xiao L, Lang W. A dominant role for the c-Jun NH2-terminal kinase in oncogenic ras-induced morphologic transformation of human lung carcinoma cells.Carcinoma Res. 2000 Jan 15;60(2):400-8.
    
    29. Hartkamp J, Troppmair J, Rapp UR. The JNK/SAPK activator mixed lineage kinase 3 (MLK3) transforms NIH 3T3 cells in a MEK-dependent fashion. Carcinoma Res. 1999 May 1;59(9):2195-202.
    
    30. Rosenblum MG, Donato NJ. Tumor necrosis factor alpha: a multifaceted peptide hormone. Crit Rev Immunol 1989;9(1):21-44 .
    
    31. Ceconi C, Curello S, Bachetti T, et al. Tumor necrosis factor in congestive heart failure: a mechanism of disease for the new millennium? Prog Cardiovasc Dis 1998 Jul-Aug;41(l Suppl 1):25-30.
    
    32. Tartaglia LA, Goeddel DV. Two TNF receptors. Immunol Today 1992 May; 13(5): 151-3. Review.
    
    33. Heller RA, Kronke M. Tumor necrosis factor receptor-mediated signaling pathways. J Cell Biol 1994 Jul;126(1):5-9 . Review.
    
    34. Komi J, Lassila O. Antioestrogens enhance tumour necrosis factor receptor 2 (TNF-R2) expression and TNF-R2-mediated proliferation in activated T cells. Scand J Immunol 1998 Sep;48(3):254-60 .
    
    35. Baxter GT, Kuo RC, Jupp OJ, et al. Tumor necrosis factor-alpha mediates both apoptotic cell death and cell proliferation in a human hematopoietic cell line dependent on mitotic activity and receptor subtype expression. J Biol Chem 1999 Apr 2;274(14):9539-47 .
    
    36. Welborn MB 3rd, Van Zee K, Edwards PD, et al. A human tumor necrosis factor p75 receptor agonist stimulates in vitro T cell proliferation but does not produce inflammation or shock in the baboon. J Exp Med. 1996 July 1;184(1):165-71
    
    37. Tartaglia LA, Goeddel DV, Reynolds C, et al. Stimulation of human T-cell proliferation by specific activation of the 75-kDa tumor necrosis factor receptor. J Immunol. 1993 Nov 1;151(9):4637-41.
    
    38. Arany I, Brysk MM, Chen Z, et al. Differentiation-dependent expression of growth regulatory cytokines and their receptors in squamous cell carcinomas of the head and neck. Anticarcinoma Res 1999;19(4C):3623-6.
    
    39. Naismith JH, Sprang SR. Tumor necrosis factor receptor superfamily. J Inflamm 1995-96;47(1-2):1-7. Review.
    
    40. Neuner P, Pourmojib M, Klosner G, et al. Increased release of the tumour necrosis factor receptor p75 by immortalized human keratinocytes results??from an activated shedding mechanism and is not related to augmented steady-state levels of p75 mRNA. Arch Dermatol Res 1996 Oct; 288(11): 691-6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700