人乳头瘤病毒(HPV)在中国食管癌中的检测以及HPV16 E7作用机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Detection of Human Papillomavirus in Chinese Esophageal Cancer Samples and Studies on Mechanism of HPV16 E7
  • 作者:周晓波
  • 论文级别:博士
  • 学科专业名称:细胞生物学
  • 学位年度:2003
  • 导师:徐宁志
  • 学科代码:071009
  • 学位授予单位:中国协和医科大学
  • 论文提交日期:2003-05-01
摘要
恶性肿瘤是严重危害人类健康的疾病之一,虽然经过各国科学家多年的努力,取得了许多可喜的成绩,但许多肿瘤的发病原因与发病机制至今仍然没有确切的答案。可以肯定的是,肿瘤的发生是一个多因素作用、多基因参与、经过多个阶段才最终形成的极其复杂的生物学过程。而感染因素作为肿瘤发生过程中一个比较重要的因素,越来越多地受到了人们的关注。人乳头瘤病毒(human papillomavirus,HPV)就是一类与多种肿瘤发生相关的感染因素。它与宫颈癌因果关系的确定大大推动了宫颈癌预防与治疗的进展,使得宫颈癌成为最有希望通过疫苗接种而得到控制的第一个人类恶性肿瘤。
     除宫颈癌之外,HPV感染还可能与头颈部肿瘤及食管癌等其他肿瘤的发生相关,如果这些肿瘤与HPV的关系得到进一步确证,将会大大扩大HPV疫苗对肿瘤的有效预防范围,而食管癌又是我国的高发肿瘤之一,因此,很有必要对二者相关性作深入的研究。
     为进一步确定HPV在我国食管癌中的作用,我们选取来自中国两个不同高发区(安阳与山西)的食管癌标本48例以及医科院肿瘤医院的食管癌30例(代表非高发区的群体)作为研究对象。针对HPV16 E6基因及其产物作检测,用PCR,原位杂交,免疫组化三种方法从DNA,mRNA,蛋白三个水平检测病毒感染及表达状况。研究对象包括78例食管鳞癌组织与23例癌旁“正常”食管上皮组织。结果显示:首先,HPV感染率具有明显的地域性差异。HPV感染率依次为安阳最高,其次为山西,而北京的最低。北京收诊病人来自全国各地,总体上代表了来自非高发区的病人群体,免疫组化方法检测仅有一例病毒癌蛋白E6阳性。其次,从三种方法的分析来看,来自安阳与山西的食管癌中有65%PCR阳性;而且,在PCR检测了HPV DNA基础之上,病毒DNA阳性的病例中大约三分之二被原位杂交证实为病毒的mRNA也为阳性。而病毒的E6蛋白的阳性率经免疫组化证实并没有其mRNA表达频率那么高,但也占出现了HPV16感染的肿瘤组织的40%(13/31)。第三,在检测癌旁所谓“正常”上皮细胞时,也可检出HPV病毒,说明病理上诊断为形态正常的上皮很有可能已经发生了微观的病变。
     然后,我们对HPV16重要的癌蛋白之一,E7的作用机制进行探讨,主要从引起
The malignant tumor is one of the most serious diseases that endangering people's health. After years of hard work, the scientists have achieved a great number of breakthroughs in the basic research of carcinogenesis, while the exact reasons and mechanism of tumors are not completely known. But it is sure that the development of tumor is a very complex biological process with multifactor and many genes involved. And the virus infection as one of the most important factors among these is attracting more and more attention upon it. Human Papillomavirus (HPV) is a good example, which is believed to relate with many kinds of human tumors. After HPV was confirmed as the definite cause for cervical cancer, the prevention and therapy of cervical cancer were highly pushed forward. So the cervical cancer would possibly become the first tumor that could be controlled completely by vaccination.
    Besides cervical cancer, the HPV infection also related with head and neck cancer, esophageal cancer and so on. If the relationship between HPV and other tumors was confirmed, the application of HPV vaccine will be expanded. While the incidence of esophageal cancer in China is high, it would be beneficial to study the relationship between HPV and Chinese esophageal cancers further though it has been a controversial question for long time.
    To investigate the putative role of human papillomavirus (HPV) infection in the carcinogenesis of esophageal cancers in China, we studied the infection rate of HPV in 78 esophageal cancer cases from North China. Among them 48 cases were from high-incidence regions (Anyang city and Shanxi province) and 30 from non-high incidence region (Beijing). And the 23 cancers from Shanxi had the corresponded paracancer epithelium as normal control. All the samples were detected for the existence of HPV 16 DNA by PCR, mRNA in situ hybridization (ISH) and immunohistochemistry (IHC) targeting HPV16 E6 gene. As a result, the infection rate varied with different sample sources: Anyang had the highest HPV16 positive rate, with Shanxin in the middle, Beijing the least. From these two high-incidence regions, there
引文
1. zur Hausen H. Papillomaviruses in anogenital cancer as a model to understand the role of viruses in human cancers. Cancer Res 1989; 49: 4677-4681.
    2. Garland SM. Human papillomavirus update with a particular focus on cervical disease. Pathology 2002; 34: 213-24
    3. McGlennen RC. Human papillomavirus oncogenesis. Clin Lab Med 2000; 20: 383-406
    4. Alani RM, Munger K. Human papillomaviruses and associated malignancies. J Clin Oncol 1998; 16: 330-7
    5. Ishiji T. Molecular mechanism of carcinogenesis by human papillomavirus-16. J Dermatol 2000; 27: 73-86
    6. Allen AL, Siegfried EC. What's new in human papillomavirus infection. Curr Opin Pediatr. 2000; 12: 365-9.
    7. zur Hausen H. Papillomaviruses and cancer: from basic studies to clinical application. Nature Reviews Cancer 2002; 2: 342-350
    8. Meisels A, Roy M, Fortier M, Morin C, Casas-Cordero M, Shah KV, Turgeon H. Human papillomavirus infection of the cervix: the atypical condyloma. Acta Cytol. 1981; 25: 7-16
    9. zur Hausen, H., Meinhof, W., Scheiber, W. & Bornkamm, G. W.Attempts to detect virus-specific DNA sequences in human tumors: I. Nucleic acid hybridizations with complementary RNA of human wart virus. Int. J. Cancer 1974; 3: 650-656.
    10. zur Hausen, H. Condylomata acuminata and human genital cancer. Cancer Res. 1976, 36: 530.
    11. zur Hausen, H. Human papilloma viruses and their possible role in squamous cell carcinomas. Curr. Top. Microbiol. Immunol. 1977; 8: 1-30.
    12. Meisels A, Fortin R. Condylomatous lesions of the cervix and vagina. I. Cytologic patterns. Acta Cytol. 1976; 20: 505-509.
    13. Orth G, Favre M, Croissant O. Characterization of a new type of human papillomavirus that causes skin warts. J. Virot. 1977; 24: 108-120.
    14. Gissmann L, zur Hausen H. Partial characterization of viral DNA from human genital warts (condylomata acuminata). Int. J. Cancer 1980; 25: 605-609.
    15. Munger K. The molecular biology of cervical cancer. J Cell Biochem Suppl. 1995; 23: 55-60.
    16. Munger K, Scheffner M, Huibregtse JM, Howley PM. Interactions of HPV E6 and E7 oncoproteins with tumour suppressor gene products. Cancer Surv. 1992; 12: 197-217.
    17. zur Hausen H. Papillomaviruses causing cancer: evasion from host-cell control in early events in carcinogenesis. J Natl Cancer Inst. 2000; 92: 690-8.
    18. zur Hausen H. Immortalization of human cells and their malignant conversion by high risk human papillomavirus genotypes. Semin Cancer Biol. 1999; 9: 405-11.
    19. Gillison ML, Koch WM, Capone RB, Spafford M, Westra WH, Wu L, Zahurak ML, Daniel RW,Viglione M, Symer DE, Shah KV, Sidransky D. Evidence for a causal association between human papillomavirus and a subset of head and neck cancers. J Natl Cancer Inst 2000; 92: 709-20
    20. Szentirmay Z, Szanto I, Balint I, Polus K, Remenar E, Tamas L, Szentkuti G, Melegh Z, Nagy P, Kasler M. Causal association between human papilloma virus infection and head and neck and esophageal squamous cell carcinoma. Magy Onkol 2002; 46: 35-41
    21. Zumbach K, Hoffmann M, Kahn T, Bosch F, Gottschlich S, Gorogh T, Rudert H, Pawlita M Antibodies against oncoproteins E6 and E7 of human papillomavirus types 16 and 18 in patients with head-and-neck squamous-cell carcinoma. Int J Cancer, 2000; 85: 815-818
    22. Hemminki K, Jiang Y, Dong C Second primary cancers after anogenital, skin, oral, esophageal and rectal cancers: etiological links? Int J Cancer, 2001; 93: 294-298
    23. Lam KY, He D, Ma L, Zhang D, Ngan HY, Wan TS, Tsao SW Hum Presence of human papillomavirus in esophageal squamous cell carcinomas of Hong Kong Chinese and its relationship with p53 gene mutation. Pathol 1997; 28: 657-63
    24. Ludwig M, Kochel HG, Fischer C, Ringert RH, Weidner W. Human papillomavirus in tissue of bladder and bladder carcinoma specimens. A preliminary study. Eur Urol. 1996; 30: 96-102.
    25. Mvula M, Iwasaka T, Iguchi A, Nakamura S, Masaki Z, Sugimori H. Do human papillomaviruses have a role in the pathogenesis of bladder carcinoma? J Urol. 1996; 155: 471-4.
    26. Cupp MR, Malek RS, Goellner JR, Espy MJ, Smith TF. Detection of human papillomavirus DNA in primary squamous cell carcinoma of the male urethra. Urology. 1996; 48: 551-5.
    27. Lowy DR, Schiller JT Papillomaviruses and Cervical Cancer: Pathogenesis and Vaccine Development. J Natl Cancer Inst 1998; 23: 27-30.
    28. Lowy DR, Kirnbauer R, Schiller JT Genital Human Papillomavirus Infection. Proc Natl Acad Sci U S A. 1994; 91: 2436-2440,
    29. Ling M, Kanayama M, Roden R, Wu TC. Preventive and therapeutic vaccines for human papillomavirus-associated cervical cancers. J Biomed Sci. 2000; 7: 341-56.
    30. Koutsky LA, Ault KA, Wheeler CM, Brown DR, Barr E, Alvarez FB, Chiacchierini LM, Jansen KU. A controlled trial of a human papillomavirus type 16 vaccine.N Engl J Meal. 2002; 347: 1645-51
    31. Cornelison TL. Human papillomavirus genotype 16 vaccines for cervical cancer prophylaxis and treatment. Curt Opin Oncol. 2000; 12: 466-73.
    32. Scheffner M, Romanczuk H, Munger K, Huibregtse JM, Mietz JA, Howley PM. Functions of human papillomavirus proteins. Curr Top Microbiol Immunol. 1994; 186: 83-99.
    33. Huibregtse JM, Beaudenon SL. Mechanism of HPV E6 proteins in cellular transformation. Semin Cancer Biol 1996; 7: 317-26
    34. zur Hausen H. Papillomavirus infections-a major cause of human cancers. Biochim Biophys Acta 1996; 1288: F55-78
    35. Jones DL, Munger K. Interactions of the human papillomavirus E7 protein with cell cycle regulators.Semin Cancer Biol. 1996; 7(6): 327-37.
    36. Munger K, Wemess BA, Dyson N, Phelps WC, Harlow E, Howley PM. Complex formation of human papillomavirus E7 proteins with the retinoblastoma tumor suppressor gene product. EMBO J. 1989, 8: 4099-105.
    37. Werness BA, Levine AJ, Howley PM. Association of human papillomavirus types 16 and 18 E6 proteins with p53. Science 1990; 248: 76-79.
    38. Hawley-Nelson P, Vousden KH, Hubbert NL, Lowy DR, Schiller JT. HPV 16 E6 and E7 proteins cooperate to immortalize human foreskin keratinocytes. EMBO J. 1989; 8: 3905-3910.
    39. Kiyono T. Both Rb/p16INK4a inactivation and telomerase activity are required to immortalize human epithelial cells. Nature 1998; 396: 84-88.
    40. Zerfass K, Schulaze A, Spitkovsky D, Friedman V, Henglein B, Jansen-Durr P. Sequential activation of Cyclin E and Cyclin A gene expression by human papillomavirus Type 16 E7 through sequences necessary for transformation. J Viro, 1995; 69: 6389-6399
    41. Thomas M, Banks L. Inhibition of BAK-induced apoptosis by HPV-18 E6. Oncogene 1998; 17: 2943-2954.
    42. Puthenveettil JA, Frederickson SM, Reznikoff CA. Apoptosis in human papillomavirus16 ET-, but not E6-immortalized human uroepithelial cells. Oncogene 1996; 13: 1123-31
    43. Munger K. The role of human papillomaviruses in human cancers. Front Biosci. 2002 Mar 1; 7: d641-9.
    44. Jones DL, Alani RM, Munger K. The human papillomavirus E7 oncoprotein can uncouple cellular differentiation and proliferation in human keratinocytes by abrogating p21Cip1-mediated inhibition of cdk2. Genes Dev. 1997; 11: 2101-11.
    45. Lopez-Borges S, Gallego MI, Lazo PA. Recurrent integration of papillomavirus DNA within the human 12q14-15 uterine breakpoint region in genital carcinomas. Genes Chromosomes Cancer 1998; 23: 55-60
    46. Wang L, Darling J, Zhang JS, Qian CP, Hartmann L, Conover C, Jenkins R, Smith DI. Frequent homozygous deletions in the FRA3B region in tumor cell lines still leave the FHIT exons intact. Oncogene 1998; 16: 635-42
    47. Wilke CM, Hall BK, Hoge A, Paradee W, Smith DI, Glover TW FRA3B extends over a broad region and contains a spontaneous HPV16 integration site: direct evidence for the coincidence of viral integration sites and fragile sites. Hum Mol Genet 1996; 5: 187-95
    48. Wells SI, Francis DA, Karpova AY, Dowhanick JJ, Benson JD, Howley PM. Papillomavirus E2 induces senescence in HPV-positive cells via pRB- and p21(CIP)-dependent pathways. EMBO J 2000; 19: 5762-71
    49. Francis DA, Schmid SI, Howley PM Repression of the integrated papillomavirus E6/E7 promoter is required for growth suppression of cervical cancer cells. J Virol 2000, 74: 2679-86
    50. Woodworth CD. HPV innate immunity. Front Biosci 2002; 7: d2058-71
    51. Hildesheim A, Wang SS. Host and viral genetics and risk of cervical cancer: a review. Virus Res 2002;89: 229-40
    52. Cox JT. Management of precursor lesions of cervical carcinoma: history, host defense, and a survey of modalities. Obstet Gynecol Clin North Am 2002; 29: 751-85
    53. Parkin DM, Pisani P, Ferlay J. Estimates of the worldwide incidence of 25 mauor cancers in 1990. Int J Cancer, 1999; 80: 827-841
    54. Sanclemente G, Gill DK. Human papillomavirus molecular biology and pathogenesis. J Eur Acad Dermatol Venereol 2002; 16: 231-40
    55. Laverty CR, Rossell P, Hills E. The significance of noncondylomatous wart virus infection of the cervical transformation zone: a review with discussion of two illustrative cases. Acta Cytol 1978; 22: 195-201.
    56. Einstein MH, Goldberg GL. Human papillomavirus and cervical neoplasia. Cancer Invest 2002; 20: 1080-5
    57. Nasiell K, Nasiell M, Vaclavinkova V. Behavior of moderate cervical dysplasia during long-term follow-up. Obstet Gynecol, 1983; 61: 609-614.
    58. Nasiell K, Roger V, Nasiell M. Behavior of mild cervical dysplasia during long term follow-up. Obstet Gynecol, 1986; 67: 664-669.
    59. Campion MJ, McCance DJ, Cuzick DJ. Progressive potential of mild cervical atypia: prospective cytological, colposcopic, and virological study. Lancet 1986, 2: 237-240.
    60. Kataja V, Syrjanen K, Syrjanen S. Prospective follow-up of genital HPV infections: survival analysis of the HPV typing data. Eur J Epidemiol 1990; 6: 9-14.
    61. Cuzick J, Terry GH, Hollingworth T. Human papillomavirus type 16 DNA in cervical smears as a predictor of high-grade cervical intraepithelial neoplasia. Lancet 1992; 339: 959-960.
    62. Morrison EA, Ho GY, Vermund SH, Goldberg GL, Kadish AS, Kelley KF, Burk RD. Human papillomavirus infection and other risk factors for cervical neoplasia: a case-control study. Int J Cancer, 1991; 49: 6-13.
    63. zur Hausen H. Human Pathogenic Papillomaviruses. Heidelberg: Springer-Verlag. Current Topics in Microbiology and Immunology, 1994; 186
    64. Wang DX, Li W. Advances in esophageal neoplasms etiology. Shijie Huaren Xiaohua Zazhi, 2000; 8: 1029-1031
    65. Chang F, Syrjanen S, Wang L, Syrjanen K. Infectious agents in the etiology of esophageal cancer. Gastroenterology, 1992; 103: 1336-1348
    66. Syrjanen KJ. Histological changes identical to those of condylomatous lesions found in esophageal squamous cell carcinomas. Arch Geschwustforsch, 1982; 52: 283-292
    67. Mosca S, Manes G, Monaco R, Bellomo PF, Bottino V, Balzano A. Squamous papilloma of the esophagus: long-term follow up. J Gastroenterol Hepatol 2001; 16: 857-61
    68. Chang F, Syrjanen S, Shen Q, Cintorino M, Santopietro R, Tosi P, Syrjanen K: Human papillomavirusinvolvement in esophageal carcinogenesis in the high-incidence area of China. A study of 700 cases by screening and type-specific in situ hybridization Scand J Gastroenterol, 2000; 35: 123-130
    69. Chang F, Syrjanen S, Shen Q. Human papillomavirus(HPV) DNA in esophageal precancer lesions and squamous cell carcinomas from China. Int J Cancer, 1990; 45: 21-25
    70. Ravakhah K, Midamba F, West BC. Esophageal papillomatosis from human papilloma virus proven by polymerase chain reaction. Am J Med Sci, 1998; 316: 285-288
    71. Takahashi A, Ogoshi S, Ono H, Ishikawa T, Toki T, Ohmori N, Iwasa M, Iwasa Y, Furihata M, Ohtsuki Y High-risk human papillomavirus infection and overexpression of p53 protein in squamous cell carcinoma of the esophagus from Japan Dis Esophagus 1998; 11: 162-7
    72. Syrjanen KJ. HPV infections and oesophageal cancer. J Clin Pathol, 2002; 55: 721-728
    73. Sobti RC, Kochar J, Singh K, Bhasin D, Capalash N. Telomerase activation and incidence of HPV in human gastrointestinal tumors in North Indian population. Mol Cell Biochem, 2001; 217: 51-56
    74. Benamouzig R, Jullian E, Chang F, Robaskiewicz M, Flejou JF, Raoul JL, Coste T, Couturier D, Pompidou A, Rautureau J Absence of human papillomavirus DNA detected by polymerase chain reaction in French patients with esophageal carcinoma J Gastroenterology, 1995; 109: 1876-1881.
    75. Poljak M, Cerar A, Seme K. Human papillomavirus infection in esophageal carcinomas: a study of 121 lesions using multiple broad-spectrum polymerase chain reactions and literature review. Hum Pathol, 1998; 29: 266-271
    76. Lagergren J, Wang Z, Bergstrom R. Human papillomavirus infection and esophageal cancer: a nationwide seroepidemiologic case-control study in Sweden. J Natl Cancer Inst 1999; 91: 156-162
    77. Lambot MA, Haot J, Peny MO. Evaluation of the role of human papillomavirus in oesophageal squamous cell carcinoma in Belgium. Acta Gastroenterol Belg 2000; 63: 154-156
    78. Chang F, Janatuinen E, Pikkarainen P, Syrjanen S, Syrjanen K Esophageal squamous cell papillomas. Failure to detect human papillomavirus DNA by in situ hybridization and polymerase chain reaction. Scand J Gastroenterol, 1991; 26: 535-543
    79. Toh Y, Kuwano H, Tanaka S, Baba K, Matsuda H, Sugimachi K, Mori R. Detection of human papillomavirus DNA in esophageal carcinoma in Japan by polymerase chain reaction. Cancer 1992; 70: 2234-8
    80. Lu Z, Chen K, Guo M. Detection of HPV in human esophageal cancer in high-incidence area and its correlation with p53 expression. Zhonghua Zhong Liu Za Zhi. 2001; 23: 220-3.
    81. Matsha T, Erasmus R, Kafuko AB, Mugwanya D, Stepien A, Parker MI; Human papillomavirus associated with oesophageal cancer. J Clin Pathol 2002; 55: 587-90
    82. Griffiths TR, Mellon JK. Human papillomavirus and urological tumours: II. Role in bladder, prostate, renal and testicular cancer. BJU Int. 2000; 85: 211-7.
    83. Simoneau M, LaRue H, Fradet Y. Low frequency of human papillomavirus infection in initial papillary bladder tumors. Urol Res. 1999; 27: 180-4.
    84. Tekin MI, Tuncer S, Aki FT, Bilen CY, Aygun C, Ozen H. Human papillomavirus associated with bladder carcinoma? Analysis by polymerase chain reaction. Int J Urol. 1999; 6: 184-6.
    85. De Gaetani C, Ferrari G, Righi E, Bettelli S, Migaldi M, Ferrari P, Trentini GP. Detection of human papillomavirus DNA in urinary bladder carcinoma by in situ hybridisation. J Clin Pathol. 1999; 52: 103-6.
    86. Tenti P, Zappatore R, Carnevali L. Lack of evidence for a role of human papillomaviruses in transitional cell carcinoma of the bladder. J Urol. 1999; 161: 1582.
    87. McInerney PD, Koffman CG, Mundy AR. Human papillomavirus-related bladder cancer following renal transplantation Br J Urol. 1993; 72: 663-4.
    88. Boucher NR, Anderson JB. Human papillomavirus and bladder cancer. Int Urogynecol J Pelvic Floor Dysfunct. 1997; 8: 354-7.
    89. Chan KW, Wong KY, Srivastava G. Prevalence of six types of human papillomavirus in inverted papilloma and papillary transitional cell carcinoma of the bladder: an evaluation by polymerase chain reaction. J Clin Pathol. 1997; 50: 1018-21.
    90. Aynaud O, Tranbaloc P, Orth G.. Lack of evidence for a role of human papillomaviruses in transitional cell carcinoma of the bladder. J Urol. 1998; 159: 86-90.
    91. Lopez-Beltran A, Escudero AL. Human papillomavirus and bladder cancer. Biomed Pharmacother. 1997; 51: 252-7.
    92. Cooper K, Haffajee Z, Taylor L. Human papillomavirus and schistosomiasis associated bladder cancer. Mol Pathol. 1997 Jun; 50: 145-8.
    93. Suzuki H, Komiya A, Aida S, Ito H, Yatani R, Shimazaki J. detection of human papllomavirus DNA and p53 gene mutations in human prostate cancer. Prostate, 1996; 28: 318-324
    94. Dillner J, Knekt P, Noman J. Sero-epidemiological association between human papillomavirus infection and risk of prostate cancer. Int J Cancer 1998, 75: 564-567
    95. Kuwahara M, Fujisaki N, Kagawa S, Furihata M, Ohtsuki Y. Determination of p53 protein and high-risk human papillomavirus DNA in carcinomas of the renal pelvis and ureter. Int J Mol Med. 1998; 1: 703-7.
    96. Grce M, Furcic I, Hrascan R, Husnjak K, Krhen I, Marekovic Z, Zeljko Z, Pavelic K. Human papillomaviruses are not associated with renal carcinoma. Anticancer Res. 1997; 17: 2193-6.
    97. Szentirmay Z, Szanto I, Balint I, Polus K, Remenar E, Tamas L, Szentkuti G, Melegh Z, Nagy P, Kasler M. Causal association between human papilloma virus infection and head and neck and esophageal squamous cell carcinoma. Magy Onkol 2002; 46: 35-41
    98. Wong DT, Munger K. Association of human papillomaviruses with a subgroup of head and neck squamous cell carcinomas. J Natl Cancer Inst. 2000; 92: 675-7.
    99. Orth G, Jablonska S, Favre M, Croissant O, Jarzabek-Chorzelska M., Rzesa G. Characterization of two types of human papillomavirus in lesions of epidermodysplasia verruciformis. Proc Natl Acad Sci U S A., 1978; 75: 1537-1541
    100. Lazo PA The molecular genetics of cervical carcinoma. Br J Cancer 1999; 80(12): 2008-18
    101. Mincheva A, Gissmann L, zur Hausen H. Chromosomal integration sites of human papillomavirus DNA in three cervical cancer cell lines mapped by in situ hybridization. Med Microbiol Immunol (Berl). 1987; 176: 245-56.
    102. Steele C, Cowsert LM, Shillitoe EJ. Effects of human papillomavirus type-18-specific antisense oligonucleotides on the transformed phenotype of human carcinoma cell lines. Cancer Res, 1993; 53: 2330-2337
    103. Dowhanick JJ, McBride AA, Howley PM.Supressionof cellular proloferation by the papillomavirus E2 protein. J Virol, 1995, 69: 7791-7799
    104. Jiang M, Milner J. Selective silencing of viral gene expression in HPV-positive human cervical carcinoma cells treated with siRNA, a primer of RNA interference. Oncogene. 2002; 21: 6041-8.
    105. Munger K. Disruption of oncogene/tumor suppressor networks during human carcinogenesis. Cancer Invest 2002; 20: 71-81
    106. Duensing S, Munger K. Human papillomaviruses and centrosome duplication errors: modeling the origins of genomic instability. Oncogene. 2002; 21: 6241-8.
    107. Thomas JT, Laimins LA. Human Papillomavirus Oncoproteins E6 and E7 Independently Abrogate the Mitotic Spindle Checkpoint J. Virol., February 1, 1998; 72: 1131-1137
    108. Finzer P, Aguilar-Lemarroy A, Rosl F. The role of human papillomavirus oncoproteins E6 and E7 in apoptosis. Cancer Lett. 2002, 188: 15-24.
    109. Hengstermann A, Linares LK, Ciechanover A, Whitaker N J, Scheffner M. Complete switch from Mdm2 to human papillomavirus E6-mediated degradation of p53 in cervical cancer cells. Proc Natl Acad Sci U S A, 2001; 98: 1218-1223
    110. Zwerschke W, Jansen-Durr P. Cell transformation by the E7 oncoprotein of human papillomavirus type 16: interactions with nuclear and cytoplasmic target proteins. Adv Cancer Res 2000; 78: 1-29
    111. Pei XF. The human papillomavirus E6/E7 genes induce discordant changes in the expression of cell growth regulatory proteins.. Carcinogenesis 1996; 17: 1395-401
    112. Nguyen DX, Westbrook TF, McCance DJ. Human papillomavirus type 16 E7 maintains elevated levels of the cdc25A tyrosine phosphatase during deregulation of cell cycle arrest. J Virol 2002; 76: 619-32
    113. Wu L, Goodwin EC, Naeger LK, Vigo E, Galaktionov K, Helin K, DiMaio D. E2F-Rb complexes assemble and inhibit cdc25A transcription in cervical carcinoma cells following repression of human papillomavirus oncogene expression. Mol Cell Biol 2000; 20: 7059-67
    114. Katich SC, Zerfass-Thome K, Hoffmann I. Regulation of the Cdc25A gene by the human papillomavirus Type 16 E7 oncogene. Oncogene 2001; 20: 543-50
    115. Hwang SG, Lee D, Kim J, Seo T, Choe J. Human Papillomavirus Type 16 E7 Binds to E2F1 and Activates E2F1-driven Transcription in a Retinoblastoma Protein-independent Manner. J Biol Chem2002; 277: 2923-30
    116. Noya F, Chien WM, Broker TR, Chow LT p21cip1 Degradation in differentiated keratinocytes is abrogated by costabilization with cyclin E induced by human papillomavirus E7. J Virol 2001; 75: 6121-34.
    117. Helt A-M, Funk JO, Galloway DA. Inactivation of both the Retinoblastoma Tumor Suppressor and p21 by the Human Papillomavirus Type 16 E7 Oncoprotein Is Necessary To Inhibit Cell Cycle Arrest in Human Epithelial Cells J Virol, 2002, 76: 10559-10568
    118. Westerbrok TF, Nguyen DX, Trash BR, McCance DJ. E7 abolishes raf-induced srrest via mislocation of p21~(cipl). Mol Cell Bio, 2002; 22: 7041-7052
    119. Tsao SW, Wong N, Wang X, Liu Y, Wan TS, Fung LF, Lancaster WD, Gregoire L, Wong YC. Nonrandom chromosomal imbalances in human ovarian surface epithelial cells immortalized by HPV 16-E6E7 viral oncogenes. Cancer Genet Cytogenet 2001; 130: 141-9
    120. Cottage A, Dowen S, Roberts I, Pett M, Coleman N, Stanley M. Early genetic events in HPV immortalised keratinocytes. Genes Chromosomes Cancer 2001; 30: 72-9
    121. Szuhai K, Bezrookove V, Wiegant J, Vrolijk J, Dirks RW, Rosenberg C, Raap AK, Tanke HJ. Simultaneous molecular karyotyping and mapping of viral DNA integration sites by 25-color COBRA-FISH.Genes Chromosomes Cancer 2000; 28: 92-7
    122. Thompson DA, Belinsky G, Chang TH, Jones DL, Schlegel R, Munger K. The human papillomavirus-16 E6 oncoprotein decreases the vigilance of mitotic checkpoints. Oncogene. 1997; 15: 3025-35.
    123. Duensing S, Duensing A, Flores ER, Do A, Lambert PF, Munger K. Centrosome abnormalities and genomic instability by episomal expression of human papillomavirus type 16 in raft cultures of human keratinocytes. J Virol. 2001; 75: 7712-6.
    124. Duensing S, Munger K. Centrosome abnormalities, genomic instability and carcinogenic progression. Biochim Biophys Acta. 2001; 1471: M81-8.
    125. Duensing S, Duensing A, Crum CP, Munger K. Human papillomavirus type 16 E7 oncoprotein-induced abnormal centrosome synthesis is an early event in the evolving malignant phenotype. Cancer Res. 2001; 61: 2356-60.
    126. Duensing S, Lee LY, Duensing A, Basile J, Piboonniyom S, Gonzalez S, Crum CP, Munger K. The human papillomavirus type 16 E6 and E7 oncoproteins cooperate to induce mitotic defects and genomic instability by uncoupling centrosome duplication from the cell division cycle.Proc Natl Acad Sci U S A. 2000; 97: 10002-7.
    127. Xu C, Meikrantz W, Schlegel R, Sager R The Human Papilloma Virus 16E6 Gene Sensitizes Human Mammary Epithelial Cells to Apoptosis Induced by DNA Damage. Proc Natl Acad Sci U S A, 1995, 92: 7829-7833
    128. Pan H, Griep AE. Temporal distinct patterns of p53-dependent and p53-independent apoptosis duringmouse lens development. Genes Dv, 1995; 9: 2157-2169
    129. Basile JR, Zacny V, Munger K. The cytokines tumor necrosis factor-alpha (TNF-alpha) and TNF-related apoptosis-inducing ligand differentially modulate proliferation and apoptotic pathways in human keratinocytes expressing the human papillomavirus-16 E7 oncoprotein. J Biol Chem. 2001; 276: 22522-8.
    130. Koivusalo R, Krausz E, Ruotsalainen P, Helenius H, Hietanen S. Chemoradiation of cervical cancer cells: targeting human papillomavirus E6 and p53 leads to either augmented or attenuated apoptosis depending on the platinum carrier ligand. Cancer Res. 2002; 62: 7364-71.
    131. Leger C, Drobetsky EA. Modulation of the DNA damage response in UV-exposed human lymphoblastoid cells through genetic-versus functional-inactivation of the p53 tumor suppressor. Carcinogenesis. 2002; 23: 1631-9.
    132. Chen QM, Merrett JB, Dilley T, Purdom S. Down regulation of p53 with HPV E6 delays and modifies cell death in oxidant response of human diploid fibroblasts: an apoptosis-like cell death associated with mitosis. Oncogene. 2002; 21: 5313-24
    133. Hickman ES, Bates S, Vousden KH. Perturbation of the p53 response by human papillomavirus type 16 E7. J Virol 1997; 71: 3710-3718
    134. Liu Y, McKalip A, Herman B Human papillomavirus type 16 E6 and HPV-16 E6/E7 sensitize human keratinocytes to apoptosis induced by chemotherapeutic agents: roles of p53 and caspase activation. J Cell Biochem 2000; 78: 334-49
    135. Loignon M, Drobetsky EA. The initiation of UV-induced G(1) arrest in human cells is independent of the p53/p21/pRb pathway but can be attenuated through expression of the HPV E7 oncoprotein. Carcinogenesis 2002; 23: 35-45
    136. Jones DL, Thompson DA, Munger K. Destabilization of the RB tumor suppressor protein and stabilization of p53 contribute to HPV type 16 E7-induced apoptosis. Virology. 1997; 239: 97-107.
    137. Thompson DA, Zacny V, Belinsky GS, Classon M, Jones DL, Schlegel R, Munger K. The HPV E7 oncoprotein inhibits tumor necrosis factor alpha-mediated apoptosis in normal human fibroblasts. Oncogene. 2001; 20: 3629-40.
    138. Stoppler H, Stoppler MC, Johnson E, Simbulan-Rosenthal CM, Smulson ME, Iyer S, Rosenthal DS, Schlegel R. The E7 protein of human papillomavirus type 16 sensitizes primary human keratinocytes to apoptosis. Oncogene 1998; 17: 1207-14
    139. Giarre M, Caldeira S, Malanchi I, Ciccolini F, Leao MJ, Tommasino M. Induction of pRb degradation by the human papillomavirus type 16 E7 protein is essential to efficiently overcome p16INK4a-imposed G1 cell cycle Arrest. J Virol 2001; 75(10): 4705-12
    140. Munger K, Basile JR, Duensing S, Eichten A, Gonzalez SL, Grace M, Zacny VL. Biological activities and molecular targets of the human papillomavirus E7 oncoprotein. Oncogene. 2001; 20: 7888-98.
    141. Lee WT, Lee SH, Carriedo SG, Giffard RG, Yoon YJ, Kim JH, Park KA, Lee JE. UV-vulnerability of human papilloma virus type-16 E7-expressing astrocytes is associated with mitochondrial membranedepolarization and caspase-3 activation. Mol Cells. 2002; 14: 288-94
    142. Nees M, Geoghegan JM, Hyman T, Frank S, Miller L, Woodworth CD Papillomavirus type 16 oncogenes downregulate expression of interferon-responsive genes and upregulate proliferation-associated and NF-kappaB-responsive genes in cervical keratinocytes. J Virol 2001; 75: 4283-96
    143. Kinoshita T, Shirasawa H, Shino Y, Moriya H, Desbarats L, Eilers M, Simizu B. Transactivation of prothymosin alpha and c-myc promoters by human papillomavirus type 16 E6 protein. Virology. 1997; 232: 53-61.
    144. Huang SM, McCance DJ Down Regulation of the Interleukin-8 Promoter by Human Papillomavirus Type 16 E6 and E7 through Effects on CREB Binding Protein/p300 and P/CAF J Virol 2002, 76: 8710-8721
    145. Lopez-Ocejo O, Viloria-Petit A, Bequet-Romero M, Mukhopadhyay D, Rak J, Kerbel RS. Oncogenes and tumor angiogenesis: the HPV-16 E6 oncoprotein activates the vascular endothelial growth factor (VEGF) gene promoter in a p53 independent manner. Oncogene 2000; 19: 4611-20
    146. Massimi P, Banks L Repression of p53 transcriptional activity by the HPV E7 proteins. Virology 1997; 227: 255-259
    147. Phillips AC, Vousden KH. Analysis of the interaction between human papillomavirus type 16 E7 and the TATA-binding protein, TBP. J Gen Virol 1997; 78: 905-909
    148. Eichten A, Westfall M, Pietenpol JA, Munger K. Stabilization and functional impairment of the tumor suppressor p53 by the human papillomavirus type 16 E7 oncoprotein. Virology. 2002; 295: 74-85.
    149. Munger K, Howley PM. Human papillomavirus immortalization and transformation functions. Virus Res. 2002; 89: 213-28.
    150. Sizemore N, Choo CK, Eckert RL, Rorke EA. Transcriptional regulation of the EGF receptor promoter by HPV16 and retinoic acid in human ectocervical epithelial cells. Exp Cell Res. 1998; 244: 349-56
    151. Finzer P, Kuntzen C, Soto U, zur Hausen H, Rosl F. Inhibitors of histone deacetylase arrest cell cycle and induce apoptosis in cervical carcinoma cells circumventing human papillomavirus oncogene expression. Oncogene. 2001; 20: 4768-76.
    152. Oh ST, Kyo S, Laimins LA. Telomerase activation by human papillomavirus type 16 E6 protein: induction of human telomerase reverse transcriptase expression through Myc and GC-rich Sp1 binding sites. J Virol. 2001; 75: 5559-66.
    153. Veldman T, Horikawa I, Barrett JC, Schlegel R. Transcriptional activation of the telomerase hTERT gene by human papillomavirus type 16 E6 oncoprotein. J Virol. 2001; 75: 4467-72
    154. DeFilippis RA, Goodwin EC, Wu L, DiMaio D. Endogenous human papillomavirus E6 and E7 proteins differentially regulate proliferation, senescence, and apoptosis in HeLa cervical carcinoma cells. J Virol. 2003; 77: 1551-63
    155. Aristizabal N, Cuello C, Correa P. The impact of vaginal cytology of cervical cancer risks in Cali,Colombia. Int J Cancer 1984; 34: 5-9.
    156. Koss LG. The Papnicolaou test for cervical detection: a triumph and a tragedy. JAMA 1989; 261: 737-43.
    157. Clarke EA, Anderson TW. Does screening by "Pap" smears help prevent cervical cancer? A case-control study. Lancet, 1997; 1-4.
    158. Richart RM. Screening. Cancer 1995; 76(suppl10): 1919-1927
    159. World Cancer Research Fund in Association with American Institute for Cancer Research. Food Nutrition and the Prevention of Cancer: a global perspective. First published by AICR 1997.
    160. Cuzick J, Sasieni P, Davies P, Adams J, Normand C, Frater A, van Ballegooijen M, van den Akker-van Marle E. A systematic review of the role of human papilloma virus (HPV) testing within a cervical screening programme: summary and conclusions. Br J Cancer. 2000, 83: 561-5.
    161. Tom C. Wright, Jr., Sue J. Goldie, Joanna M. Cain, Mary K. Howett .Screening for Cervical Cancer. Science 2000; 290: 1651
    162. David Sidransky Emerging molecular markers of cancer. Nature Reviews Cancer2002, 2: 210-219
    163. Miller AB. Quality assurance in screening strategies. Virus Res 2002; 89: 295-9
    164. Cestero RM, Harer WB Jr. Efficient triage of the "screen-positive" at-risk patient. Obstet Gynecol Clin North Am 2002, 29: 735-50
    165. von Knebel Doeberitz M. New markers for cervical dysplasia to visualise the genomic chaos created by aberrant oncogenic papillomavirus infections. Eur J Cancer 2002; 38: 2229-42
    166. Cox JT. Management of precursor lesions of cervical carcinoma: history, host defense, and a survey of modalities. Obstet Gynecol Clin North Am 2002; 29: 751-85
    167. Joanna M. Cain and Mary K. Howett Preventing Cervical Cancer Science 2000; 288: 1753-1755
    168. Marais D, Passmore JA, Maclean J, Rose R, Williamson AL. A recombinant human papillomavirus (HPV) type 16 L1-vaccinia virus murine challenge model demonstrates cell-mediated immunity against HPV virus-like particles. J. Gen. Virol. 1999; 80: 2471-2475.
    169. Suzich JA, Ghim SJ, Palmer-Hill FJ, White WI, Tamura JK, Bell JA, Newsome JA, Jenson AB, Schlegel R. Systemic immunization with papillomavirus L1 protein completely prevents the development of viral mucosal papillomas. Proc. Natl Acad. Sci. USA 1995; 92: 11553-11557.
    170. Breitburd F, Kirnbauer R, Hubbert NL, Nonnenmacher B, Trin-Dinh-Desmarquet C, Orth G, Schiller JT, Lowy DR. Immunization with virus-like particles from cottontail rabbit papillomavirus (CRPV) can protect against experimental CRPV infection. J. Virol. 1995; 69: 3959-3963.
    171. Plummer M, Franceschi S Strategies for HPV prevention. Virus Res 2002; 89: 285-93.
    172. Frazer I Vaccines for papillomavirus infection. Virus Res 2002; 89: 271-4
    173. Hrro CD. Safetly and immunogenicity trial in adult volunteers of a human papillomavirus 16 L1 virus-like particle vaccine. J Natl Cancer Inst, 2001, 93: 284-292
    174. Crum CP. The beginning of the end for cervical cancer? N Engl J Med. 2002 Nov 21; 347(21): 1703-5.
    175. Frank McCormick Cancer gene therapy: fringe or cutting edge? Nature Reviews Cancer, 2001; 1: 130-141
    176. Zanotti KM, Belinson J. Update on the diagnosis and treatment of human papillomavirus infection. Cleve Clin J Med 2002; 69: 948, 951-5.
    177. Borysiewicz LK, Fiander A, Nimako M, Man S, Wilkinson GW, Westmoreland D, Evans AS, Adams M, Stacey SN, Boursnell ME, Rutherford E, Hickling JK, Inglis SC. A recombinant vaccinia virus encoding human papillomavirus types 16 and 18, E6 and E7 proteins as immtmotherapy for cervical cancer. Lancet 1996; 347: 1523-7.
    178. Adams M, Borysiewicz L, Fiander A, Man S, Jasani B, Navabi H, Lipetz C, Evans AS, Mason M. Clinical studies of human papilloma virus vaccines in pre-invasive and invasive cancer. Vaccine 2001; 19: 2549-56.
    179. Woodworth CD, Notario V, DiPaolo JA. Transforming growth factor-β1 and 2 transcriptionally regulate human papillomavirus (HPV) type 16 early gene expression in HPV-immortalized human genital epithelial cells. J. Virol. 1990; 64: 4767-4775.
    180. Braun L, Dürst M, Mikumo R, Gruppuso P. Differential response of nontumorigenic and tumorigenic human papillomavirus type 16-positive epithelial cells to transforming growth factor-βI. Cancer Res. 1990; 50: 7324-7332.
    181. Malejczyk J, Malejczyk M, Majewski S, Breitburd F, Luger TA, Jablonska S, Orth G. Increased tumorigenicity of human keratinocytes harbouring human papillomavirus type 16 is associated with resistance to endogenous tumor necrosis factor-α-mediated growth limitation. Int J Cancer. 1994; 56: 593-8.
    182. Woodworth CD, McMullin E, Iglesias M, Plowman GD. Interleukin I and Tumor Necrosis Factor Stimulate Autocrine Amphiregulin Expression and Proliferation of Human Papillomavirus-Immortalized and Carcinoma-Derived Cervical Epithelial Cells. Proc Natl Acad Sci U S A., 1995, 92: 2840-2844.
    183. Gaiotti D, Chung J, Iglesias M, Nees M, Baker PD, Evans CH, Woodworth CD Tumor necrosis factor-alpha promotes human papillomavirus (HPV) E6/E7 RNA expression and cyclin-dependent kinase activity in HPV-immortalized keratinocytes by a ras-dependent pathway. Mol Carcinog 2000; 27: 97-109
    184. Lippman SM, Glisson BS, Kavanagh JJ, Lotan R, Hong WK, Paredes-Espinoza M, Hittelman WN, Holdener EE, Krakoff IH. Retinoic acid and interferon combination studies in human cancer. Eur J Cancer. 1993; 29A Suppt 5: S9-13.
    185. Andrei G, Snoek R, Schols D, De Clerq E. Induction of apoptosis by cidofovir in human papillomavirus (HPV)-positive cells. Oncol. Res. 2001, 12, 397-408.
    186. Butz K, Denk C, Ullmann A, Scheffner M, Hoppe-Seyler F. Induction of apoptosis in human papillomaviruspositive cancer cells by peptide aptamers targeting the viral E6 oncoprotein. PNAS, 2000; 97: 6693-6697
    1. Munoz N. Epidemiological aspects o f esophageal cancer. Endoscopy, 1993; 23: 609-612
    2. Chang F, Syrjanen S, Wang L, Syrjanen K. Infectious agents in the etiology of esophageal cancer. Gastroenterology, 1992; 103: 1336-1348
    3. Zur Hausen. Papillomavirus infections - a major cause of human cancers. Biochimica et Biophysica Acta. 1996; 1288: F55-F58
    4. Syrjanen KJ. Histological changes identical to those of condylomatous lesions found in esophageal squamous cell carcinomas. Arch Geschwustforsch, 1982; 52: 283-292
    5. Heino P, Eklund C, Fredriksson-Shanazarian V, Goldman S, Schiller JT, Dillner J. Association of serum immunoglobulin G antibodies against human papillomavirus type 16 caspids with anal epidermoid carcinoma. J Natl Cancer Inst, 1995; 87: 437-440
    6. Hemminki K, Jiang Y, Dong C Second primary cancers after anogenital, skin, oral, esophageal and rectal cancers: etiological links? Int J Cancer, 2001; 93: 294-298
    7. Zumbach K, Hoffmann M, Kahn T, Bosch F, Gottschlich S, Gorogh T, Rudert H, Pawlita M Antibodies against oncoproteins E6 and E7 of human papillomavirus types 16 and 18 in patients with head-and-neck squamous-cell carcinoma. Int J Cancer, 2000; 85: 815-818
    8. Agarwal SK, Chatterji A, Bhambhani S, Sharma BK Immunohistochemical co-expression of human papillomavirus type 16/18 transforming (E6) oncoprotein and p53 tumour suppressor gene proteins in oesophageal cancer. Indian J Exp Biol 1998; 36: 559-63
    9. Morgan RJ, Perry AC, Newcomb PV, Hardwick RH, Alderson D. Human papillomavirus and oesophageal squamous cell carcinoma in the UK. Eur J Surg Oncol 1997; 23: 513-7
    10. Lam KY, He D, Ma L, Zhang D, Ngan HY, Wan TS, Tsao SW Hum Presence of human papillomavirus in esophageal squamous cell carcinomas of Hong Kong Chinese and its relationship with p53 gene mutation. Pathol 1997; 28: 657-63
    11. Miller BA, Davidson M, Myerson D, Icenogle J, Lanier AP, Tan J, Beckmann AM Human papillomavirus type 16 DNA in esophageal carcinomas from Alaska Natives. HPV DNA was detected in 10 of 22 SCC. Int J Cancer 1997; 71: 218-22
    12. Talamini G, Capelli P, Zamboni G Alcohol, smoking and papillomavirus infection as risk factors for esophageal squamous-cell papilloma and esophageal squamous-cell carcinoma in Italy hat J Cancer, 2000; 86: 874-878
    13. Sobti RC, Kochar J, Singh K, Bhasin D, Capalash N. Telomerase activation and incidence of HPV in human gastrointestinal tumors in North Indian population. Mol Cell Biochem, 2001; 217: 51-56
    14. Han C, Qiao G, Hubbert NL, Li L, Sun C, Wang Y, Yan M, Xu D, Li Y, Lowy DR, Schiller JT. Serologic association between human papillomavirus type 16 infection and esophageal cancer in Shannxi province, China. J Natl Cancer Inst, 1996, 88: 1467-1471
    15. Bjorge T, Hakulinen T, Engeland A, Jellum E, Koskela P, Lehtinen M, Luostarinen T, Paavonen J, SappM, Schiller J, Thoresen S, Wang Z, Youngman L, Dillner J. A prospective, seroepidemiological study of the role of human papillomavirus in esophageal cancer in Norway. Cancer Res, 1997; 57: 3898-3992
    16. Tripodi S, Chang F, Syrjanen S, Shen Q, Cintorino M, Alia L, Santopietro R, Tosi P, Syrjanen K. Quantitative image analysis of oesophageal squamous cell carcinoma from the high-incidence area of China, with special reference to tumour progression and papillomavirus (HPV) involvement. Anticancer Res, 2000; 20: 3855-3862
    17. Kawaguchi H, Ohno S, Araki K, Miyazaki M, Saeki H, Watanabe M, Tanaka S, Sugimachi K. p53 polymorphism in human papillomavirus-associated esophageal cancer. Cancer Res, 2000; 60: 2753-2755
    18. Duensing S, Munger K. Human papillomaviruses and centrosome duplication errors: modeling the origins of genomic instability. Oncogene. 2002; 21: 6241-8.
    19. Fenech M. Chromosomal biomarkers of genomic instability relevant to cancer. Drug Discov Today 2002; 7: 1128-37
    20. Onyango P. Genomics and cancer. Curr Opin Oncol 2002; 14: 79-85
    21. Levitt NC, Hickson ID Caretaker tumour suppressor genes that defend genome integrity. Trends Mol Med 2002; 8: 179-86
    22. Michalides RJ, van de Brekel M, Balm F. Defects in G1-S cell cycle control in head and neck cancer: a review. Head Neck 2002; 24: 694-704
    23. Doxsey S. Duplicating dangerously: linking centrosome duplication and aneuploidy. Mol Cell 2002; 10: 439-40
    24. Kramer A, Neben K, Ho AD. Centrosome replication, genomic instability and cancer. Leukemia 2002; 16: 767-75
    25. D'Assoro AB, Lingle WL, Salisbury JL Centrosome amplification and the development of cancer. Oncogene 2002; 21: 6146-53
    26. Weaver Z, Montagna C, Xu X, Howard T, Gadina M, Brodie SG, Deng CX, Ried T. Mammary tumors in mice conditionally mutant for Brcal exhibit gross genomic instability and centrosome amplification yet display a recurring distribution of genomic imbalances that is similar to human breast cancer. Oncogene 2002; 21: 5097-107
    27. Pihan GA, Purohit A, Wallace J, Knecht H, Woda B, Quesenberry P, Doxsey SJ. Centrosome defects and genetic instability in malignant tumors. Cancer Res 1998; 58: 3974-85
    28. Pihan GA, Wallace J, Zhou Y, Doxsey SJ. Centrosome Abnormalities and Chromosome Instability Occur Together in Pre-invasive Carcinomas. Cancer Res 2003; 63: 1398-404
    29. Pihan GA, Purohit A, Wallace J, Malhotra R, Liotta L, Doxsey SJ Centrosome defects can account for cellular and genetic changes that characterize prostate cancer progression. Cancer Res 2001; 61: 2212-9
    30. Neben K, Giesecke C, Schweizer S, Ho AD, Kramer A. Centrosome aberrations in acute myeloid leukemia are correlated with cytogenetic risk profile. Blood 2003; 101: 289-91
    31. Sato N, Mizumoto K, Nakamura M, Maehara N, Minamishima YA, Nishio S, Nagai E, Tanaka M.Correlation between centrosome abnormalities and chromosomal instability in human pancreatic cancer cells. Cancer Genet Cytogenet 2001; 126: 13-9
    32. Xu X, Weaver Z, Linke SP, Li C, Gotay J, Wang XW, Harris CC, Ried T, Deng CX Centrosome amplification and a defective G2-M cell cycle checkpoint induce genetic instability in BRCA1 exon 11 isoform-deficient cells. Mol Cell 1999; 3: 389-95
    33. Montagna C, Andrechek ER, Padilla-Nash H, Muller WJ, Ried T Centrosome abnormalities, recurring deletions of chromosome 4, and genomic amplification of HER2/neu define mouse mammary gland adenocarcinomas induced by mutant HER2/neu. Oncogene 2002; 21: 890-8
    34. Nigg EA. Centrosome aberrations: cause or consequence of cancer progression? Nat Rev Cancer. 2002; 2: 815-25.
    35. D'Assoro AB, Lingle WL, Salisbury JL. Centrosome amplification and the development of cancer. Oncogene. 2002; 21: 6146-53
    36. Bill R. Brinkley Managing the centrosome numbers game: from chaos to stability in cancer cell division Trends in Cell Biology, 2001, 11: 18-21
    37. Sabina Solinas-Toldo, Matthias Dürst, and Peter Lichter. Specific chromosomal imbalances in human papillomavirus-transfected cells during progression toward immortality. Proc. Natl. Acad. Sci. USA 1997, 94: 3854-3859
    38. Skyldberg B, Fujioka K, Hellstrom AC, Sylven L, Moberger B, Auer G. Human papillomavirus infection, centrosome aberration, and genetic stability in cervical lesions. Mod Pathol. 2001; 14: 279-84.
    39. Harris CP, Lu XY, Narayan G, Singh B, Murty VV, Rao PH Comprehensive molecular cytogenetic characterization of cervical cancer cell lines. Genes Chromosomes Cancer 2003; 36: 233-41.
    40. Reznikoff CA, Belair C, Savelieva E, Zhai Y, Pfeifer K, Yeager T, Thompson KJ, DeVries S, Bindley C, Newton MA, Long-term genome stability and minimal genotypic and phenotypic alterations in HPV16 E7-, but not E6-, immortalized human uroepithelial cells. Genes Dev 1994; 8: 2227-40
    41. Hermsen M, Postma C, Baak J, Weiss M, Rapallo A, Sciutto A, Roemen G, Arends JW, Williams R, Giaretti W, De Goeij A, Meijer G. Colorectal adenoma to carcinoma progression follows multiple pathways of chromosomal instability. Gastroenterology 2002; 123: 1109-19
    42. Mahlamaki EH, Barlund M, Tanner M, Gorunova L, Hoglund M, Karhu R, Kallioniemi A. Frequent amplification of 8q24, 11q, 17q, and 20q-specific genes in pancreatic cancer. Genes Chromosomes Cancer 2002; 35: 353-8
    43. Watanabe T, Imoto I, Katahira T, Hirasawa A, Ishiwata I, Emi M, Takayama M, Sato A, Inazawa J. Differentially regulated genes as putative targets of amplifications at 20q in ovarian cancers. Jpn J Cancer Res 2002; 93: 1114-22
    44. Bayani J, Zielenska M, Pandita A, Al-Romaih K, Karaskova J, Harrison K, Bridge JA, Sorensen P, Thorner P, Squire JA. Spectral karyotyping identifies recurrent complex rearrangements of chromosomes 8, 17, and 20 in osteosarcomas. Genes Chromosomes Cancer 2003; 36: 7-16
    45. Aubele M, Auer G, Braselmann H, Nahrig J, Zitzelsberger H, Quintanilla-Martinez L, Smida J, Walch A, Hofler H, Werner M. Chromosomal imbalances are associated with metastasis-free survival in breast cancer patients. Anal Cell Pathol 2002; 24: 77-87
    46. Woodworth CD. HPV innate immunity. Front Biosci 2002; 7: d2058-71
    47. Wallach D., Varfolomeev E. E., Malinin N. L., Goltsev Yuri V., Kovalenko A. V. Boldin M. P. Tumor necrosis factor receptor and Fas signaling mechanisms. Annu. Rev. Immunol. 1999; 17: 331-67
    48. Lee WT, Lee SH, Carriedo SG, Giffard RG, Yoon YJ, Kim JH, Park KA, Lee JE UV-vulnerability of human papilloma virus type-16 E7-expressing astrocytes is associated with mitochondrial membrane depolarization and caspase-3 activation. Mol Cells 2002; 14: 288-94
    49. Loignon M, Drobetsky EA The initiation of UV-induced G(1) arrest in human cells is independent of the p53/p21/pRb pathway but can be attenuated through expression of the HPV E7 oncoprotein. Carcinogenesis 2002; 23: 35-45
    50. Jones DL, Thompson DA, Suh-Burgmann E, Grace M, Munger K Expression of the HPV E7 oncoprotein mimics but does not evoke a p53-dependent cellular DNA damage response pathway. Virology 1999; 258: 406-14
    51. Xu C, Meikrantz W, Schlegel R, Sager R The Human Papilloma Virus 16E6 Gene Sensitizes Human Mammary Epithelial Cells to Apoptosis Induced by DNA Damage. Proc Natl Acad Sci U S A., 1995, 92: 7829-7833
    52. Thompson DA, Zacny V, Belinsky GS, Classon M, Jones DL, Schlegel R, Munger K. The HPV E7 oncoprotein inhibits tumor necrosis factor alpha-mediated apoptosis in normal human fibroblasts. Oncogene. 2001; 20: 3629-40.
    53. Stoppler H, Stoppler MC, Johnson E, Simbulan-Rosenthal CM, Smulson ME, Iyer S, Rosenthal DS, Schlegel R. The E7 protein of human papillomavirus type 16 sensitizes primary human keratinocytes to apoptosis. Oncogene 1998; 17: 1207-14
    54. Liu Y, McKalip A, Herman B. Human papillomavirus type 16 E6 and HPV-16 E6/E7 sensitize human keratinocytes to apoptosis induced by chemotherapeutic agents: roles of p53 and caspase activation. J Cell Biochem 2000; 78: 334-49
    55. Iglesias M, Yen K, Gaiotti D, Hildesheim A, Stoler MH, Woodworth CD. Human papillomavirus type 16 E7 protein sensitizes cervical keratinocytes to apoptosis and release of interleukin-1 alpha. Oncogene 1998; 17: 1195-205
    56. Billecke CA, Ljungman ME, McKay BC, Rehemtulla A, Taneja N, Ethier SP. Lack of functional pRb results in attenuated recovery of mRNA synthesis and increased apoptosis following UV radiation in human breast cancer cells. Oncogene 2002; 21: 4481-9
    57. Carlson CA, Ethier SP. Lack of RB protein correlates with increased sensitivity to UV-radiation-induced apoptosis in human breast cancer cells. Radiat Res 2000; 154: 590-9
    58. Jones DL, Thompson DA, Munger K. Destabilization of the RB tumor suppressor protein andstabilization of p53 contribute to HPV type 16 E7-induced apoptosis. Virology 1997; 239: 97-107
    59. Liu Y, Hong Yihui, Androphy EJ., Chen Jason J. Rb-independent Induction of Apoptosis by Bovine Papillomavirus Type 1 E7 in Response to Tumor Necrosis Factor-a J Biol Chem, 2000; 275: 30894-900
    60. Guha M, Mackman N. The phosphatidylinositol 3-kinase-Akt pathway limits lipopolysaccharide activation of signaling pathways and expression of inflammatory mediators in human monocytic cells. J Biol Chem 2002; 277: 32124-32
    61. Hatano E, Brenner DA. Akt protects mouse hepatocytes from TNF-αlpha- and Fas-mediated apoptosis through NK-kappa B activation. Am J Physiol Gastrointest Liver Physiol 2001; 281: G1357-68
    62. Osawa Y, Nagaki M, Banno Y, Brenner DA, Asano T, Nozawa Y, Moriwaki H, Nakashima S. Tumor necrosis factor alpha-induced interleukin-8 production via NF-kappaB and phosphatidylinositol 3-kinase/Akt pathways inhibits cell apoptosis in human hepatocytes. Infect Immun 2002; 70: 6294-301
    63. Chen X, Thakkar H, Tyan F, Gim S, Robinson H, Lee C, Pandey SK, Nwokorie C, Onwudiwe N, Srivastava RK. Constitutively active Akt is an important regulator of TRAIL sensitivity in prostate cancer. Oncogene 2001; 20: 6073-83
    64. Li T, Lu ZM, Chen KN, Guo M, Xing HP, Mei Q, Yang HH, Lechner JF, Ke Y. Human papillomavirus type 16 is an important infectios factos in the high incidence of esophageal cancer in Anyang area of China. Carcinogensis, 2001, 22: 929-934
    65. Astori G, Merluzzi S, Arzese A, Brosolo P, de Pretis G, Maieron R, Pipan C, Botta GA. Detection of Human Papillomavirus DNA and p53 Gene Mutations in Esophageal Cancer Samples and Adjacent Normal Mucosa. Digestion 2001; 64: 9-14
    66. Kim KH, Yoon DJ, Moon YA, Kim YS. Expression and localization of human papillomavirus type 16 E6 and E7 open reading frame proteins in human epidermal keratinocyte. Yonsei Med J, 1994; 35: 1-9
    67. Zhou H, Kuang J, Zhong L, Kuo WL, Gray JW, Sahin A, Brinkley BR, Sen S. Tumour amplified kinase STK15/BTAK induces centrosome amplification, aneuploidy and transformation. Nat Genet. 1998; 20: 189-93
    68. Mimori-Kiyosue Y, Shiina N, Tsukita S. The dynamic behavior of the APC-binding protein EB1 on the distal ends of microtubules. Curr Biol. 2000; 10: 865-8.
    69. Borel F, Lohez OD, Lacroix FB, Margolis RL. Multiple centrosomes arise from tetraploidy checkpoint failure and mitotic centrosome clusters in p53 and Rb pocket protein-compromised cells. Proc Natl Acad Sci U S A., 2002, 99: 9819-9824
    70. Gritsko TM, Coppola D, Paciga JE, Yang L, Sun M, Shelley SA, Fiorica JV, Nicosia SV, Cheng JQ. Activation and Overexpression of Centrosome Kinase BTAK/Aurora-A in Human Ovarian Cancer. Clin Cancer Res. 2003; 9: 1420-6.
    71. Li D, Zhu J, Firozi PF, Abbruzzese JL, Evans DB, Cleary K, Friess H, Sen S. Overexpression of oncogenic STK 15/BTAK/Aurora A kinase in human pancreatic cancer. Clin Cancer Res. 2003; 9: 991-7.
    72. Sen S, Zhou H, Zhang RD, Yoon DS, Vakar-Lopez F, Ito S, Jiang F, Johnston D, Grossman HB, RuifrokAC, Katz RL, Brinkley W, Czemiak B. Amplification/overexpression of a mitotic kinase gene in human bladder cancer. J Natl Cancer Inst. 2002; 94: 1320-9.
    73. Miyoshi Y, Iwao K, Egawa C, Noguchi S. Association of centrosomal kinase STK15/BTAK mRNA expression with chromosomal instability in human breast cancers. Int J Cancer. 2001; 92: 370-3
    74. Brazil DP, Park J, Hemmings BA. PKB binding proteins. Getting in on the Akt. Cell 2002; 111: 293-303
    75. Neri LM, Borgatti P, Capitani S, Martelli AM. The nuclear phosphoinositide 3-kinase/AKT pathway: a new second messenger system. Biochim Biophys Acta 2002; 1584: 73-80
    76. Zhang P, Steinberg BM Overexpression of PTEN/MMAC1 and decreased activation of Akt in human papillomavirus-infected laryngeal papillomas. Cancer Res 2000; 60: 1457-62
    77. Cohen P, Frame S. The renaissance of GSK3. Nat Rev Mol Cell Biol. 2001; 2: 769-76.
    78. Hoeflich, K.P., Luo, J., Ruvie, E.A. Requirement for glycogen synthase kinase-3β in cell survival and NF-κB activation. Nature 2000, 406: 86-90.
    79. Shah SA, Potter MW, Hedeshian MH, Kim RD, Chari RS, Callery MP. PI-3' kinase and NF-kappaB cross-signaling in human pancreatic cancer cells. J Gastrointest Surg 2001; 5: 603-12
    80. Hatano E, Brenner DA. Akt protects mouse hepatocytes from TNF-alpha-and Fas-mediated apoptosis through NF-kappa B activation. Am J Physiol Gastrointest Liver Physiol 2001 Dec; 281(6): G1357-68
    81. Mosca S, Manes G, Monaco R, Bellomo PF, Bottino V, Balzano A. Squamous papilloma of the esophagus: long-term follow up. J Gastroenterol Hepatol 2001; 16: 857-61
    82. Chang F, Syrjanen S, Shen Q, Cintorino M, Santopietro R, Tosi P, Syrjanen K: Human papillomavirus involvement in esophageal carcinogenesis in the high-incidence area of China. A study of 700 cases by screening and type-specific in situ hybridization Scand J Gastroenterol, 2000; 35: 123-130
    83. Chang F, Syrjanen S, Shen Q, Ji HX, Syrjanen K. Human papillomavirus(HPV) DNA in esophageal precancer lesions and squamous cell carcinomas from China. Int J Cancer, 1990; 45: 21-25
    84. Ravakhah K, Midamba F, West BC. Esophageal papillomatosis from human papilloma virus proven by polymerase chain reaction. Am J Med Sci, 1998; 316: 285-288
    85. Takahashi A, Ogoshi S, Ono H, Ishikawa T, Toki T, Ohmori N, Iwasa M, Iwasa Y, Furihata M, Ohtsuki Y High-risk human papillomavirus infection and overexpression of p53 protein in squamous cell carcinoma of the esophagus from Japan Dis Esophagus 1998; 11: 162-7
    86. Syrjanen KJ. HPV infections and oesophageal cancer. J Clin Pathol, 2002; 55: 721-728
    87. Benamouzig R, Jullian E, Chang F, Robaskiewicz M, Flejou JF, Raoul JL, Coste T, Couturier D, Pompidou A, Rautureau J Absence of human papillomavirus DNA detected by polymerase chain reaction in French patients with esophageal carcinoma J Gastroenterology, 1995; 109: 1876-1881.
    88. Poljak M, Cerar A, Seme K. Human papillomavirus infection in esophageal carcinomas: a study of 121 lesions using multiple broad-spectrum polymerase chain reactions and literature review. Hum Pathol, 1998; 29: 266-271
    89. Lagergren J, Wang Z, Bergstrom R, Diliner J, Nyren O. Human papillomavirus infection and esophagealcancer: a nationwide seroepidemiologic case-control study in Sweden. J Natl Cancer Inst 1999; 91: 156-162
    90. Lambot MA, Haot J, Peny MO, Fayt I, Noel JC. Evaluation of the role of human papillomavirus in oesophageal squamous cell carcinoma in Belgium. Acta Gastroenterol Belg 2000; 63: 154-156
    91. Chang F, Janatuinen E, Pikkarainen P, Syrjanen S, Syrjanen K. Esophageal squamous cell papillomas. Failure to detect human papillomavirus DNA by in situ hybridization and polymerase chain reaction. Scand J Gastroenterol, 1991; 26: 535-543
    92. Toh Y, Kuwano H, Tanaka S, Baba K, Matsuda H, Sugimachi K, Mori R. Detection of human papillomavirus DNA in esophageal carcinoma in Japan by polymerase chain reaction. Cancer 1992; 70: 2234-8
    93. Saegusa M, Hashimura M, Takano Y, Ohbu M, Okayasu I. Absence of human papillomavirus genomic sequences detected by the polymerase chain reaction in oesophageal and gastric carcinomas in Japan. Mol Pathol 1997; 50: 101-4
    94. Mizobuchi S, Sakamoto H, Tachimori Y, Kato H, Watanabe H, Terada M Absence of human papillomavirus-16 and -18 DNA and Epstein-Barr virus DNA in esophageal squamous cell carcinoma. Jpn J Clin Oncol 1997; 27: 1-5
    95.吕丽春,沈忠英,游绍进,沈健,蔡唯佳。PCR和原位杂交检测食管癌组织中人乳头状瘤病毒。癌症 1999;2:162-164
    96.王瑞 李琰 张金文.食管癌组织中人乳头瘤病毒感染状况分析。山东医药 2002;42:19-20
    97. Si HX, Tsao SW, Poon CS, Wang LD, Wong YC, Cheung AL Viral load of HPV in esophageal squamous cell carcinoma. Int J Cancer 2003; 103: 496-500
    98. Sur M, Cooper K. The role of the human papilloma virus in esophageal cancer. Pathology 1998; 30: 348-354
    99. Lavergne D, de Villiers EM. Papillomavirus in esophageal papillomas and carcinomas. Int J Cancer, 1999; 80: 681-684
    100. Ma QF, Jiang H, Feng YQ, Wang XP, Zhou YA, Liu K, Jia ZL. Detection of human papillomavirus DNA in squamous cell carcinoma of the esophagus. Shijie Huaren Xiaohua Zazhi, 2000; 8: 1218-1224
    101. Liu J, Su Qin, Zhang W. Relationship between HPV-E6, p53 protein and esophageal squamous cell carcinoma. Shijie Huaren Xiaohua Zazhi, 2000; 8: 494-496
    102. Fidalgo PO, Cravo ML, Chaves PP, Leitao CN, Mira FC High prevalence of human papillomavirus in squamous cell carcinoma and matched normal esophageal mucosa: assessment by polymerase chain reaction. Cancer 1995; 76: 1522-8
    103. He D, Tsao SW, Bu H Human papillomavirus infection and esophageal squamous cell carcinoma. Chung Hua Ping Li Hsueh Tsa Chih 1996; 25: 351-4
    104. Peixoto Guimaraes D, Hsin Lu S, Snijders P, Wilmotte R, Herrero R, Lenoir G, Montesano R, Meijer CJ, Walboomers J, Hainaut P. Absence of association between HPV DNA, TP53 codon 72 polymorphism,??and risk ofoesophageal cancer in a high-risk area of China. Cancer Lett, 2001; 162: 231-235
    105. Lu Z, Chen K, Guo M. Detection of HPV in human esophageal cancer in high-incidence area and its correlation with p53 expression. Zhonghua Zhong Liu Za Zhi. 2001; 23: 220-3.
    106.陶仪声 宗永生.食管鳞癌人乳头状瘤病毒感染的原位杂交检测和观察。中国微生态学杂志 2002,14;3:156-157
    107. Matsha T, Erasmus R, Kafuko AB, Mugwanya D, Stepien A, Parker MI; Human papillomavirus associated with oesophageal cancer. J Clin Pathol 2002; 55: 587-90
    108. Suzuk L, Noffsinger AE, Hui YZ, Fenoglio-Preiser CM. Detection of human papillomavirus in esophageal squamous cell carcinoma. Cancer 1996; 78: 704-10
    109. Shen ZY, Hu SP, Lu LC, Tang CZ, Kuang ZS, Zhong SP, Zeng Y. Detection of human papillomavirus in esophageal carcinoma. J Med Virol 2002; 68: 412-6
    110. Zur Hausen H. Immortalization of human cells and their malignant conversion by high risk human papillomavirus genotypes. Semin Cancer Biol, 1999; 9: 405-411
    111. Zur Hausen H. Papillomaviruses and cancer: from basic studies to clinical application. Nat Rev Cancer, 2002; 2: 342-350
    112. Duensing S, Munger K. Human papillomaviruses and centrosome duplication errors: modeling the origins of genomic instability. Oncogene, 2002; 21: 6241-6248
    113. Munger K. The role of human papillomaviruses in human cancers. Frontiers in Bioscience, 2002; 7: d641-649
    114. Cottage A, Dowen S, Roberts I, Pett M, Coleman N, Stanley M Early genetic events in HPV immortalized keratinocytes. Genes Chromosomes Cancer, 2001; 30: 72-79
    115. Duensing S, Munger K. Centrosome abnormalities, genomic instability and carcinogenic progression. Biochim Biophys Acta, 2001; 1471: M81-88.
    116. zur Hausen H. Papillomaviruses in human cancers. Proc Assoc Am Physicians 1999; 111(6): 581-7
    117. Hasegawa M, Ohoka I, Yamazaki K, Hanami K, Sugano I, Nagao T, Asoh A, Wada N, Nagao K, Ishida Y. Expression of p21/WAF-1, status of apoptosis and p53 mutation in esophageal squarnous cell carcinoma with HPV infection. Pathol Int 2002; 52: 442-50
    118. Chang F, Syrjanen S, Wang L, Shen Q, Syrjanen K. p53 overexpression and human papillomavirus(HPV) infection in oesophageal squamous cell carcinomas derived from a high-incidence area in China. Anticancer Res 1997; 17709-15
    119. Shen Z, Cen S, Shen J, Cai W, Xu J, Teng Z, Hu Z, Zeng Y Study of immortalization and malignant transformation of human embryonic esophageal epithelial cells induced by HPV18 E6E7: J Cancer Res Clin Oncol 2000; 126: 589-594
    120. Shen ZY, Xu LY, Li C, Cai WJ, Shen J, Chen JY, Zeng Y A comparative study of telomerase activity and malignant phenotype in multistage carcinogenesis of esophageal epithelial cells induced by human papilomavirus, hat J Mol Med, 2001; 8: 633-639121. Zou JX, Wang LD, Shi ST, Yang GY, Xue ZH, Gao SS, Li YX, Yang CS. p53 gene mutations in multifocal esophageal precancerous and cancerous lesions in patients with esophageal cancer in high-risk northern China. Shijie Huaren Xiaohua Zazhi, 1999; 7: 280-284
    122. Chen FIB, Chen L, Zhang JK, Shen ZY, Su ZJ, Cheng SB., Chew EC. Human papillomavirus 16 E6 is associated with the nuclear matrix of esophageal carcinoma cells. World J Gastroenterol, 2001; 7: 788-791.
    123. Duesberg P, Rasnick D. Aneuploidy, the somatic mutation that makes cancer a species of its own. Cell Motil Cytoskeleton 2000; 47: 81-107
    124. Li R, Sonik A, Stindl R, Ransnick D, Duesberg P. Aneuploidy vs. gene mutation hypothesis of cancer: recent study claims mutation but is found to support aneuploidy. Proc Natl Acad Sci U S A., 2000; 97: 3236-3241
    125. Nowak MA, Komarova NL, Sengupta A, Jallepalli PV, Shih Le-ming, Vogelstein B, Lengauer C. the role of chromosomal instability in tumor initiation. Proc Natl Acad Sci U S A., 2002, 99: 16226-16231
    126. Weaver Z, Montagna C, Xu X, Howard T, Gadina M, Brodie SG, Deng CX, Ried T.Mammary tumors in mice conditionally mutant for Brcal exhibit gross genomic instability and centrosome amplification yet display a recurring distribution of genomic imbalances that is similar to human breast cancer. Oncogene 2002; 21: 5097-107
    127. Tarapore P, Horn HF, Tokuyama Y, Fukasawa K. Direct regulation of the centrosome duplication cycle by the p53-p21 pathway. Oncogene, 2002; 20: 3173-3184
    128. Tarapore P, Tokuyama Y, Horn HF, Fukasawa K. Difference in the centrosome duplication regulatory activity among p53'hot spot' mutants: potential role of Ser 315 phosphorylation-dependent centrosome binding of p53. Oncogene 2001; 20: 6851-6863
    129. Bunz F, Fauth C, Speicher MR, Dutriaux A, Sedivy JM, Kinzler KW, Vogelstein B, Lengauer C. Target inactivation of p53 in human cells does not result in aneuploidy. Cancer Res, 2002; 62: 1129-1133
    130. Duensing S, Duensing A, Crum CP, Munger K. Human papillomavirus type 16 E7 oncoprotein-induced abnormal centrosome synthesis is an early event in the evolving malignant phenotype. Cancer Res. 2001; 61: 2356-60.
    131. Duensing S, Lee LY, Duensing A, Basile J, Piboonniyom S, Gonzalez S, Crum CP, Munger K. The human papillomavirus type 16 E6 and E7 oncoproteins cooperate to induce mitotic defects and genomic instability by uncoupling centrosome duplication from the cell division cycle. Proc Natl Acad Sci U S A. 2000; 97: 10002-7.
    132. Duensing S, Duensing A, Flores ER, Do A, Lambert PF, Munger K. Centrosome abnormalities and genomic instability by episomal expression of human papillomavirus type 16 in raft cultures of human keratinocytes. J Virol. 2001; 75: 7712-6.
    133. Piboonniyom SO, Duensing S, Swilling NW, Hasskarl J, Hinds PW, Munger K. Abrogation of the retinoblastoma tumor suppressor checkpoint during keratinocyte immortalization is not sufficient forinduction of centrosome-mediated genomic instability. Cancer Res 2003; 63: 476-83
    134. Lavedan C. The synuclein family. Genome Res 1998; 9: 871-80
    135. George JM. The synucleins. Genome Biol 2002; 1: 3002
    136. Mukaetova-Ladinska EB, Hurt J, Jakes R, Xuereb J, Honer WG, Wischik CM. Alpha-synuclein inclusions in Alzheimer and Lewy body diseases. J Neuropathol Exp Neurol 2000; 5: 408-17
    137. Li JY, Henning Jensen P, Dahlstrom A. Differential localization of alpha-, beta- and gamma-synucleins in the rat CNS. Neuroscience 2002; 2: 463-78
    138. Ji H, Liu YE, Jia T, Wang M, Liu J, Xiao G, Joseph BK, Rosen C, Shi YE. Identification of a breast cancer-specific gene, BCSG1, by direct differential cDNA sequencing. Cancer Res 1997; 4: 759-64
    139. Buchman VL, Hunter HJ, Pinon LG, Thompson J, Privalova EM, Ninkina NN, Davies AM. Persyn, a member of the synuclein family, has a distinct pattern of expression in the developing nervous system. J Neurosci 1998; 22: 9335-41
    140. Bruening W, Giasson BI, Klein-Szanto AJ, Lee VM, Trojanowski JQ, Godwin AK. Synucleins are expressed in the majority of breast and ovarian carcinomas and in preneoplastic lesions of the ovary. Cancer 2000; 9: 2154-63
    141. Lavedan C, Leroy E, Dehejia A, Buchholtz S, Dutra A, Nussbaum RL, Polymeropoulos MH. Identification, localization and characterization of the human gamma-synuclein gene. Hum Genet 1998; 1: 106-12
    142. Ninkina NN, Alimova-Kost MV, Paterson JW, Delaney L, Cohen BB, Imreh S, Gnuchev NV, Davies AM, Buchman VL. Organization, expression and polymorphism of the human persyn gene. Hum Mol Genet 1998; 9: 1417-24
    143. Jia T, Liu YE, Liu J, Shi YE. Stimulation of breast cancer invasion and metastasis by synuclein gamma. Cancer Res 1999; 3: 742-7
    144. Jallepalli PV, Waizenegger IC, Bunz F, Langer S, Speicher MR, Peters JM, Kinzler KW, Vogelstein B, Lengauer C. Cell, 2001, 105: 445-457
    145. Surguchov A, Palazzo RE, Surgucheva I. Gamma synuclein: subcellular localization in neuronal and non-neuronal cells and effect on signal transduction. Cell Motil Cytoskeleton 2001; 49: 218-28
    146. Matthews CP, Shera KA, McDougall JK Genomic changes and HPV type in cervical carcinoma. Proc Soc Exp Biol Med 2000; 223: 316-21
    147. Cuthill S, Agarwal P, Sarkar S, Savelieva E, Reznikoff CA Dominant genetic alterations in immortalization: role for 20q gain. Genes Chromosomes Cancer 1999; 26: 304-11
    148. Savelieva E, Belalr CD, Newton MA, DeVries S, Gray JW, Waldman F, Reznikoff CA. 20q gain associates with immortalization: 20q13.2 amplification correlates with genome instability in human papillomavirus 16 E7 transformed human uroepithelial cells. Oncogene 1997; 14: 551-60
    149. Su LK, Burrell M, Hill DE, Gyuris J, Brent R, Wiltshire R, Trent J, Vogelstein B, Kinzler KW APC binds to the novel protein EB 1. Cancer Res 1995; 55: 2972-7
    150. Berrueta L, Kraeft SK, Tirnauer JS, Schuyler SC, Chen LB, Hill DE, Pellman D, Bierer BE The adenomatous polyposis coli-binding protein EB1 is associated with cytoplasmic and spindle microtubules. Proc Natl Acad Sci U S A 1998; 95: 10596-601
    151. Berrueta L, Tirnauer JS, Schuyler SC, Pellman D, Bierer BE. The APC-associated protein EB1 associates with components of the dynactin complex and cytoplasmic dynein intermediate chain. Curr. Biol. 1999, 9: 425-428
    152. Morrison, E.E.,Wardleworth,B.N.,Askham,J.M.,Markham,A.F. Meredith,D.M. EB1, a protein which interacts with the APC tumour suppressor, is associated with the microtubule cytoskeleton throughout the cell cycle. Oncogene 1998; 17: 3471-3477
    153. Tirnauer,J.S. and Bierer,B.E. EB1 proteins regulate microtubule dynamics, cell polarity, and chromosome stability J. Cell Biol. 2000, 149: 761-766
    154. Plug-Demaggio AW, McDougall JK The human papillomavirus type 16 E6 oncogene induces premature mitotic chromosome segregation. Oncogene, 2002; 21: 7507-7513
    155. Geit R, Prigent C, Aurora/Ip11p-related kinase, anew oncogenic family of mitotic serine-threonine kinases. J. Cell Scinces, 1999; 112: 3591-3601
    156. Bischoff, Plowman GD. The Aurora/Ipllp kinase family: regulators of chromosome segregation and cytokinesis. Trends in Cell Bio, 1999; 9: 454-459
    157. Dutertre S, Descamps S, Prigent C. On the role of aurora-A in centrosome function. Oncogene 2002; 21: 6175-83
    158. Marumoto T, Hirota T, Morisaki T, Kunitoku N, Zhang D, Ichikawa Y, Sasayama T, Kuninaka S, Mimori T, Tamaki N, Kimura M, Okano Y, Saya H. Roles of aurora-A kinase in mitotic entry and G2 checkpoint in mammalian cells. Genes Cells 2002; 7: 1173-82
    159. Gonzalez C. Aurora-A in cell fate control. Sci STKE 2002; 162: PE48
    160. Bar-Shira A, Pinthus JH, Rozovsky U, Goldstein M, Sellers WR, Yaron Y, Eshhar Z, Orr-Urtreger A Multiple genes in human 20q13 chromosomal region are involved in an advanced prostate cancer xenograft. Cancer Res 2002; 62: 6803-7
    161. Sakakura C, Hagiwara A, Yasuoka R, Fujita Y, Nakanishi M. Tumor-amplified kinase BTAK is amplified and overexpressed in gastric cancers with possible involvement in aneuploid formation. Br J Cancer, 2001; 84: 824-31
    162. Basile JR, Zacny V, Munger K. The cytokines tumor necrosis factor-alpha (TNF-α1pha) and TNF-related apoptosis-inducing ligand differentially modulate proliferation and apoptotic pathways in human keratinocytes expressing the human papillomavirus-16 E7 oncoprotein. J Biol Chem 2001; 276: 22522-8
    163. Green DR. A myc-induced apoptosis pathway surfaces. Science, 1997; 278: 1246-1247
    164. Klefstrom J, Vastrik I, Saksela E, Valle J, Eilers M, Alitalo K. c-Myc induces cellular susceptibility to the cytotoxic action of TNF-alpha. EMBO J. 1994; 13: 5442-50.
    165. Ben-Israel H, Kleinberger T. Adenovirus and cell cycle control. Front Biosci. 2002; 7: d1369-95
    166. Carlson CA, Ethier SE Lack of RB protein correlates with increased sensitivity to UV-radiation-induced apoptosis in human breast cancer cells. Radiat Res 2000; 154: 590-9
    167. Billecke CA, Ljungman ME, McKay BC, Rehemtulla A, Taneja N, Ethier SP. Lack of functional pRb results in attenuated recovery of mRNA synthesis and increased apoptosis following UV radiation in human breast cancer cells. Oncogene 2002; 21: 4481-9
    168. Westbrook TF, Nguyen DX, Thrash BR, McCance DJ. E7 Abolishes Raf-Induced Arrest via Mislocalization of p21Cipl. Mol Cell Biochem, 2002; 22: 7041-7052
    169. Simbulan-Rosenthal CM, Velena A, Veldman T, Schlegel R, Rosenthal DS. HPV-16 E6/7 immortalization sensitizes human keratinocytes to ultraviolet B by altering the pathway from caspase-8 to caspase-9-dependent apoptosis. J Biol Chem 2002; 277: 24709-16
    170. Rokhlin OW, Guseva NV, Tagiyev AF, Glover RA, Cohen MB. Caspase-8 activation is necessary but not sufficient for tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-mediated apoptosis in the prostatic carcinoma cell line LNCaP. Prostate 2002; 52: 1-11
    171. Sandra F, Matsuki NA, Takeuchi H, Ikebe T, Kanematsu T, Ohishi M, Hirata M. TNF inhibited the apoptosis by activation of Akt serine/threonine kinase in the human head and neck squamous cell carcinoma. Cell Signal 2002; 14: 771-8
    172. Rangarajan A, Syal R, Selvarajah S, Chakrabarti O, Sarin A, Krishna S. Activated Notchl Signaling Cooperates with Papillomavirus Oncogenes in Transformation and Generates Resistance to Apoptosis on Matrix Withdrawal through PKB/Akt. Virology, 2001; 286: 23-30

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700