定向凝固Al-Mn-(Be)合金先结晶相生长行为及力学性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文选择Al-6wt%Mn(-2.5wt.%Be)合金为研究对象。通过定向凝固技术研究初生相Al_6Mn化合物的生长形貌及其演变过程,揭示不同凝固条件对Al_6Mn化合物生长行为的影响规律。另外,通过将第三组元Be加入Al-Mn合金中,研究少量Be的加入对其凝固特性及准晶I相形成的影响,探讨Be加入后合金中化合物相和准晶相的形貌特征与生长机制。在此基础上,研究了不同凝固条件下定向凝固Al-Mn-(Be)合金的力学性能,分析了两种合金的断裂行为和强化机制,探索制备具有化合物相或准晶相弥散分布在基体中凝固组织的高强原位复合材料的工艺。这为实现化合物相形貌的主动控制,发展先进化合物或准晶颗粒原位增强金属基复合材料提供必要的理论基础和实践指导。
     在较低的生长速度(V=1m/s)下,Al_6Mn相主要以拉长的,且具有尖锐棱角的小平面形式析出。结合定向凝固试样的EBSD和晶体结构分析表明,Al_6Mn晶体在定向凝固条件下沿晶体学方向[001]择优生长,而且相对于其它低指数面,(011)和(101)面更密堆。所以,在低生长速度下,Al_6Mn相趋向于形成由四个{011}晶面和四个{101}晶面组成的八面体形貌。通过对实际三维形貌的分析,结合晶体结构决定的晶面关系和外部生长环境,建立了Al_6Mn相近平衡生长过程模型。本论文基于Al_6Mn相正交结构的晶格参数,结合实际的形貌,量化了Al_6Mn (001),(011)和(101)面之间相对生长速度与形貌的关系。
     随着生长速度的增加,Al_6Mn相的形貌由实心的截顶多面体或棱柱转变为空心的棱柱再到槽状形貌,最后直至发达的枝晶(V=1000m/s),实现了Al_6Mn化合物相的生长方式由小平面生长转变为非小平面生长。生长速度的增加,引起了由体积扩散决定的角和边加速生长,形成空心的棱柱和槽状形貌。同时,还导致了固/液界面过冷度的增加,促进了Al_6Mn相的连续生长,形成枝晶状的Al_6Mn相。本文建立了冷却速率增大后小平面向非小平面生长转变的熔体团簇模型,很好地解释了Al_6Mn相生长方式的转变。
     利用Helmholtz公式揭示了(001)和(101)晶面表面能与复杂正方晶系Al_6Mn相临界形核形貌的关系,发现Al_6Mn相的生长是由二维晶核和螺型位错层生长机制共同控制的,两种机制均在密堆的(101)和(011)面上进行。提出了Al_6Mn相的不断形核和生长交替进行的沟槽重复形核生长模型。
     Be的加入使二元相图向高Mn区移动,引入三种金属间化合物相,λ-Al_4Mn、H1相和Be4AlMn相,明显细化了铸态和定向凝固的组织。同时,Be的加入有效地促进了准晶I相的形成,表现为减小了I相形成所需的Mn含量和冷却速度。在定向凝固过程中,其临界冷却速度形成范围被确定为1.5~2.5K/s。
     在定向凝固Al-6wt%Mn-2.5wt.%Be合金中,随着生长速度的增加,初生析出相和共晶基体中的化合物相发生了竞争生长。初生相先由λ-Al_4Mn转变为H1相,最后转变为准晶I相。基体也由(-Al+λ-Al_4Mn)转变为(-Al+H1)相进一步转变为(-Al+I相)共晶。同时,伴随其三维形貌的变化:六棱柱λ-Al_4Mn→六棱柱H1相→六瓣花状H1相→枝晶H1相→小平面I相→花瓣I相→枝状I相。基于伪I13簇并结合H1相的高分辨图像,建立了H1相的结构模型,通过其结构相似性,很好地解释了上述的转变过程。λ-Al_4Mn、H1相和Be4AlMn相的三维形貌与其晶体结构密切相关,其生长方式均为在密排面上的二维晶核层生长。
     随着生长速度的增加,初生准晶I相的形貌和生长方式均发生了转变,即由小平面的五角十二面体簇形貌转变为花瓣枝晶形貌,再到非小平面的发达枝晶形貌。由此,建立了五角十二面体簇形貌在二次、三次和五次方向的二十面体对称模型,并提出了准晶I相的生长过程模型,发现准晶I相是通过二维晶核层生长机制在五次面上进行生长的。
     利用定向凝固方法获得了金属间化合物和准晶I相强化复合材料。对其力学性能研究发现,两种成分Al-6wt%Mn和Al-6wt%Mn-2.5wt.%Be合金的室温力学性能随生长速度的增加而增加,而延伸率先减小后增加,这主要是由强化相的性质决定。Al-6wt.%Mn和Al-6wt.%Mn-2.5wt.%Be合金在生长速度为1000μm/s时,抗拉强度最高同时具有较高的延伸率,分别为188和244MPa及16.66%和12.01%。两种合金的断裂方式都随生长速度的增加由脆性转变为韧性。Be的加入明显改善了合金尤其是高生长速度合金的性能。这主要归因于Al-6wt.%Mn-2.5wt.%Be合金中除了具有颗粒强化和基体强化外,还包括准晶I相的界面强化。准晶I相的强化作用使高生长速度下Al-6wt.%Mn-2.5wt.%Be合金也表现出很好的高温力学性能,在200℃呈现出与室温接近的强度和35%的大延伸率。
In this study, Al-6wt.%Mn(-2.5wt.%Be) alloys have been selected forinvestigation. The growth morphology and evolution process of primary Al_6Mnphase during the directional solidification have been investigated, thereby revealingthe effect of solidification condition on the growth behavior of Al_6Mn phase.Meanwhile, effects of minor Be addition on the solidification property andformation of icosahedral quasicrystal have been investigated by adding the thirdelement Be into the hypereutectic Al-Mn alloy. The morphological feature andgrowth mechanism of the intermetallic compound and icosahedral quasicrystal afterBe addition have been discussed. Based upon those work, the mechanical propertiesof directionally solidified Al-Mn-(Be) alloy with different solidification parametershave been investigated. In addition, the fracture behavior and strengtheningmechanisms of two alloys have been analyzed. A technology for preparing a high-strength in-situ composite with finely dispersed intermetallic or icosahedralquasicrystal has been developed. This work provides a theoretical foundation andpractical guidance for the active control of the morphologies of intermetalliccompounds and the development of advanced in-situ intermetallic or quasicrystalparticles-reinforced metal matrix composite materials.
     During directional solidification, at a low growth rate (V=1m/s), Al_6Mnprecipitates in a faceted growth with sharp edges and corners and exhibits elongatedmorphology. EBSD results and crystal structural analysis indicate that Al_6Mncrystal has a preferred growth direction along the crystallographic [001] directionduring directional solidification. Comparing with other low-index crystal plane,(011) and (101) is more closely packed. Therefore, at a low growth rate, Al_6Mntends to form an octahedron morphology enclosed by four {011} planes and four{101} planes. A nearly equilibrium growth model of Al_6Mn has been establishedbased on the analysis of actual3-D morphologies. Theoretically, the crystalmorphology is determined by the competition between various important crystalplanes. Based on the lattice parameter of orthorhombic Al_6Mn and combined withmorphological analysis, a relationship between morphologies and growth-rate ratiosof (001),(011) and (101) planes different planes has been built.
     As the growth rate increases, the morphologies of Al_6Mn phase transit fromsolid truncated polyhedral or prism to hollow prism, and further to a groovemorphology and ultimately developed dendrites (V=1000m/s), and also the growthpattern transits from faceted to non-faceted. Increasing growth rates lead to an accelerated angular growth mechanism mainly determined by volume diffusion, andhollow prism and groove morphologies form. Meanwhile, increasing growth rateslead to a large undercooling ahead of the S/L interface, which favors the continuousgrowth of Al_6Mn and formation of dendritic Al_6Mn. This paper proposes a melt-cluster model during the faceted-non-faceted transition when the cooling rateincreases. This model can be used to illustrate the transition of growth pattern ofAl_6Mn.
     A relation between the surface energy of (001) and (101) crystal planes and thecritical nucleus morphology in the complex orthorhombic Al_6Mn has been builtusing Helmholtz formula. The growth of Al_6Mn is controlled by the2-D nucleusand screw-dislocation layer growth mechanisms, which are conducted on theclosely-packed (101) and (011) planes. The frequent renucleation and growth modelhas also been proposed. The nucleation of a new crystal terminates the growth of aparent crystal, and sequent growth of the new crystal also may be terminated by anew nucleation event.
     The addition of Be results in the shift of binary phase diagram toward the Mn-rich side and the appearance of three intermetallic compounds, namely λ-Al_4Mn、H1and Be4AlMn, and significantly fined the microstructure of the as-cast anddirectionally solidified samples. Meanwhile, the addition of Be effectivelypromotes the formation of icosahedral quasicrystal, evidenced by the reduced Mnconcentration and cooling rate required for the formation of icosahedral phase. Inthe directionally solidified sample, the critical cooling rate determined is within1.5~2.5K/s.
     During directionally solidification of Al-6wt.%Mn-2.5wt.%Be alloy, with theincrease of growth rates, competitive growth of intermetallic compounds betweenprimary and eutectic phases takes place. The primary phase transits from λ-Al_4Mnto the H1phase, and ultimately icosahedral quasicrystal. The matrix transits from(-Al+λ-Al_4Mn) to (-Al+H1), and ultimately (-Al+Icosahedral) eutectic.Meanwhile, the3-D morphology concurrently transits: Hexagonal prism λ-Al_4Mn→Hexagonal prism H1→Six-petal H1phase→Dendritic H1phase→Facetedicosahedral phase→Flower-like icosahedral phase→Dendritic icosahedral phase.Based on the pseudo I13cluster model and high resolution transmission electronmicroscopy of H1phase, the structural model of H1phase has been proposed. Suchtransition is well demonstrated based on the similarity of the structure. The3-Dmorphology is closely related to the crystal structure of λ-Al_4Mn, Be4AlMn and H1phase. Their growth patterns are the2-D nucleation layer growth on the closely-packed planes.
     As the growth rate increases, the morphology of primary icosahedralquasicrystal transits from faceted pentagonal dodecahedral cluster to flower-likedendrites, and ultimately non-faceted dendrites. Based on the actual morphologiesof icosahedral quasicrystal, the icosahedral symmetric model of the pentagonaldodecahedral cluster has been established along2-fold,3-fold and5-fold direction.The growth model of icosahedral quasicrystal has also been proposed, andrevealing that the icosahedral quasicrystal is grown on the5-fold plane by2-Dnucleation-layer growth mechanism.
     The mechanical properties of directionally solidified Al-6wt.%Mn and Al-6wt.%Mn-2.5wt.%Be alloys have been investigated. It is indicated that room-temperature mechanical properties of both alloys increase with the increase ofgrowth rates. But the elongation reduces first and then increases as the growth ratesincrease, which can be attributed to the properties of strengthening phases. At agrowth rate of1000μm/s, both two alloys have a highest ultimate tensile strengthand a relative large elongation. The ultimate tensile strength and elongation are188and244MPa,16.66%and12.01%, respectively. The fracture mode of two alloystransits from brittle fracture to ductile fracture as the growth rates increase.Compared with binary phase, the addition of Be significantly enhances themechanical properties of the alloy, especially the alloy with a high growth rate.This is mainly due to the interfacial strengthening effect of icosahedral quasicrystalexpected for the particle strengthening and matrix strengthening effects in the Al-6wt.%Mn-2.5wt.%Be alloy. Due to the strengthening effect of icosahedralquasicrystal, the Al-6wt.%Mn-2.5wt.%Be alloy with a large cooling rate exhibitsexcellent mechanical properties under high temperature. At200℃,the alloy has astrength closed to that under room temperature and a large elongation of35%.
引文
[1] Uan J Y, Chen L H, Lui T S. On the Extrusion Microstructural Evolution ofAl-Al3Ni in-situ Composite[J]. Acta Materialia,2001,49(2):313-320
    [2] Watanabe Y, Nakamura T. Microstructures and Wear Resistances of HybridAl-(Al3Ti+Al3Ni) FGMs Fabricated By a Centrifugal Method[J].Intermetallics,2001,9(1):33-43
    [3] Barbucci A, Bruzzone G, Delucchi M, et al. Breakdown of Passivity ofAluminium Alloys by Intermetallic Phases in Neutral Chloride Solution[J].Intermetallics,2000,8(3):305-312
    [4] Li S M, Quan Q R, Li X L, et al. Increasing The Growth Velocity of CoupledEutectics in Directional Solidification of off-eutectic Alloys[J]. Journal ofCrystal Growth,2011,314(1):279-284
    [5] Colinet C. Ab-initio Calculation of Enthalpies of Formation of IntermetallicCompounds and Enthalpies of Mixing of Solid Solutions[J]. Intermetallics,2003,11(11-12):1095-1102
    [6] Li Y J, Zhang W Z, Marthinsen K. Precipitation Crystallography of Plate-shaped Al6(Mn, Fe) Dispersoids in AA5182Alloy[J]. Acta Materialia,2012,60(17):5963-5974
    [7]胡勇,闫洪,陈国香,等. Si对原位自生Mg2Si/AM60复合材料组织及性能的影响[J].稀有金属材料与工程,2009(02):343-347
    [8] Li C, Wu Y Y, Li H, et al. Morphological Evolution and Growth Mechanismof Primary Mg2Si Phase in Al-Mg2Si Alloys[J]. Acta Materialia,2011,59(3):1058-1067
    [9] Jie J C, Zou C M, Wang H W, et al. Enhancement of Mechanical Properties ofAl-Mg Alloy with A High Mg Content Solidified under High Pressures[J].Scripta Materialia,2011,64(6):588-591
    [10] Kim K H, Nam N D, Kim J G, et al. Effect of Calcium Addition on theCorrosion Behavior of Mg-5Al Alloy[J]. Intermetallics,2011,19(12):1831-1838
    [11] He G, Eckert J, Loser W, Schultz L. Novel Ti-base Nanostructure-DendriteComposite with Enhanced Plasticity[J]. Nature Materials,2003,2(1):33-37
    [12] Wang H Y, Jiang Q C, Wang Y, et al. Fabrication of TiB2ParticulateReinforced Magnesium Matrix Composites by Powder Metallurgy[J].Materials Letters,2004,58(27-28):3509-3513
    [13] Hofmann D C, Suh J Y, Wiest A, et al. Designing Metallic Glass MatrixComposites with High Toughness and Tensile Ductility[J]. Nature,2008,451(7182):1085-1089
    [14][14]王登文.中国汽车用铝型材市场现状与前景[J].中国金属通报,2008(36):34-35
    [15] Zhang C, Fan T, Cao W, et al.(AlN+Mg2Si)/Mg Composites in-situ Synthesisand Scale Effect of Particulate on Damping Capacity[J]. Materials Scienceand Engineering: A,2009,508(1-2):190-194
    [16] Mirshahi F, Meratian M, Panjepour M. Microstructural and MechanicalBehavior of Mg/Mg2Si Composite Fabricated by a Directional solidificationsystem[J]. Materials Science and Engineering: A,2011,528(29-30):8319-8323
    [17]靳慎豹.燃烧合成过程中过渡金属碳化物、硼化物的生长行为[D].吉林:吉林大学博士论文,2012:1-55
    [18] Arzt E. Size Effects in Materials Due to Microstructural and DimensionalConstraints: A Comparative Review[J]. Acta Materialia,1998,46(16):5611-5626
    [19] Xiong W, Qin X Y, Kong M G, et al. Synthesis and Properties of BulkNanocrystalline Mg2Si through Ball-Milling and Reactive Hot-Pressing[J].Transactions of Nonferrous Metals Society of China,2006,16(5):987-991
    [20] Chen K, Li Z Q, Liu J S, et al. The Effect of Ba Addition on Microstructureof in Situ Synthesized Mg2Si/Mg-Zn-Si Composites[J]. Journal of Alloys andCompounds,2009,487(1-2):293-297
    [21] Ghorbani M R, Emamy M, Khorshidi R, et al. Effect of Mn Addition on theMicrostructure and Tensile Properties of Al-15%Mg2Si Composite[J].Materials Science and Engineering: A,2012,550(0):191-198
    [22] Singh M, Mondal D P, Jha A K, et al. Preparation and Properties of CastAluminium Alloy-Sillimanite Particle Composite[J]. Composites Part A:Applied Science and Manufacturing,2001,32(6):787-795
    [23] Ayyar A, Chawla N. Microstructure-Based Modeling of Crack Growth inParticle Reinforced Composites[J]. Composites Science and Technology,2006,66(13):1980-1994
    [24] Tohgo K, Itoh Y, Shimamura Y. A Constitutive Model of Particulate-Reinforced Composites Taking Account of Particle Size Effects and DamageEvolution[J]. Composites Part A: Applied Science and Manufacturing,2010,41(2):313-321
    [25]傅恒志,郭景杰,刘林,等.先进材料定向凝固[M].北京:科学出版社,2008:25-32
    [26]吕海燕. Cu-Sn包晶合金定向凝固组织研究[D].西安:西北工业大学硕士论文,2004:24-50
    [27]吕海燕.小平面包晶合金定向凝固组织及相竞争生长研究[D].西安:西北工业大学博士论文,2009:32-61
    [28]贺谦. NdFeB永磁材料定向凝固组织研究[D].西安:西北工业大学硕士论文,2005:15-30
    [29]钟宏.定向凝固Nd-Fe-B合金组织演化及包晶相生长机制研究[D].西安:西北工业大学博士论文,2009:25-76
    [30]陆文华,李隆盛,黄良余.铸造合金及其熔炼[M].北京:机械工业出版社,2006:327-334
    [31] Kurz W, Fisher D J. Fundamentals of Solidification[M]. Switzerland:TransTech Publications Ltd,1998:22-41
    [32] Wang R Y, Lu W H, Hogan L. Faceted Growth of Silicon Crystals in Al-SiAlloys[J]. Metallurgical and Materials Transactions A,1997,28(5):1233-1243
    [33] Jin S, Shen P, Zou B, et al. Morphology Evolution of TiCxGrains DuringSHS in an Al-Ti-C System[J]. Crystal Growth&Design,2009,9(2):646-649
    [34] Wang R Y, Lu W H, Hogan L M. Growth Morphology of Primary Silicon inCast Al-Si Alloys and the Mechanism of Concentric Growth[J]. Journal ofCrystal Growth,1999,207(1–2):43-54
    [35] Hyde K B, Norman A F, Prangnell P B. The Effect of Cooling Rate on theMorphology of Primary Al3Sc Intermetallic Particles in Al-Sc Alloys[J]. ActaMaterialia,2001,49(8):1327-1337
    [36] Xu C L, Wang H Y, Liu C, et al. Growth of Octahedral Primary Silicon inCast Hypereutectic Al-Si Alloys[J]. Journal of Crystal Growth,2006,291(2):540-547
    [37] Pope D P. Structural Uses for Ductile Ordered Alloys: Report of theCommittee on Application Potential for Ductile Ordered Alloys[M]. NationalAcademy Press,1984:2-18
    [38] Anton D L, Shah D M, Duhl D N, et al. Selecting High-TemperatureStructural Intermetallic Compounds: The Engineering Approach[J]. JOM,1989,41(9):12-17
    [39] Development P I A, Systems C E T, Council N R. Intermetallic AlloyDevelopment: A Program Evaluation[M]. National Academies Press,1997:1-7
    [40]陈国良,林均品.有序金属间化合物结构材料物理金属学基础[M].北京:冶金工业出版社,1999:153-174
    [41]张永刚,韩雅芳,陈国良,等.金属间化合物结构材料[M].北京:国防工业出版社,2001:2-5
    [42] Mullins W W, Sekerka R F. Stability of a Planar Interface DuringSolidification of a Dilute Binary Alloy[J]. Journal of Applied Physics,1964,35(2):444-451
    [43] Trivedi R. Theory of Dendritic Growth During the Directional Solidificationof Binary Alloys[J]. Journal of Crystal Growth,1980,49(2):219-232
    [44] Kurz W, Fisher D J. Dendrite Growth at the Limit of Stability: Tip Radiusand Spacing[J]. Acta Metallurgica,1981,29(1):11-20
    [45] Hunt J D. In Solidification and Casting of Metals[M]. London: MetalsSociety,1979:3-9
    [46] Brody H D, Flemings M C. Solute Reditribution in Dendritic Solidification[J].Transaction of Metallurgical Society. AIME,1966,236:615-624
    [47] Flemings M C. Solidification Processing[M]. New York: McGraw-Hill,1974
    [48] Bower T F, Brody H D, Flemings M C. Measurements of SoluteRedistribution in Dendritic Solidification[J]. Transaction of MetallurgicalSociety. AIME,1966,236:624-634
    [49] Jackson K A, Hunt J D. Lamellar and Rod Eutectic Growth[J]. Transaction ofMetallurgical Society. AIME,1966,236:1129-1142
    [50] Trivedi R, Kurz W. Modeling of Solidification Microstructures inConcentrated Solutions and Intermetallic Systems[J]. MetallurgicalTransactions A,1990,21(5):1311-1318
    [51] Tiller W A, Jackson K A, Rutter J W, et al. The Redistribution of SoluteAtoms During the Solidification of Metals[J]. Acta Metallurgica,1953,1(4):428-437
    [52] Liu D M, Li X Z, Su Y Q, et al. Solute Redistribution During Planar Growthof Intermetallic Compound with Nil Solubility[J]. Intermetallics,2012,26:131-135
    [53] Boettinger W J. Rapidly Solidified Amorphous and Crystalline Alloys[M].New York: North-Holland: Elsevier Science Pub. Co.,1982:22-35
    [54] Cao C D, Herlach D M, Kolbe M, et al. Rapid Solidification of Cu84Co16Alloy Undercooled into the Metastable Miscibility Gap under DifferentConditions[J]. Scripta Materialia,2003,48(1):5-9
    [55]胡汉起.金属凝固原理[M].北京:机械工业出版社,2007:81-106
    [56] Jackson K A. Interface Kinetics, in Growth and Perfection of Crystals[M].New York: Wiley,1958:319-324
    [57] Bennema P, Gilmer G H. Kinetic of Crystal Growth, in Crystal Growth: AnIntroduction[M]. North-Holland Publishing Co.,1973:263-327
    [58] Temkin O E. Phenomenological Kinetics of the Motion of a PhaseBoundary[J]. Soviet Physcis of Crystal,1971,15:767-772
    [59] Cui C, Zhang J, Su H, et al. Growth Mechanism of the DirectionallySolidified Si-TaSi2Eutectic in Situ Composite[J]. Journal of Crystal Growth,2009,311(8):2555-2559
    [60]刘冬梅. Al-Ni包晶合金定向凝固组织演化及小平面包晶相生长机制[D].哈尔滨:哈尔滨工业大学博士论文,2012:28-44
    [61] Asta M, Beckermann C, Karma A, et al. Solidification Microstructures andSolid-State Parallels: Recent Developments, Future Directions [J]. ActaMaterialia.2009,57(4):941-971
    [62] Sunagawa I. Growth and Morphology of Crystals[J]. Forma,1999,14:147-166
    [63] Kossel W. Zur Theorie Der Kristallwachstums. Nachur[J]. Ges. G ttingen,1927,2:135-145
    [64] Stranski I N. Zur Theorie Der Kristallwachstums[J]. Zeitschrift FürPhysikalische Chemie-Leipzig,1928,136:259-278
    [65] Volmer M. Zum Problem Des Kristallwachstums[J]. Zeitschrift FürPhysikalische Chemie-Leipzig,1922,102:267-275
    [66] Pina C M, Becker U, Risthaus P, et al. Molecular-Scale Mechanisms ofCrystal Growth in Barite[J]. Nature,1998,395(6701):483-486
    [67] Waizumi K, Plomp M, Enckevort van W. Atomic Force Microscopy Studieson Growing Surfaces of Bovine Insulin Crystals[J]. Colloids and Surfaces B:Biointerfaces,2003,30(1-2):73-86
    [68] Frank F C. The Influence of Dislocations on Crystal Growth[J]. Discussionsof the Faraday Society,1949,5:48-54
    [69] Griffin L J. Observation of Unimolecular Growth Steps on CrystalSurfaces[J]. Philosophical Magazine Series7,1950,41(313):196-199
    [70] Amelinckx S. Spiral Growth on Carborundum Crystal Faces[J]. Nature,1951,167(4258):939-940
    [71] Sunagawa I. Step Heights of Spirals on Natural Hematite Crystals[J]. Amer.Mineral,1961,46:1216-1226
    [72] Horn F H. Spiral Growth on Graphite [J]. Nature.1952,170(4327):581-581
    [73] Kim S J, F ssler T F. Networks of Icosahedra in the Sodium-Zinc-StannidesNa16Zn13.54Sn13.46(5), Na22Zn20Sn19(1), and Na34Zn66Sn38(1)[J]. Journal of SolidState Chemistry,2009,182(4):778-789
    [74] Sch fer H. Semimetal Clustering in Intermetallic Phases[J]. Journal of SolidState Chemistry,1985,57(1):97-111
    [75]罗谷风.结晶学导论(第二版)[M].北京:地质出版社,2010:156-172
    [76] A. Bravais. Etudes Cristallographiques Paris[M]. Gauthier Villars,1866:1811-1863
    [77] Gupta M, Ling S. Microstructure and Mechanical Properties of Hypo/Hyper-Eutectic Al-Si Alloys Synthesized Using a Near-Net Shape FormingTechnique[J]. Journal of Alloys and Compounds,1999,287(1-2):284-294
    [78] Mondolfo L F. Aluminum Alloys: Structure and Properties[M]. Boston:Butterworths,1976:324-326
    [79] Mabuchi M, Higashi K. Strengthening Mechanisms of Mg-Si Alloys[J]. ActaMaterialia,1996,44(11):4611-4618
    [80]张蓉,黄太文,刘林.过共晶Al-Si合金熔体中初生硅生长特性[J].中国有色金属学报,2004(02):262-266
    [81]彭晋民,钱翰城.铸态铸造铝硅合金的现状和发展[J].铸造技术,2000(6):32-34
    [82]廖恒成,方信贤,孙国雄.铸造Al-Si合金熔体处理—晶粒细化[J].特种铸造及有色合金,1999(3):51-55
    [83] Nikanorov S P, Volkov M P, Gurin V, et al. Structural and MechanicalProperties of Al-Si Alloys Obtained by Fast Cooling of a Levitated Melt[J].Materials Science and Engineering: A,2005,390(1-2):63-69
    [84] Kobayashi K F, Hogan L M. The Crystal Growth of Silicon in Al-Si Alloys[J].Journal of Materials Science,1985,20(6):1961-1975
    [85] Emamy M, Khorshidi R, Raouf A H. The Influence of Pure Na on theMicrostructure and Tensile Properties of Al-Mg2Si Metal MatrixComposite[J]. Materials Science and Engineering: A,2011,528(13-14):4337-4342
    [86] Wang R Y, Lu W H, Hogan L M. Twin Related Silicon Crystals in Al-SiAlloys and Their Growth Mechanism[J]. Materials Science and Technology,1995,11(5):441-449
    [87]刘林,傅恒志,史正兴.高温合金中碳化物的初生形貌与晶体结构的关系[J].金属学报,1989(4):48-53
    [88] Hamilton D, Seidensticker R. Propagation Mechanism of GermaniumDendrites[J]. Journal of Applied Physics,1960,31(7):1165-1168
    [89] Fredriksson H, Hillert M, Lange N. The Modification of Aluminum-SiliconAlloys by Sodium[J]. Japan Institute of Metal,1973,101:285-299
    [90] Atasoy O A, Yilmaz F, Elliott R. Growth Structures in Aluminium-SiliconAlloys I. The Coupled Zone[J]. Journal of Crystal Growth,1984,66(1):137-146
    [91] Liu G, Chen K, Zhou H, Tian J, et al. Fast Shape Evolution of TinMicrocrystals in Combustion Synthesis[J]. Crystal Growth&Design,2006,6(10):2404-2411
    [92]潘复生,张丁非等.铝合金及应用[M].北京:化学工业出版社,2006:265-290
    [93]厉瑞艳.富Al端Al-Mn合金的熔体结构及其凝固过程的研究[D].济南:山东大学硕士论文,2008:3-9
    [94]黄晓辉,左秀荣,王齐伟. Al-Mn系合金研究现状[J].世界有色金属,2009(1):38-39
    [95]何建军,陈振华,严红革等.不同Mn含量的Al-Mn合金的研究[J].特种铸造及有色合金,2005(10):15-17
    [96] Chen Y J, Chai Y C, Roven H J, et al. Microstructure and MechanicalProperties of Al-xMg Alloys Processed by Room Temperature ECAP[J].Materials Science and Engineering: A,2012,545(0):139-147
    [97] Aal M I A E. Influence of the Pre-Homogenization Treatment on theMicrostructure Evolution and the Mechanical Properties of Al-Cu AlloysProcessed by ECAP[J]. Materials Science and Engineering: A,2011,528(22–23):6946-6957
    [98] Xu S, Zhao G, Ren X, et al. Numerical Investigation of AluminumDeformation Behavior in Three-Dimensional Continuous Confined StripShearing Process[J]. Materials Science and Engineering: A,2008,476(1-2):281-289
    [99] Kang H G, Lee J P, Huh M Y, et al. Stability against Coarsening in Ultra-FineGrained Aluminum Alloy AA3103Sheet Fabricated by Continuous ConfinedStrip Shearing[J]. Materials Science and Engineering: A,2008,486(1-2):470-480
    [100] Kwan C, Wang Z, Kang S B. Mechanical Behavior and MicrostructuralEvolution Upon Annealing of the Accumulative Roll-Bonding (ARB)Processed Al Alloy1100[J]. Materials Science and Engineering: A,2008,480(1-2):148-159
    [101] Alizadeh M, Paydar M H. Fabrication of Nanostructure Al/SiCpCompositeby Accumulative Roll-Bonding (ARB) Process[J]. Journal of Alloys andCompounds,2010,492(1-2):231-235
    [102] Shechtman D, Blech I, Gratias D, et al. Metallic Phase with Long-RangeOrientational Order and No Translational Symmetry[J]. Physical ReviewLetters,1984,53(20):1951-1953
    [103] McAlister A J, Murray J L. The (Al-Mn) Aluminum-Manganese System[J].Journal of Phase Equilibria,1987,8(5):438-447
    [104] Jansson. A Thermodynamic Evaluation of the Al-Mn System[J].Metallurgical Transactions A,1992,23(11):2953-2962
    [105] Nicol A D I. The Structure of MnAl6[J]. Acta Crystallographica,1953,6(3):285-293
    [106] Kontio A, Coppens P. New Study of the Structure of MnAl6[J]. ActaCrystallographica Section B,1981,37(2):433-435
    [107] Little K, Raynor G V, Hume-Rothery W. A New Aluminum-Rich Phase in theAlloys of Aluminum and Manganese[J].Japan Institute of Metal,1947,73:83-90
    [108] Schaefer R J, Biancaniello F S, Cahn J W. Formation and Stability Range o fthe G Phase in the AlMn System[J]. Scripta Metallurgica,1986,20(10):1439-1444
    [109] Kreiner G, Franzen H F. The Crystal Structure of λ-Al4Mn [J]. Journal ofAlloys and Compounds,1997,261(1-2):83-104
    [110] Shoemaker C B, Keszler D A, Shoemaker D P. Structure of Μ-MnAl4withComposition Close to That of Quasicrystal Phases[J]. Acta CrystallographicaSection B,1989,45(1):13-20
    [111] Bendersky L A. Structural Relationship between Crystalline andQuasicrystalline Phases in Al-Mn System[J]. Materials Science Forum,1987,22-24:151-162
    [112] Laissardière G, Manh D N, Mayou D. Electronic Structure of ComplexHume-Rothery Phases and Quasicrystals in Transition Metal Aluminides[J].Progress in Materials Science,2005,50(6):679-788
    [113] Taylor M A. The Space Group of MnAl3[J]. Acta Crystallographica,1961,14(1):84-84
    [114] Hiraga K, Kaneko M, Matsuo Y, et al. The Structure of Al3Mn: CloseRelationship to Decagonal Quasicrystais[J]. Philosophical Magazine Part B,1993,67(2):193-205
    [115] Taylor M A. Intermetallig Phases in the Aluminium Manganese BinarySystem[J]. Acta Metallurgica,1960,8(4):256-262
    [116] G decke T, K ster W. Eine Erg nzung Zum Aufbau Des Systems Aluminium-Mangan[J]. Zeitschrift für Metallkunde,1971,62:727-732
    [117] Taylor M. The Crystal Structure of Mn3Al10[J]. Acta Crystallographica,1959,12(5):393-396
    [118] Bendersky L. Quasicrystal with One-Dimensional Translational Symmetryand a Tenfold Rotation Axis[J]. Physical Review Letters,1985,55(14):1461-1463
    [119] Harmelin M, Maamar S, Fries S G, et al. Calculation of the MetastableEquilibrium Diagrams for the Quasicrystalline Phases in the Mn-AlSystem[J]. Zeitschrift für Metallkunde,1994,85:814-818
    [120] Zhang Z, Ye H Q, Kuo K H. A New Icosahedral Phase with m35Symmetry[J].Philosophical Magazine A,1985,52(6): L49-L52
    [121] Levine D, Steinhardt P J. Quasicrystals: A New Class of OrderedStructures[J]. Physical Review Letters,1984,53(26):2477-2480
    [122] Bancel P A, Heiney P A, Stephens P W, et al. Structure of Rapidly QuenchedAl-Mn[J]. Physical Review Letters,1985,54(22):2422-2425
    [123] Shechtman D, Blech I A. The Microstructure of Rapidly Solidified Al6Mn[J].Metallurgical Transactions A,1985,16(6):1005-1012
    [124] Inoue A, Arnberg L, Lehtinen B, et al. Compositional Analysis of theIcosahedral Phase in Rapidly Quenched Al-Mn and Al-V Alloys[J].Metallurgical and Materials Transactions A,1986,17(10):1657-1664
    [125] Chen H S, Phillips J C, Villars P, et al. New Quasicrystals of AlloysContaining S, P, and D Elements[J]. Physical Review B,1987,35(17):9326-9329
    [126] Tsai A P, Inoue A, Masumoto T. A Stable Quasicrystal in Al-Cu-Fe System[J].Japanese Journal of Applied Physics,1987,26(Part2, No.9): L1505-L1507
    [127] Tsai A, Inoue A, Yokoyama Y, et al. Stable Icosahedral Al-Pd-Mn and Al-Pd-Re Alloys[J]. Material Transctions of Japan Institute of Metals,1990,31:98-103
    [128] Villars P, Phillips J C, Chen H S. Icosahedral Quasicrystals and QuantumStructural Diagrams[J]. Physical Review Letters,1986,57(24):3085-3088
    [129] Chen C H, Chen H S. Superlattices‘‘in Quenched Al-Si-MnQuasicrystals[J]. Physical Review B,1986,33(4):2814-2816
    [130] Ohashi W, Spaepen F. Stable Ga-Mg-Zn Quasi-Periodic Crystals withPentagonal Dodecahedral Solidification Morphology[J]. Nature,1987,330(6148):555-556
    [131] Luo Z, Zhang S, Tang Y, et al. Quasicrystals in As-Cast Mg-Zn-RE Alloys[J].Scripta Metallurgica et Materialia,1993,28(12):1513-1518
    [132] Chattopadhyay K, Lele S, Prasad R, et al. On the Variety of ElectronDiffraction Patterns from Quasicrystals[J]. Scripta Metallurgica,1985,19(11):1331-1334
    [133] Stephens P W, Goldman A I. Sharp Diffraction Maxima from an IcosahedralGlass[J]. Physical Review Letters,1986,56(11):1168-1171
    [134] Pauling L. Apparent Icosahedral Symmetry Is Due to Directed MultipleTwinning of Cubic Crystals[J]. Nature,1985,317(6037):512-514
    [135] Pauling L. So-Called Icosahedral and Decagonal Quasicrystals Are Twins ofan820-Atom Cubic Crystal[J]. Physical Review Letters,1987,58(4):365-368
    [136] Abe E, Yan Y, Pennycook S J. Quasicrystals as Cluster Aggregates[J]. NatureMaterials,2004,3(11):759-767
    [137] Zhang X, Kelton K F. Icosahedral Phase Formation in Ti68-XCr32SixAlloys[J].Philosophical Magazine Letters,1990,62(4):265-271
    [138] Knowles K M, Stobbs W M. The Inhomogeneity of the Icosahedral Phase inAl-Mn and Al-V[J]. Journal of Microscopy,1987,146(3):267-285
    [139] Robertson J L, Misenheimer M E, Moss S C, et al. X-Ray and ElectronMetallographic Study of Quasicrystalline Al-Mn-Si Alloys[J]. ActaMetallurgica,1986,34(11):2177-2189
    [140] Ramsey J A, Gibbons P C, Kelton K F. Strains in the TiMnSi QuasicrystalStudied from Lattice Images[J]. Bulletin of American Physics,1991,36:987
    [141] Hiraga K, Zhang B P, Hirabayashi M, et al, T. Masumoto. Highly OrderedIcosahedral Quasicrystal of Al-Cu-Fe Alloy Studied by Electron Diffractionand High-Resolution Electron Microscopy[J]. Japanese Journal of AppliedPhysics,1988,27: L951-L953
    [142] Kelton K F. Quasicrystals: Structure and Stability[J]. International MaterialsReviews,1993,38(3):105-137
    [143] Schaefer R J, Bendersky L A, Shechtman D, et al. Icosahedral and DecagonalPhase Formation in Al-Mn Alloys[J]. Metallurgical Transactions A,1986,17(12):2117-2125
    [144] Zhang K Yu, Bigot J, Chevalier J P, et al. Dodecahedral-ShapedQuasicrystalline Precipitates in Dilute Al-Mn Solid Solutions[J].Philosophical Magazine Part B,1988,58(1):1-13
    [145] Koskenmaki D C, Chen H S, Rao K V. Coherent Orientation Relationshipbetween an Icosahedral Phase and a Cubic Phase in Melt-Spun Al-Si-Mn[J].Physical Review B,1986,33(8):5328-5332
    [146] Guyot P, Audier M. A Quasicrystal Structure Model for Al-Mn[J].Philosophical Magazine Part B,1985,52(1): L15-L19
    [147] Audier M, Sainfort P, Dubost B. A Simple Construction of the AlCuLiQuasicrystalline Structure Related to the (Al,Zn)49Mg32Cubic StructureType[J]. Philosophical Magazine Part B,1986,54(4): L105-L111
    [148] Zhang X, Kelton KF. Orientational Relationship between a B.C.C. Phase anda New Icosahedral Phase in Ti-V-Si Alloys[J]. Philosophical MagazineLetters,1991,63(1):39-47
    [149] Ohashi T, Dai L, Fukatsu N, et al. Precipitation of Quasicrystalline Phase inRapidly Solidified Al-Mn-Zr Alloys[J]. Scripta Metallurgica,1986,20(9):1241-1244
    [150] Loiseau A, Lapasset G. Relations between Quasicrystals and CrystallinePhases in Al-Li-Cu-Mg Alloys: A New Class of Approximant Structures[J].Philosophical Magazine Letters,1987,56(5):165-171
    [151] Ho T L, Jaszczak J A, Li Y H, et al. Faceting in Bond-Oriented Glasses andQuasicrystals[J]. Physical Review Letters,1987,59(10):1116-1119
    [152] Rajasekharan T, Gopalan R, Akhtar D, et al. Quasi-Crystalline Precipitateswith Icosahedral Morphology[J]. Scripta Metallurgica,1987,21(3):289-291
    [153] Macko D, Hudák O, Diko P, et al. Morphology of the Icosahedral Phase inAl-Mn Alloys[J]. Physics Letters A,1988,127(6-7):360-362
    [154] Fisher I R, Islam Z, Panchula A F, et al. Growth of Large-Grain R-Mg-ZnQuasicrystals from the Ternary Melt (R=Y, Er, Ho, Dy and Tb)[J].Philosophical Magazine Part B,1998,77(6):1601-1615
    [155] Fan C G, Wu Z Q, Wamg Y S, et al. The Substructure of Quasicrystalline Al-Mn Alloy Observed by TEM[J]. Journal of Microscopy,1987,146(3):261-265
    [156] Nissen H U, Wessicken R, Beeli C, et al. Al-Mn Quasicrystal Aggregates withIcosahedral Morphological Symmetry[J]. Philosophical Magazine Part B,1988,57(5):587-597
    [157] Bancel P A, Heiney P A. Icosahedral Aluminum-Transition-Metal Alloys[J].Physical Review B,1986,33(12):7917-7922
    [158] Bendersky L A, Kaufman M J. Determination of the Point Group of theIcosahedral Phase in an Al-Mn-Si Alloy Using Convergent-Beam ElectronDiffraction[J]. Philosophical Magazine Part B,1986,53(3): L75-L80
    [159] Inoue A, Watanabe M, Kimura H, et al. High Mechanical Strength ofQuasicrystalline Phase Surrounded by f.c.c-Al Phase in Rapidly SolidifiedAl-Mn-Ce Alloys[J]. Materials Transactions, JIM,1992,33(8):723-729
    [160] Song G S, Fleury E, Kim S H, et al. Enhancement of the Quasicrystal-Forming Ability in Al-Based Alloys by Be-Addition[J]. Journal of Alloys andCompounds,2002,342(1-2):251-255
    [161] Takeuchi S. Physical Properties of Quasicrystals: An Experimental Review[J].Materials Science Forum,1994,150-151:35-51
    [162] Schurack F, Eckert J, Schultz L. Synthesis and Mechanical Properties of CastQuasicrystal-Reinforced Al-Alloys[J]. Acta Materialia,2001,49(8):1351-1361
    [163] Bae D H, Kim S H, Kim D H, et al. Deformation Behavior of Mg-Zn-YAlloys Reinforced by Icosahedral Quasicrystalline Particles[J]. ActaMaterialia,2002,50(9):2343-2356
    [164] Kang H, Wu S, Li X, et al. Improvement of Microstructure and MechanicalProperties of Mg-8Gd-3Y by Adding Mg3Zn6Y Icosahedral Phase Alloy[J].Materials Science and Engineering: A,2011,528(16–17):5585-5591
    [165] Takeuchi S. Mechanical Properties of Quasicrystals[J]. Tetsu-to-Hagane,1992,78(10):1517-1522
    [166] Sainfort P, Dubost B. Copreciptation Hardening in Al-Li-Cu-Mg Alloys[J]. J.Phys. Colloques,1987,48(C3):407-413
    [167] Liu P, Stigenberg A H, Nilsson J O. Quasicrystalline and CrystallinePrecipitation During Isothermal Tempering in a12Cr-9Ni-4Mo MaragingStainless Steel[J]. Acta Metallurgica et Materialia,1995,43(7):2881-2890
    [168] Inoue A, Watanabe M, Kimura H M, et al. High Mechanical Strength ofQuasicrystalline Phase Surrounded by f.c.c-Al Phase in Rapidly SolidifiedAl-Mn-Ce Alloys[J]. Materials Transactions, JIM,1992,33:7
    [169] Sahoo K L, Stone I C. Effect of Si on the Formation and Stability of theIcosahedral Quasicrystalline Phase in Al-Fe-Cr-Ti Alloys[J]. PhilosophicalMagazine Letters,2005,85(5):231-245
    [170] Galano M, Audebert F, Escorial A G, et al. Nanoquasicrystalline Al-Fe-Cr-Based Alloys. Part Ii. Mechanical Properties[J]. Acta Materialia,2009,57(17):5120-5130
    [171] Park E S, Yi S, Ok J B, et al. Proceedings MRS Fall Meeting[C]. Boston: MA,2001
    [172] Bae D H, Lee M H, Kim K T, et al. Application of Quasicrystalline Particlesas a Strengthening Phase in Mg-Zn-Y Alloys[J]. Journal of Alloys andCompounds,2002,342(1-2):445-450
    [173] Zhang J, Pei L, Du H, et al. Effect of Mg-Based Spherical Quasicrystals onMicrostructure and Mechanical Properties of AZ91Alloys[J]. Journal ofAlloys and Compounds,2008,453(1-2):309-315
    [174] Yuan G Y, Liu Y, Lu C, Ding W. Effect of Quasicrystal and Laves Phases onStrength and Ductility of as-Extruded and Heat Treated Mg-Zn-Gd-BasedAlloys[J]. Materials Science and Engineering: A,2008,472(1-2):75-82
    [175] Dankhazi Z, Laissardiere G, Nguyen M D,et al. Theoretical and ExperimentalElectronic Distributions in Al6Mn[J]. Journal of Physics: Condensed Matter,1993,5(20):3339
    [176] Robinson K. The Structure of β(AlMnSi)-Mn3SiAl9[J]. Acta Cryst.1952,5:397-403
    [177] Buckley H E. Crystal Growth[M]. London: Wiley,1951:103-167
    [178] Chernov A A. Stability of Faceted Shapes[J]. Journal of Crystal Growth,1974,24-25:11-31
    [179] Y. Furukawa, K. Nakajima, K. Sato. Advances in Crystal GrowthResearch[M]. Amsterdam: Elsevier Science,2001:44
    [180] Swaminathan R, Willard M A, M.E. McHenry. Experimental Observationsand Nucleation and Growth Theory of Polyhedral Magnetic FerriteNanoparticles Synthesized Using an RF Plasma Torch[J]. Acta Materialia,2006,54(3):807-816
    [181] Markov I V. Crystal Growth for Beginners: Fundamentals of Nucleation,Crystal Growth and Epitaxy[M]. Singapore: World Scientific Pu blishingCompany, Incorporated,2003
    [182]于金江.高梯度定向凝固共晶高温合金的组织与性能[D].西安:西北工业大学博士学位论文,2001:33-39
    [183] Cahn J W, Hillig W B, Sears G W. The Molecular Mechanism ofSolidification[J]. Acta Metallurgica,1964,12(12):1421-1439
    [184] Chen Y, Wang H M. Growth Morphologies and Mechanism of TiC in theLaser Surface Alloyed Coating on the Substrate of TiAl Intermetallics[J].Journal of Alloys and Compounds,2003,351(1-2):304-308
    [185] Aoyama T, Kuribayashi K. Influence of Undercooling on Solid/LiquidInterface Morphology in Semiconductors[J]. Acta Materialia,2000,48(14):3739-3744
    [186] Jian Z, Kuribayashi K, Jie W. Critical Undercoolings for the Transition fromthe Lateral to Continuous Growth in Undercooled Silicon and Germanium[J].Acta Materialia,2004,52(11):3323-3333
    [187] Waku Y, Nakagawa N, Wakamoto T, et al. A Ductile Ceramic EutecticComposite with High Strength at1,873K[J]. Nature,1997,389(6646):49-52
    [188] Su H J, Zhang J, Liu L, et al. Rapid Growth and Formation Mechanism ofUltrafine Structural Oxide Eutectic Ceramics by Laser Direct Forming[J].Applied Physics Letters,2011,99(22):221913
    [189] Chang H J, Fleury E, Song G S, et al. Formation of Quasicrystalline Phasesin Al-Rich Al-Mn-Be Alloys[J]. Journal of Non-Crystalline Solids,2004,334-335:12-16
    [190] Kim S H, Song G S, Fleury E, et al. Icosahedral Quasicrystalline andHexagonal Approximant Phases in the Al-Mn-Be Alloy System[J].Philosophical Magazine A,2002,82(8):1495-1508
    [191] Song G S, Fleury E, Kim S H, et al. Formation and Stability ofQuasicrystalline and Hexagonal Approximant Phases in an Al-Mn-BeAlloy[J]. Journal of Materials Research,2002,17(7):1671-1677
    [192] Bendersky L, Schaefer R J, Biancaniello F S, et al. Icosahedral Al-Mn andRelated Phases: Resemblance in Structure[J]. Scripta Metallurgica,1985,19(7):909-914
    [193] Raynor G V, Faulkner C R, Noden J D, et al. Ternary Alloys Formed byAluminium, Transitional Metals and Divalent Metals[J]. Acta Metallurgica,1953,1(6):629-648
    [194] Carrabine J A. Ternary AlMnBe4Phases in Commercially Pure Beryllium[J].Journal of Nuclear Materials,1963,8(2):278-280
    [195] Fleury E, Chang H J, Kim D H. Heterogeneous Nucleation of IcosahedralPhase from Fcc Phase in Cast Al87Mn4Si2Be7Alloy[J]. PhilosophicalMagazine,2006,86(3-5):349-354
    [196] Elser V. Indexing Problems in Quasicrystal Diffraction[J]. Physical Review B,1985,32(8):4892-4898
    [197] Tsai A P, Inoue A, Masumoto T. Phason Strains on Growth, Stability andStructure of Icosahedral Phases[J]. Progress in Crystal Growth andCharacterization of Materials,1997,34(1-4):221-236
    [198] Zupani F, Bon ina T, Kri man A, et al. Quasicrystalline Phase in Melt-SpunAl-Mn-Be Ribbons[J]. Journal of Alloys and Compounds,2008,452(2):343-347
    [199] Kreiner G, Franzen H F. A New Cluster Concept and Its Application to Quasi-Crystals of the I-Almnsi Family and Closely Related Crystalline Structures[J].Journal of Alloys and Compounds,1995,221(1-2):15-36
    [200] Dong C. The Concept of the Approximants of Quasicrystals[J]. ScriptaMetallurgica et Materialia,1995,33(2):239-243
    [201] Chou T W, Kelly A, Okura A. Fibre-Reinforced Metal-Matrix Composites[J].Composites,1985,16(3):187-206
    [202] Johnson D R, Oliver B F, Noebe R D, et al. NiAl-Based Polyphase in SituComposites in the NiAlTaX (X=Cr, Mo, or V) Systems[J]. Intermetallics,1995,3(6):493-503
    [203] Bei H, George E P. Microstructures and Mechanical Properties of aDirectionally Solidified NiAl–Mo Eutectic Alloy[J]. Acta Materialia,2005,53(1):69-77
    [204]于化顺.金属基复合材料及其制备技术[M].北京:化学工业出版社,2006:179-183
    [205] Chawla N, Shen Y L. Mechanical Behavior of Particle Reinforced MetalMatrix Composites[J]. Advanced Engineering Materials,2001,3(6):357-370
    [206] Nardone V C. Assessment of Models Used to Predict the Strength ofDiscontinous Silicon Carbide Reinforced Aluminum Alloys[J]. ScriptaMetallurgica,1987,21(10):1313-1318
    [207] Christman T, Needleman A, Suresh S. An Experimental and Numerical Studyof Deformation in Metal-Ceramic Composites[J]. Acta Metallurgica,1989,37(11):3029-3050
    [208] Llorca J, González C. Microstructural Factors Controlling the Strength andDuctility of Particle-Reinforced Metal-Matrix Composites[J]. Journal of theMechanics and Physics of Solids,1998,46(1):1-28
    [209] Lloyd D J. Particle Reinforced Aluminium and Magnesium MatrixComposites[J]. International Materials Reviews,1994,39(1):1-23
    [210]赵玉涛,戴起勋,陈刚.金属基复合材料[M].北京:机械工业出版社,2007:40-59
    [211] Gomiero P, Brechet Y, Louchet F, et al. Microstructure and MechanicalProperties of a2091AlLi Alloy-II. Mechanical Properties: Yield Stress andWork Hardening[J]. Acta Metallurgica et Materialia,1992,40(4):857-861
    [212] Singh A, Watanabe M, Kato A, et al. Microstructure and Strength ofQuasicrystal Containing Extruded Mg-Zn-Y Alloys for Elevated TemperatureApplication[J]. Materials Science and Engineering: A,2004,385(1-2):382-396
    [213] Singh A, Nakamura M, Watanabe M, et al. Quasicrystal Strengthened Mg-Zn-Y Alloys by Extrusion[J]. Scripta Materialia,2003,49(5):417-422
    [214] Chang H J, Fleury E, Lee Y H, et al. Precipitation of a Two-DimensionalAperiodic Approximant Phase in Al-Rich Al-Mn-Be Alloy[J]. PhilosophicalMagazine Letters,2004,84(5):311-319

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700