HBIC种植钛与常用冠修复金属材料的电化学腐蚀实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:通过对HBIC型钛种植体与口腔科常用修复烤瓷合金在中性人工唾液、酸性及含氟的人工唾液中的电化学腐蚀性能进行综合评价,为临床合理选择与种植体相匹配的种植义齿上部结构材料提供参考。
     方法:(1)试件的制备选择目前本院使用的HBIC型钛种植体(T-H)以及临床常用冠修复材料:镍铬合金(N)、钴铬合金(C)、金铂合金(Au)、铸造纯钛(T),按厂家要求包埋铸造。所有试样均为直径4mm,高10mm的圆柱体,每种金属各4个。将金属圆柱体楔入直径为3.5mm的聚四氟乙烯管中,环氧树脂密封,一端导线接出。暴露面表面积为0.1257cm2。用220目、400目、600目、800目水砂纸顺序磨平,按临床抛光顺序和要求抛光,浸入人工唾液中24h备用,使表面状态趋于稳定。(2)人工唾液的制备配制pH=6.8;pH=4;pH=6.8加入0.1%F-; pH=4加入0.1%F-的A,B,C,D四种人工唾液。(3)采用经典三电极体系的电化学方法,在A,B,C,D四种人工唾液中检测5种常用牙科金属(合金)以及HBIC型钛种植体(T-H)的自腐蚀电位(E corr)、腐蚀电流密度(Iccor),并绘制出极化曲线。(4)扫描电镜对合金表面形貌进行观察。
     结果:
     1五种不同金属在四种人工唾液中的自腐蚀电位
     1.1在pH=6.8的人工唾液中Au>C>N>T>T-H,其中Au组的自腐蚀电位大于其余四组金属(合金)的自腐蚀电位(p<0.05),C组、N组的自腐蚀电位大于T组、T-H组(p<0.05),C组、N组与T组、T-H组间无统计学意义(p>0.05)。
     1.2 T组、T-H组在A、B、C、D四种不同人工唾液的自腐蚀电位依次为A0.05)。
     2同种材料在不同介质中的腐蚀电流密度(μA/cm2)
     2.1金铂合金组在四种人工唾液中测得腐蚀电流密(Iccor)依次为AuA组0.05)。
     2.2镍铬合金组在A,B,C,D四种人工唾液处理后测得腐蚀电流密度(Iccor)以此为NA组0.05)。
     2.3钴铬合金组在A,B,C,D四种人工唾液中测得腐蚀电流密度(Iccor)为CC组0.05)。
     2.4铸造纯钛组在四种人工唾液中测得腐蚀电流密(Iccor)依次为TA组< TC组     2.5 HBIC型钛种植体组在四种人工唾液测得腐蚀电流密度(Iccor)依次T-HA组< T-HB组0.05)。
     3不同种材料在同一介质中的腐蚀电流密度(μA/cm2)
     3.1在pH=6.8的人工唾液中,四种金属腐蚀电流密度(Iccor)为依次为N组>C组>T组> T-H组>Au组,其中N组、C组与Au组、T组、T-H组间有统计学差异(p<0.05),N组与C组,T组与T-H组与Au组间无统计学差异(p>0.05);在pH=4的人工唾液中四种金属腐蚀电流密度(Iccor)为依次为N组>C组>Au组> T组> T-H组,其中T组、T-H组与N组、C组、Au组间有统计学差异(p<0.05),Au组Iccor小于N组与C组有统计学差异(p<0.05) ,T组与T-H组,N组与C组间无统计学差异(p>0.05)。
     3.2在pH=6.8的含0.1%F-人工唾液中,五种金属腐蚀电流密度(Iccor)没有统计学差异(p>0.05)。在pH=4的含0.1%F-人工唾液中AuD组0.05)。
     4扫描电镜观察,金合金在pH=6.8、pH=6.8含氟人工唾液中测试后在扫描电镜下观察未见明显腐蚀破坏;在pH=4和pH=4含氟人工唾液中测试后合金表面可见散在的且直径较小的浅的点蚀坑;镍铬合金在pH=6.8、pH=6.8含氟人工唾液中腐蚀明显,为典型的孔蚀样表现,且随pH降低,腐蚀加剧;钴铬合金在pH=6.8、pH=4及pH=6.8含氟的人工唾液中测试后扫描电镜下观察有剥脱性腐蚀破坏表现,在酸性含氟环境中腐蚀破坏加剧;铸造纯钛、HBIC型钛种植体在pH=6.8、pH4及pH=6.8加0.1% F的人工唾液中的腐蚀均不明显,但在pH=4加0.1% F的人工唾液中测试后扫描电镜高倍下观察表现为蜂窝状改变,金属原有形态完全破坏。
     结论:
     1在中性人工唾液中,金铂合金、镍铬合金、钴铬合金、铸造纯钛及HBIC型钛种植体均有较好的耐腐蚀性能,其中金合金、铸造纯钛及HBIC型钛种植体耐腐蚀性优于钴铬合金、镍铬合金。
     2在酸性人工唾液中镍铬合金、金合金腐蚀电流密度明显增大,而pH值的降低对钴铬合金、铸造纯钛及HBIC型钛种植体没有明显影响。
     3氟化物的加入使金合金、钴铬合金、镍铬合金、铸造纯钛及HBIC型钛种植体在酸性人工唾液中的腐蚀电流密度均呈增大趋势,其中铸造纯钛及HBIC型钛种植体对酸性环境氟化物敏感性更大,腐蚀电流与中性人工唾液相比有明显差别。
     4在酸性环境以及酸性含氟环境中会加剧种植体及冠材料电化学腐蚀的进行,经常进行种植体及牙周维护,降低菌斑形成,有助于维持唾液pH在正常范围;使用氟制剂时,若调整氟制剂的pH值为碱性或中性,有助于减弱修复烤瓷合金电化学腐蚀程度。
Objective: The purpose of this study was to evaluate the corrosion behavior of HBIC-Ti implant and Au-Pt alloy, Ni-Cr alloy, Co-Cr alloy,casting pure Ti in artificial saliva with different pH and fluoride contents.it was usefud for references and basis for selecting suprastructure in dental implantation dental alloys in the clinic.
     Methods:
     1 Preparation of alloys specimens: HBIC-Ti implant(Ti-HBIC) of commonly used dental alloys : Ni-Cr alloys (N), Co-Cr alloy(C), casting pure Ti(T) are selected.Each type of alloy was cast into 4 samples under the manufacture instruction ,all samples were shaped into a cylindrical form, in order to constitute the cap of a rotating disk electrode. With4mm diameter , 10mm high , cylinders were wedged into PTFE pipage with 3.5mm diameter,the exposed surfase of metal is 0.1275mm2. All the samples were ground and polished as follows: the specimens were subjected to waterproof abrasive paper on 220, 400, 600, 800 grit silicon carbide then immerse into artificial saliva for 24 h.
     2 The preparation of the artificial saliva : Four different artificial saliva: pH6.8(A), pH 4(B), pH6.8with0.1%F-(C) ,pH 4 with0.1%F-(D).
     3 In A, B, C, D artificial saliva at 37±0.5℃, the corrosion potential(E corr), corrosion current density (Iccor) and polarizaion curve of there usual dental the materials,which were Ni-Cr alloy, Co-Cr alloy, casting pure titanium and HBIC-Ti implant, were tested by the classic three electrodes system of electrochemical method.
     4 Surface analysis by SEM.
     Results:
     1 The corrosion potential (Ecorr) of different materials in the different artificial saliva.Tab-3
     1.1 Ecorr of five different metals in the artificial saliva A were Au>C>N>T>T-HBIC, Ecorr Au was bigger than other four kind of metals(p<0.05), Ecorr N, Ecorr C were bigger than Ecorr T, Ecorr T-H(p<0.05),There were no signifcant difference between Ecorr N and Ecorr C, Ecorr T and EcorrT-H, (p>0.05).
     1.2 Ecorr of Tgroup and T-Hgroup in the artificial saliva A,B,C,D were EcorrA al in the the artificial saliva C、D were bigger than that in the the artificial salivaA、B(p<0.05),There was significant differece between Ecorr C and EcorrD(p<0.05), There was no significant differece between Ecorr A and EcorrB(p<0.05)
     2 The corrosion current density of same materials in the different artificial saliva (IccorμA /cm2)
     2.1 Aurum- platinum alloy The corrosion current density of Au-Pt alloy tesed by A, B, C, D artificial saliva respectively were AuA al saliva B and D exceed tested in artificial saliva A and C, there is significant diffreence (p<0.05),but there is no significant diffreence in the corrosion current density tested in artificial saliva between C and D, and Iccor tested in artificial saliva between Aand B(P>0.05).
     2.2 Nickel-chromium alloy The corrosion current density of Ni-Cr alloy tesed by A, B, C, D artificial saliva respectively were The corrosion current density tested in artificial saliva B and D exceed tested in artificial saliva A and C, there is significant diffreence (p<0.05),but there is no significant diffreence in the corrosion current density tested in artificial saliva between C and D, and Iccor tested in artificial saliva between Aand B(P>0.05).
     2.3 Cobalt-chromium alloy The corrosion current density of Co-Cr alloy tesed by A, B, C, D artificial saliva respectively wereCCal saliva A, B, C is smaller than Iccor tested in artificial saliva D, there is significant diffreence (p<0.05), Iccor among other there kind artificial saliva were no significant difference (P>0.05).
     2.4 Casting pure titanium The corrosion current density of Casting pure Ti tesed by A, B, C, D artificial saliva respectively were TA< TCal saliva A, B, C is smaller than Iccor tested in artificial saliva D, there is significant diffreence (p<0.05), Iccor among other there kind artificial saliva were no significant diffreence(P>0.05).
     2.5 HBIC-Ti implant The corrosion current density of HBIC -Ti tesed by A, B, C, D artificial saliva respectively were T-HA< T-HBal saliva A, B, C is smaller than Iccor tested in artificial saliva D, there is significant diffreence (p<0.05), Iccor among other there kind artificial saliva were no significant difference (P>0.05).
     3 The corrosion current density of different materials in the same artificial saliva (IccorμA /cm2)
     3.1 In the artificial saliva A the corrosion current density of five metals respectively were N>C> T> T-H>Au, The corrosion current density tested of Au group and T group, T-H group was smaller than that N group and C group , there was significant difference (p<0.05). but there was no significant difference in the corrosion current density between N group and C group, among Au group ,T group and T-H group (P>0.05). In the artificial saliva B the corrosion current density of five metals respectively were N>C>Au>T>T-H, The corrosion current density tested of T group, T-H group was smaller than that of Au group, N group and C group, Au group was smaller than that of N group and C group ,there were significant difference (p<0.05). but there was no significant difference in the corrosion current density between N group and C group, T group ,and T-H group (P>0.05).
     3.2 In the artificial saliva C, The corrosion current density tested of five kind of metals were no significant difference(p>0.05), In the artificial saliva D, the corrosion current density was AuD groupaller than T group and T-H group, there was significant difference (p<0.05), but there was no significant difference between T group and T-H group (P>0.05).
     4 Surface analysis by SEM:
     4.1 Au-Pt alloy: No obvious corrosion was observed on the surface of Au-Pt alloy tested in artificial saliva A and C, but in artificial saliva B and D there was some small sporadic shallow corrosion spot.
     4.2 Ni-Cr alloy: there was obvious corrosion of Ni-Cr alloy tested in artificial saliva A and C, It was typical pitting appeara- -nce,and pH degrade intensified the alloy corrosion.
     4.3 Co-Cr alloy: Exfoliatus destroy was observed on the surface of Co-Cr alloy tested in four different artificial saliva , and pH degrade intensified the alloy corrosion.
     4.4 Casting pure Ti and Ti-HBIC implant: There were both no obvious corrosion on the surface of two type of Ti tested in art -ificial saliva A,Band C, but in the artificial saliva D honeyc -omb appearance was observed in high power, the inhere appearance of metal was destroyed completely.
     Conclusion:
     1 In the neutral artificial saliva, the corrosion current density of Ni-Cr alloys, Co-Cr alloy, casting pure Ti, HBIC-Ti implant all smaller than 10-6, five kind of materials had a good corrosion resistance, but Au-Pt alloy and pure Ti presented the better corrosion resistance, and were far superior to that of Ni-Cr alloy and Co-Cr alloy.
     2 The corrosion current density of Ni-Cr alloys and Au-Pt alloy increased significantly, but Co-Cr alloy, casting pure Ti, HBIC-Ti implant was free of influnce.
     3 Adsition of F- in the acidic artificial saliva promoted the corrosion current density of five metals, casting pure Ti, HBIC-Ti implant were more sensitive than other alloys.there was a signifcant difference with that in pH=6.8 artificial saliva.
     4 Decreacing of pH and adsition of F- in the acidic artificial saliva intensified the electrochemical corrosion of implant and crown material, so removal bacterial plaque to maintain pH at normal limits and adjusting fluorine praeparatum to alkalinity or neutrality would be good to decreace the electrochemical corrosion.
引文
1 Codina J C. Comparison of microbial tests for the detection of heavy metal genotoxicity Arth Environ Contam Toxicol, 1995, 29(2):260-265
    2 Nickel BC. Analysis of K-ras, P53 and C-raf-lmutation in beryllium-indecedrat lung tumours. Carcinogenes, 1994, 15 (2): 257-262
    3 Cortada M, Giner L, Costa S, et al.Galvanic corrosion behavior of titanium implants coupled to dental alloys[J].J Mater Sci Mater Med, 2000, 11(5):287-293
    4 Geis-Gerstorfer J. In vitro corrosion measurements of dental alloys . J Dent, 1994, 22(4):247-251
    5 Reclaru L, Meyer J M. Study of corrosion between a titanium implant and dental alloys . Dent, 1994, 22(3): 159- 168
    6查全性等.电极过程动力学导论(第三版).北京:科学出版社,2002, 320- 322
    7宋应亮,徐君伍,马轩祥.人工唾液中修复材料电偶序测定及腐蚀倾向的研究.华西口腔医学杂志, 1997, 15(3): 206-208
    8朱松,曹艳兰,刘红. pH值对口腔修复常用合金间瞬间电偶电流的影响.实用口腔医学杂志, 2005, 21(6):767 -770
    9孙凤,魏克立,钱端申.钛义齿支架表面抛光的临床研究.现代口腔医学杂志, 2002, 16(2):166-167
    10 Ramakrishna Venugopalan, Linda C. Lucas. Evaluation of restorativeand implant alloys galvanically coupled to titanium. Dent Mater1998, 14(3):165-172
    11宋继武,牟月照.齿科铸造合金的电化学腐蚀研究进展.口腔颌面修复学杂志, 2006, 7(2):146-148
    12刘玉艳,周延民.钦种植体基台与三种合金在人工唾液中腐蚀性能研究现代口腔医学杂志, 2006, 20(5):485-488
    13裘松波,曹风华,孙占波.动电位极化技术在口腔修复腐蚀测定中的应用.第三军医大学学报, 2001, 23:227 - 229
    14于思荣,张新平,何镇明. Ti-Fe-Mo-Mn-Nb-Zr合金在不同pH值乳酸中的腐蚀性能研究.生物医学工程学杂志, 2005, 22(1):91-94
    15胡滨,张富强,郑元俐. pH值对磁性固位体耐蚀性能的影响.华西口腔医学杂志, 2003, 21(4):301-303
    16刘丽,毛英杰,陈志红.钛合金在不同pH值人工唾液中耐腐蚀性能的研究.生物医学工程学杂志, 2006, 25(2):166-169
    17王秀梅,谢伟丽,李艳琳.人工唾液和乳酸对钛合金卡环疲劳强度影响的研究.口腔医学研究, 2008, 24(1):29-31
    18杨敏,陈树国,孟令强等.两种口腔镍铬合金离子析出的体外实验研究.现代口腔医学杂志, 2007, 21 (3): 300- 303
    19 wataha JC,Hanks CT,Craig RG. The invitro effects of metal cations on eukaryotic cell metabolism. Journal of Biomedical materials research, 1991, 2(9):1133-1149
    20刘啸晨,郭立童,高积强.不同pH值和F-浓度对钛/瓷结合性的影响,稀有金属材料与工程, 2007, 36(2) 31-33
    21 Khamis E, Seddik M. Corrosion evaluation of recasting non -precious dental alloys[J]. Int Dent J, 1995, 45(3):209-217
    22牟月照,宋继武,柳云霞.不同齿科铸造合金电化学腐蚀的观测研究.口腔颌面修复学杂志2007, 8(1):11-14
    23 F.Toumelin-Chemla,F.Rouellef and G. Buddairon. Corros- ive Propertyes of fluoride-containing odontologic gels agai -nst titanimu.Joumal of Dentistry. 2001, 24(l-2): 110 - 114
    24王卫东,李辉,熊昊等,两种漱口水对钛种植体基台的影响.临床口腔医学杂志, 2006, 22(8):484-485
    25 Nicolas Schiff, Brigitte Grosgogeat,Michele Lissac and Francis Daldard,Influence of fiuoride content and pH on the corrosion resistance ofTitanium and its alloys. Biomaterials, 2002, 23(9):1995-2001
    26 Wataha JC, Lockwood PE, Noda M. Effect of tooth brush-ing on thetoxicity of casting alloys[J]. J Prosthet Dent, 2002, 87(1): 94-98
    27 Her-Hsiung Hunag.Eeffcts of fluoride concentration and elastic tensile Strain on the corrosion resistance of commercially Pure titanium. Biomaterials. 2002. 23(l):61 -63
    1 Codina JC. Comparison of microbial tests for the detection of heavy metal genotoxicity Arth Environ Contam Toxicol, 1995, 29(2):260-265
    2 Nickel BC. Analysis of K-ras,P53 and C-raf-lmutation in beryllium-indecedrat lung tumours. Carcinogenesis, 1994, 15 (2):257-262
    3 Cortada M, Giner L, Costa S, et al. Galvanic corrosion behavior of titanium implants coupled to dental alloys[J]. J Mater Sci Mater Med, 2000, 11(5):287-293.
    4孙秋霞.材料腐蚀与防护[M].北京:冶金工业出版社2000
    5胡滨,富强,郑元俐等.氯离子浓度对磁性固位体耐蚀性能的影响.上海第二医科大学学报, 2001, 21:125-127
    6宋应亮,徐君伍,马轩祥.口腔环境中钛及钛合金腐蚀研究现状.国外医学生物医学工程分册, 2000, 23(4):243-246
    7魏宝明主编.金属腐蚀理论及应用.第l版.北京北学工业出版杜, 1984, 1-50
    8毛英杰.牙科金属在口腔环境中电化学腐蚀的研究进展.国外医学生物医学工程分册. 2005. 28(2):128-132
    9宋应亮,徐君伍,马轩祥等. Aay4对钛及钛75合金表面失泽腐蚀的研究.中华口腔医学杂志, 2000; 35(4) :253 -256
    10宋应亮,徐君伍,马轩祥等.白色念珠菌对铸钛、Co-Cr合金、Ni-Cr合金修复体失泽腐蚀的影响.实用口腔医学杂志, 2000, 16(2):109-111
    11宋应亮,徐君伍,马轩祥等.牙龈卟啉菌381对纯钛及钛75合金种植体表面失泽的腐蚀.第四军医大学学报, 2000, 21(8):913-915
    12宋应亮,徐君伍,马轩祥等.远缘链球菌g型对铸钛、钴铬合金、镍铬合金修复体腐蚀失泽的研究.华西口腔医学杂志, 2002, 20(1):11-14
    13 Capopreso S, Cerroni L, Frangini S, et al. Bacterial adhesion to dental of alloys, the role of the surface and com position . Minerva Stomatol, 1999, 48(11):509-512
    14 Kancyper SG, Koka S. The influence of intererevicular crown margins on gingival health: Preliminary findings [J], J Prosthet Dent, 2001, 85(5):461-463
    15冯莉,李雅娟,孟令强.贵金属合金及粗糙度对种植体龈下优势菌黏附性的影响.上海口腔医学, 2008, 17(1):67-70
    16刘博,王璐.银汞合金与牙科常用合金间电偶腐蚀的研究.重庆医科大学学报,2006, 31(3):395-397
    17 Ramakrishna Venugopalan, Linda C.Lucas. Evaluation of restorativeand implant alloys galvanically coupled to titanium. Dent Mater, 1998,14:165-72
    18 Taher NM, AlJababAS. Galvanic corrosion behavior ofimplant suprastructure dental alloys. Dent Mater, 2003, 19(1): 54-59
    19 Berit I, BoBergman J. Corrosin of titanium and amalgam couples: Effect of fluoride, area size,surface preparation and fabricationproceduress. Dent mater, 1995, 11(1):41-46.
    20 Venngopalan R, LucasLC. Evaluation of restorative and imlantgalvanically coupled to titanium [J]. DentMater, 1998, 14(3):165-172
    21潘景光,赵铱民.软磁合金与4种齿科合金间电偶腐蚀的浸泡实验研究.实用口腔医学杂志, 2007, 23(5)662-665
    22张德康编著.不锈钢局部腐蚀.第1版.北京:科学出版社, 1982, 1-142
    23陈洁,胡滨.齿科铸造合金应力腐蚀破裂的研究进展.国际口腔医学杂志, 2008, 35(2):216-218
    24 Wataha JC, Lockwood PE,Mettenburg D, et al. J Biomed Mater Res B Appl Biomater, 2003, 65(1):180-185
    25杨敏,陈树国,孟令强等.两种口腔镍铬合金离子析出的体外实验研究.现代口腔医学杂志.2007, 21(3):300-303
    26 Meerakker J, Baarslag PC, Behaviour of permalloy in NH4F/HF solutions [J]. Corro Scien, 2000, 42(7):1169- 1173
    27 Laurent F, Grosgogeat B, Reclaru L, et al. Comparision of corrosion behavior in presence of oral bacteria [J]. Biomaterials, 2001, 22(16):2273- 2282
    28 Wataha JC, Nelon SK, Lockwood PE. Elemental release from dental casting alloys into biological media with andwithout protein. Dent Mater, 2001, 17(5):409-414
    29于思荣.金属系牙科材料的应用现状及部分元素的毒副作用.金属功能材料, 2000, 4 (7):23-27
    30 Her Hsiung Huang. Effect of fluoride and albumin concentr- ation on the corrosion behavior of Ti-6Al-4Valloy. Biomateri–als, 2003, 24:275-282
    31苏剑生,乔广艳,潘可风.牙科铸造合金的腐蚀及生物相容性研究进展.口腔颌面修复学杂志, 2005, 6(3):239-241
    32 Zavanelli RA, Henriques GEP, Ferreira I, et al. Corrosio -nfatigue life of commercially pure titanium and Ti-6Al-4V alloys in different storage environments. J Prosthet Dent, 2000, 84(2):274-279
    33 Koike J, Shimoyama Y, Fujii H, et al. Characterization of superplasticity in Ti-5, 5Al-1Fe alloys. Scripta MaterialIa, 1998, 39(8):1007-1009
    34 Khamis E, Seddik M. Corrosion evaluation of recastingnon -precious dental alloys [J]. Int Dent J, 1995, 45(3):209-217
    35宋应亮,徐君伍,马轩祥等.人工唾液中修复材料电偶序测定及腐蚀倾向的研究.华西口腔医学杂志,1997,15(3):206-208
    36孙佳凝,高宁,赵云凤等. ICP-AES检测NiCrBe合金在不同介质中离子析出的研究,临床口腔医学杂志, 2003, 19(6):328-331
    37 Bumgardner JD,Parsell DE,Wolan JT,et al. Use of x-ray Photoelectron spectroscopy and Cyclic Polarization to evaluate the corrosion behavior Of six nickel-chromiumalloys before and after porcelain-fused-to-metal firing [J]. J Prosthet Dent, 2000, 84(6):623-34
    38 Chang JC, Oshida Y, Gregory RL, et al. Electrochemical study on microbiology-related corrosion of metallic dental materials. Biomed Mater Eng, 2003, 13(3):281-295
    39 Faccioni F, Franceschetti P, Cerpelloni M, et al. In vivo study on metal release from fixed orthodontic appliances and DNA damage in oral mucosa cells. Am J Orthod Dent of acial Orthop, 2003, 124(6):687-693
    40 Khamis E, Seddik M. Corrosion evaluation of recastingnon -precious dental alloys [J]. Int Dent J, 1995, 45(3):209-217
    41 Viennot S, Dalard F, Lissac M, et al. Corrosion resistance of cobalt-chromium and palladium-silver alloys used in fixed prosthetic restorations. Eur J Oral Sci, 2005, 113(1): 90-95
    42 Bayramoglu G, Alemdaroglu T, Kedici S, et al. The effect of pH on the corrosion of dental metal alloys. J Oral Rehabil , 2000, 27(7):563-575
    43 Ramakrishna Venugopalan, Linda C. Lucas. Evaluation of restora tiveand implant alloys galvanically coupled to titanium. Dent Mater, 1998, June,14:165-72
    44 Berzins DW, Kawashima I, Graves R, et al. Dent Mater, 2000, 16(4):266-273
    45 Turpin YL Tardivel RD, Tallec A, Lc Menn AC . corrosion susceptibility of titanium covered by dental. Dent Mater 2000, 16:57-61
    46 Nicolas Schiff, Brigitte Grosgogeat,Michele Lissac and Francis Daldard,Influence of fiuoride content and PH on the corrosion resistance of Titanium and its alloys. Biomaterials, 2002, 23(9):1995-2001
    47 Stretzekl R, Hosch A, Kalbfleisch H. In vitro corrosion of titanium.Biomaterials, 1998, 19:1493-1495
    48 Nkaagawa M,Matsuya S,Shiraishi T,Ohta M. Eeffect of fluoride Concentration and PH on corrosion behavior of titanium for dental use. J DentRes, 1999, 78(9):1568-1572
    49 F.Toumelin-Chemla,F.Rouellef, G.Buddairon. Corrosive Propertyes of fluoride-containing odontologic gels against titanimu. Joumal of Dentistry, 2001, 24(l-2):110-114
    50 Boere G. Influence of fluoride on titanium in an acidic environment Measured by Polarization resistance technique. J AppI Biomater, 1995, 6(4):280-283
    52 Mimura H,Miyagwaa Y. Electrochemical behavior of titanium castings: Part1. Eeffets of degree of surface Polis- hing and kind of solution . Jpn. J. Dent Mater ,2003, 15: 283-295
    53刘啸晨,郭立童,高积强.不同pH值和F-浓度对钛/瓷结合性的影响.稀有金属材料与工程, 2007, 36(2):31-33
    54 Di Carlo F, Ronconi LF, Gambarbarini G, Andreasi Bassi M, Quaranta M, The influence of fluorides on the electr -ochemical interaction between titanium and amalgam couples. J Dent Res2001, 80(1096):663
    55姒蜜思.钛种植体种植相关因素研究进展.浙江医学,2008, 30(3):294-297

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700