热弹性马氏体相变弛豫的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
热弹性马氏体相变是形状记忆合金系统最重要的特征,它对形状记忆合金的形状记忆效应、超弹性和高阻尼等力学行为有着关键的作用。研究形状记忆合金的力学弛豫行为对于揭示热弹性马氏体相变过程,拓展其应用领域具有重要意义。由于热弹性马氏体相变是一种特殊的马氏体相变,其弛豫行为必然具有特殊性。
     本实验采用Cu-Al-Ni-Mn-Ti等合金作为实验材料,测量合金在热弹性马氏体相变时的力学弛豫与温度、变温速率、应变振幅、振动频率、等温时间的关系。实验主要采用强迫振动模式,了解合金在不同测量条件下的力学弛豫特性,研究力学弛豫的演化规律以及弛豫峰的分解,揭示不同弛豫过程与相变的关系,重点研究相变的滞弹性行为。
     实验发现通常测得的马氏体相变内耗峰实质上由低温内耗峰和高温内耗峰叠加而成,低温内耗峰和高温内耗峰对应于不同的相变机制,说明热弹性马氏体相变是多个机制相互耦合的过程。高温内耗峰的峰高与振动频率的倒数呈线性关系,随应变振幅的增加而降低,峰位与振动频率无关,表明它与相界面法向运动产生的体积变化有关。低温内耗峰的峰高与对数振动频率呈对称的峰形函数关系,几乎不随应变振幅发生变化,在温度谱上随着频率的增加,低温内耗峰向高温方向移动,出现一定程度的频移现象,说明它与相界面切向粘滞性运动有关,从而证实热弹性马氏体相变中有滞弹性弛豫的存在。
Thermoelastic martensitic phase transformation (MT) is one of the most important features of shape memory alloy (SMA) system, which plays a crucial role in shape memory effect, super-elasticity and high damping capacity of SMA. It is important to study the mechanical relaxation behaviors of SMA for revealing the thermoelastic MT and developing its applied fields.
     Cu-Al-Ni-Mn-Ti alloy, etc. were adopted as experimental materials to measure the relationship of the mechanical relaxation to temperature, strain amplitude, oscillation frequency and isothermal time. In the dynamic experiments, the forced vibration mode was taken to determine the mechanical relaxation characteristics under different measured conditions, to study the evolvement and decomposition of the relaxation peak, and still to reveal the relation between the heterogeneous relaxation processes and the MT, particularly the anelastic behaviors during the MT.
     It has been experimentally found that the internal friction (IF) peak measured in general MTs is actually composed of two independent peaks, i.e. low-temperature and high-temperature peaks, which correspond to different mechanisms, indicating that the thermoelastic MT is a process coupled by multiple mechanisms. The height of high-temperature peak is directly proportional to reciprocal frequencies and decreases as strain amplitudes increase, however its location at temperature spectra is unvaried with vibration frequencies. These facts show that the high-temperature peak is only associated with the volume change caused by the normal motion of phase interfaces. The maximum of low-temperature peak gives a symmetrical peak-like function against logarithmic frequencies and is almost independent of strain amplitudes, but the low-temperature peak shifts a few degrees in temperature spectra towards high temperatures with increasing the frequencies, exhibiting it is associated with the transversal viscous motion of phase interfaces. All the aspects prove that there exists the anelastic relaxation in the thermoelastic MT.
引文
[1] 徐祖耀,形状记忆合金,上海交通大学出版社,(2000)
    [2] 舟久保熙康,形状记忆合金,产业图书,(1984)
    [3] 徐祖耀,马氏体相变与马氏体,北京:科学出版社,(1999)
    [4] 冯端,金属物理学(第三卷),科学出版社,(1999)
    [5] 陈騑騢,材料物理性能,机械工业出版社,(2006)
    [6] 宫秀敏,相变理论基础及应用,武汉理工大学出版社,(2004)
    [7] 徐祖耀,李鹏兴.材料科学导论,上海科学技术出版社,(1986),512-581
    [8] 胡赓祥,钱苗根,金属学.上海科学技术出版社,(1980),348-372
    [9] 邓永瑞,马氏体转变理论,科学出版社,(1993)
    [10] R. S. Lakes, Physical Review Letters, 86, (2001), 2897,
    [11] 葛庭燧,固体内耗理论基础(晶界弛豫与晶界结构),科学出版社,(2000)
    [12] C.甄纳,会属的弹性与滞弹性,科学出版社,(1965)
    [13] C. Zener, Elasticity and Anelasticity in Metals, Phys.Rev., 71, 34, (1947)
    [14] C. Zener, Relaxation phenomena in metalsTrans, Physica., 15, (1949), 111-118
    [15] 冯端,王业宁等,金属物理(下册),科学出版社,(1975),570-573
    [16] R. M. Fuoss, J. G. Kirkwood, J. Amer. Chem. Soc., 63, (1941), 395
    [17] J. F. Snoek, Grain boundary slip and magnetic relaxation at high temperatures in iron, Physica, 16, (1950), 336
    [18] P. G. Bordoni, Dislocation relaxation, Journal of Alloys and Compounds, 211-212, (1994),16-19: J. Acoust. Soc. Am., 26, (1954), 495: Bordoni P. G., Nuovo cimento, Suppl. 17, (1960), 43
    [19] C. L. Gong, F. S. Han, Z. Li, and M. P. Wang, Two internal-friction peaks related to thermo-elastic martensitic transformations in CuAINiMnTi shape-memory, Phs. Rev. B, 70, 094103, (2004), 1-11
    [20] A.B. Greninger, V. G. Mooradian, Trians. AIME., 128, (1938), 337
    [21] G.V. Kurdjumov, Martensite with abnormal crystal lattice, Journal of the Less Common Metals., 28, 1, (1972), 153-155
    [22] G. V. Kurdjumov, A.N. Khandros, Nature of axial ratio anomalies of the martensite lattice and mechanism of diffusionless γ→α transformation, Acta Metallurgica., 23, 9, (1975), 1077-1088
    [23] G. V. Kurdjumov, The nature of martensitic transformations, Materials Science and Engineering, 39, 2, (1979), 141-167
    [24] H. C. Ling, W. S. Owen, Interactions ofmartensitic transformation strains with soft elastic modes, Sci. Metall, 15, 10, (1981), 1115-1120
    [25] H.C. Ling, W. S. Owen, A model of the thermoelastic growth of martensite, ActaMetall., 29, 10, (1981), 1721-1736
    [26] Z. S. Basinski and J. W. Christian., Experiments on the martensitic transformation in single crystals of indium-thallium alloys, Acta Metallurgica, 2, 1, (1954), 148-159
    [27] 徐祖耀,马氏体相变研究的进展(一),上海金属,25,3,(2003),1—8
    [28] 徐祖耀,相变原理,北京:科学出版社,(1988),133
    [29] E. Scheil and J. Muller, Arch. Eisenhuttenwes., 27, (1956), 801
    [30] Liu Junmin, Zhang Jinxiu, P.C.W.Fung, Proc. ISSMM-94(Beijing), 92
    [31] M. Morin and G. Gueniu, Internal friction measurements related to the two way memory effect in Cu-Zn-Al alloy exhibiting thermoelastic martensitic transformation, J. Phys., 44, C9-247, (1983)
    [32] R.B. Perez-Saez, V. Recarte, M. L. No and J. San Juan, Anelastic contributions and transformed volume fraction during thermoelastic martensitictransformations, Phys. Rev., B57, (1998), 5684—5692
    [33] V.N. Belko, B. M. Darinsky, V. S. Postnikov, and I. M. Sharsharov, Phys. Met. Metallogr, 27, (1969), 140
    [34] J.F. Delorme and P. F. Gobin, Met. Corr. Ind. 573,185, (1973); 574, (1973), 209
    [35] W. Dejonghe, R. De Batist, and L. Delaey, Scr. Metall, 10, (1976), 1125
    [36] G. Gremaud, J. E. Bidaux, and W. Benoit, Nonlinear relationship of internal friction in phase fransformation, Phys. Acta, 60, (1987), 947
    [37] Wang Yening, Chen Xiaohua and Shen Huimin, Proc, IFUAS(Beijing, 1989), 305
    [38] 王业宁,邹一峰,张志方,马氏体相变中低频内耗的研究,物理学报,29,(1980),1535
    [39] Y.N. Huang, Y. N. Wang and H. M. Shen, Internal friction and dielectric loss related todomainwalls, Phys. Rev., B46, (1992), 3290
    [40] Y.N. Wang, X. H. Chen and H. M. Shen, Recent studies on internal friction associated with diffusionless phase transitions and domain walls, Chin. J. Met. Sci. Tech., 7, (1991), 157—165
    [41] J.X. Zhang, P. C. W. Fung, and W. G. Zeng, Dissipation function of the first-order phase transformation in solids via internal-friction measurements, Phys. Rev. B, 52, (1995), 268—277
    [42] J. X. Zhang, Z. H. Yang, and P. C. W. Fung, Dissipation function of the first-order phase transformation in VO_2 ceramics by internal-friction measurements, Phys. Rev. B, 52, (1995), 278—283
    [43] 王华馥,吴自勤.固体物理实验方法,高等教育出版社,(1997)
    [44] T.S.Ke(葛庭燧),Phys.Rev.,71,(1947),533—540
    [45] H. S. Chen, H. J. Leamy and M. Barmatz, The elastic and anelastic behavior of a metallic glass, Journal of Non-Crystalline Solids, 5,5,(1971), 444-448
    [46] Kenichi Ota, Giuseppe Pezzotti, Anelastic grain-boundary relaxation arising from solid solution of chromium in polycrystalline Al_2O_3, Scripta Materialia, 34, 9, (1996), 1467-1472
    [47] 文亦汀,王力田,杜家驹.物理,15,109,(1986)
    [48] 葛庭燧,力学进展,24(3),(1998),336-339
    [49] Nowick. A. S., Berry. B. S., Inelastic Relaxation in Crystalline Solids, Academic Press, (1972)
    [50] W. E. Alnaser and D. H. Niblett, Frequency dependence of the relaxation strength of the bordoni peak in polycrystalline 5N aluminium, Materials Letters, 9, (1990), 198-200
    [51] T.S. Ke(葛庭燧), Marc Ross, Rev. Sci. Instruments, 20, (1949), 795
    [52] R. B. Perez-Saez, V. Recarte, M. L. No and J. San Juan, Analysis of the internal friction spectra during martensitic transformation by a new temperature rate method, J. Alloys Compd., 310, 334, (2000)
    [53] C. L. Gong, F. S. Han, Z. Li, M. P. Wang and J. P. Shui, An internal friction peak without dependence on soft mode effect during thermoelastic martensitic transformation, Phys. Rev., B(revised)
    [54] O. Mercier and K. N. Melton, Low-frequency internal friction peaks associated with the martensitic phase transformation of NiTi, Acta Metall Mater., 27, (1979), 1467
    [55] C. L. Gong, F. S. Han, Z. Li, M. P. Wang and J. P. Shui, Internal friction related to the viscous motion of phase interfaces during thermoelastic martensitic transformations, Acta Mater., (submitted)
    [56] A. Biscarini, B. Coluzzi and Mazzolai, Non-linear elastic properties of CuZnAl alloys near martensitic transformation, J. Alloys Compd., 211/212, (1994), 190
    [57] 周光泉等,粘弹性理论,中国科技大学出版社,(1996)
    [58] Y.J. Du, F. X. Chen, F.T. Wang and D. Z. Yang, Non-linear elastic properties of CuZnAl alloys near martensitic transformation, J. Mater. Sci. Lett., 11, (1992), 1291
    [59] K. Sapozhnikov, S. Golyandin, S. Kustov, J. Van Humbeeck and R. De Batist, Motion of dislocations and interfaces during deformation of martensitic Cu-Al-Nicrystals, ActaMater., 48, (2000), 1141
    [60] K. F. Liang, Z. C. Lin and J. X. Zhang, Internal friction study of resistance function in the process of I/C transition in NiTi alloys, ICIFUAS-9, July 1989, China, 365-368
    [61] V. Pelosin and A. Riviere, Structural evolution and isothermal mechanical spectroscopy analysis of a Cu-Al-Ni alloy, Philos. Mag., A79, (1999), 1643
    [62] S. Kustov, J. Van Humbeeck and R. De Batist, Pretransformational amplitude-dependent internal friction in CuAlNi single crystals undergoing martensitic transformation, Scrip. Metall. Mater., 33, (1995), 1401
    [63] 宋振纶,朱劲松,钱煌声,王业宁.用低频内耗研究Cu-Al-Be合金的相变过程,中山大学学报(自然科学版),40,(2000),232
    [64] D. W. Henderson, J Non-Cryst solid, 30, (1979), 301
    [65] A. J. Williams, R. W. Cahn and C. S. Barrett, The crystallography of the β-α transformation in titanium, Acta Met, 2, 1, (1954), 117-128
    [66] 徐祖耀,全国第六届固体内耗与超声衰减会议特邀报告,中山大学学报(自然科学版),46(增刊A),(2001),224

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700