管道的瞬时液相扩散焊技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
瞬时液相扩散焊(TLP)是一种高效快速的焊接方法,其具有焊接温度低,母材不熔化,可焊接异种材料,变形小,强度接近母材,高温性能好,设备投资及焊接成本低等特点。为将TLP焊接技术应用到油田管道的焊接中,论文根据管道常用钢16MnR的特点和中间层材料选择的原则,选用Ni60自熔性合金粉末和Fe-Si-B非晶箔片作为中间层进行TLP焊接,研究了TLP焊接接头显微组织和力学性能;中间层性质和焊接工艺参数对焊接接头显微组织及力学性能的影响;焊接接头区域的元素分布情况;焊接接头拉伸断口形貌特征;TLP焊接界面形成机制;并采用有限元软件ANSYS对焊接接头区域的温度场和应力场进行模拟。
     研究结果表明:采用Ni60合金粉末做中间层时,焊缝区域存在大量的空洞和夹杂,焊接接头的力学性能很差(抗拉强度不足80MPa),粉末材料的致密性差是造成焊接质量差的根本原因。采用Fe-Si-B非晶箔片做中间层时,通过正交试验优化,获得最佳焊接工艺参数(焊接温度1150℃,焊接压力6MPa,保温时间10min),焊接工艺参数对焊接接头质量的影响由主到次为:焊接温度,焊接压力和保温时间。焊缝缺陷主要是空洞和未熔合缝隙,拉伸断口呈现出解理、准解理、塑性断裂的形貌特征。电子探针分析表明:硼元素在焊缝附近的母材里均匀分布;硅元素的浓度分布呈从中间层向两侧母材逐渐下降的趋势,在焊缝附近区域存在偏聚;锰元素在焊缝两侧发生局部聚集。TLP焊接界面的形成过程包括熔化的中间层在母材表面润湿及铺展;氧化膜破碎;中间层与母材发生互扩散使界面及空洞消失;接头成分均匀化四个阶段。有限元模拟分析表明:焊接接头的残余应力主要产生在冷却的初始阶段,在靠近中间层两侧的母材附近残余应力的值较大,母材上的X轴向拉应力在外周边达到最大;采用中间过渡层焊接,可以缓解焊接接头应力的集中,有利于提高焊接接头的强度。
TLP is a high effective welding method whose characteristics is lowwelding temperature, infusible base material, suit to weld heterogeneitymaterial, low transformation, intension approximate to base material, goodhigh-temperature performance, low investment. Now TLP has been a preferredwelding method for welding advanced material, it also has great applicationpotential in carbon steel.
     In order to apply the TLP in pipeline soldering, choosing self-fluxingalloy Ni60 and Fe-Si-B amorphous foil as interlayer (according to the propertyof 16MnR). Study the microscopic structure feature and mechanics property ofthe TLP joint; the influence of the interlayer and parameters on themicroscopic structure and mechanics performance; the distribution of elementsin the joint area; the appearance of the stretch fracture; the mechanism of TLPsolder. Finally using finite element software ANSYS to simulate thetemperature field and stress field of the joint.
     The results indicate that when using Ni60 as interlayer, there are a lot ofcavities and foreign impurities in the joint area, the mechanics performance ofthe joint is low. The reason is the low compact of the powder Ni60. Whenusing Fe-Si-B as interlayer, the quality of the joint is good, the main defect of the joint is cavity and infusion, the welding parameters have great effect on themicrostructure, and appropriate welding parameters will reduce the weldingdefect. Through quadrature experiment, the best welding parameter istemperature 1150℃, press 6MPa, time 10min. Appearance of the stretchfracture of the joint has the character of cleavage Fracture, Dimple Ruptureand Quasi-cleavage Fracture which indicate that the joint is metallurgy joint.The main reason of the fracture is the appearance of the mechanical joint areaand microscopic gap. B distribute averagely in the joint; the concentration ofSi decline gradually from interlayer to base material; Mn convene in the joint.There are four phases in the forming of the welding interface; they are thewetting of the interlayer on the base material; the breaking of the oxide film;the diffusion between interlayer and base material and the disappearing of thecavity; the equality of the joint. The simulation of the temperature field andstress field indicate that the residual stress is generated at the cooling stage, itconcentrate in the base material near the interlayer, the tensile stress of thebase material reach the peak value at perimeter area. The using of theinterlayer can reduce the concentration of stress; improve the strength of thejoint.
引文
[1] 高泽涛,杨俊伟,李艳华.长输管道焊接技术及发展前景[J].石油规划设计,2002,13(6):105-59
    [2] 陈思杰,王英.异种钢管的瞬时液相扩散焊接[J] .热加工工艺,2005,(4):43-47
    [3]CamG,KocakM.Progressinjoiningadvancedmaterials[J].Int.Mater.Rev.,1998,43(4):1-30
    [4] 李志远,钱乙余,张九海.先进连接方法[M].北京:机械工业出版社,2000:158
    [5] 姚河清,陈亚正,孟庆芹.现代焊接技术发展的现状及展望[J] .河南大学常州分校学报,2004,(3):7-10
    [6] 朱亮光.天然气管道的焊接技术[J].上海煤气,2003,(4):23-27
    [7] 周冠军,华伟棠.油田建设中的焊接技术及发展方向[J].石油机械,1996,(12):56-59
    [8] 薛振奎,刘方明,隋永莉,于海燕.我国油气管道和焊接技术[J].焊接,2002,(11):11-14
    [9] 高丽娜,叶涛.管线钢焊接技术讨论[J].一重技术,2004,(1):36-37
    [10] 李为民,赵新伟,霍春勇.X80 管线钢焊接工艺参数研究[J].热加工工艺,2004,(7):37-40
    [11] 苏晓鹰译,丁晓璠校.国外焊接技术最新进展情况(一)[J].机械工人(热加工),2004,(1):46-47
    [12] 苏晓鹰译,丁晓璠校.国外焊接技术最新进展情况(三)[J].机械工人(热加工),2004,(6):2-4
    [13] 苏晓鹰译,丁晓璠校.国外焊接技术最新进展情况(五)[J].机械工人(热加工),2004,(6):45-46
    [14] 佐藤正晴.日本焊接材料和焊接技术的最新进展[J].机械工人(热加工),2003,(8):28-30
    [15] 陈峥,周飞,王国凡主编.材料连接原理[M].哈尔滨:哈尔滨工业大学出版社,2001:193-222
    [16] 邹家生.材料连接原理与工艺[M] .哈尔滨:哈尔滨工业大学出版社,2005:354-361
    [17] 张贵锋,张建勋.瞬间液相扩散焊与钎焊主要特点之异同[J].焊接学报,2002,23(6):92-96
    [18] O'Brien M C R,Olson D L.High strength diffusion welding of silvercoatedbasemetals[J].WeldingJournal,1976,55(1):25-27
    [19]Signs EG.DiffusionWeldingofsteelinair[J].WeldingJournal,1968,47(12):4-571
    [20] Zanner F J,Fisher R W.Diffusion welding of commercial bronze to atitaniumalloy[J].WeldingJournal,1975,54(4):12-105
    [21]KingW H,Owczarski WH.J.Welding [J].Welding,1976,(46):289
    [22]KingW H,OwczarskiW H.J.Welding[J].Welding,1968,(47):444
    [23] (列支敦士登)Q.WLINKLER,(美国)R.BAKISH 主编,康显澄、沈勇将、潘健武合译,潘健武总校.《真空冶金学》[M],上海科学技术出版社
    [24] Xuan T P,Min D. Effect of rare earth on microstructure of vacuummeltingNi-basedSelf-fluxingalloycoatings[J].JournalofRareEarth,2004,22(4):517-520.
    [25] Gale W F,Guan Y. Microstructural development in copper-interlayertransient liquid phase bonds between martensitic NiAl and NiTi [J]. J. Mater.Sci.,1997,(32):357-364
    [26]Cain S R,WilcoxJR,VenkatramanR.ADiffusionalModelforTransientLiquidPhaseBonding[J].Acta.Master.,1997,45(2):701-707
    [27] Shirzadi A A,Wallach E R. Analytical Modeling of Transient LiquidPhase (TLP) Diffusion Bonding When A temperature Gradient Is Imposed[J].Acta.Master.,1999,47(33):3351-3560
    [28] 张贵峰,张建勋,包亚峰.日本关于固相扩散焊界面空洞收缩机理的研究[J].焊接,2001,(10):14-15
    [29] 祝汉良,李志强.Ti3Al 超塑性扩散焊连接的理论计算[J].材料科学与工艺,1999,(7):224-230
    [30] Sinclairn C W.Modeling transient liquid bonding in multicomponentSystems[J].J.PhaseEquilib.,1999,20(4):361-369
    [31] 陈思杰,井晓天,李辛庚.T91 钢管瞬时液相扩散焊接[J].焊接学报,2004,(6):73-76
    [32] 陈思杰,井晓天,李辛庚.TP304 钢管的瞬时液相扩散焊接工艺研究[J].热加工工艺,2004,(11):58-60
    [33] 陈思杰,王英.异种钢管的瞬时液相扩散焊接[J].热加工工艺,2005,(4):43-47
    [34] 于冶水,吴铭方.瞬时液相扩散焊CuAlBe合金和1Cr18Ni9Ti不锈钢[J].焊接学报,2000,21(3):32-35
    [35] 刘黎明,牛济泰.采用非夹层液相扩散焊连接铝基复合材料Al2O3/6061Al[J].试验与研究,1999,28(5):1-3
    [36] 陈敏之.Inconel1718SPS 超合金的液相扩散连接[J].工艺动态,1999,(6):2-6
    [37] Sun D Q,Gu X Y,Liu W H.Transient liquid phase bonding ofmagnesium alloy(Mg-3Al-1Zn) using aluminum interlayer [J]. Mater. Sci.Eng.,2005,(391):29-33
    [38] 于翘、朱福臣等.《材料工艺(上)》[M].宇航出版社出版(内部发行),1989:45-50
    [39] 李志远,钱乙于,张久海.先进连接方法[M].北京:机械工业出版社,2000:160
    [40] 陈铮,周飞,王国凡.材料连接原理[M].哈尔滨:哈尔滨工业大学出版社,2001:205-211
    [41] 李志远,钱乙余,张九海.先进的连接方法[M].北京:机械工业出版社,2006:135-140
    [42] 张贵锋,张建勋.非晶态金属箔带作中间层的瞬间液相扩散焊焊管技术[J].焊接,2002(2):35-37
    [43] 张贵锋 张建勋 裴怡等.液相扩散焊等温凝固阶段的特征及解析解[J].焊管,2004,27(6):25-31
    [44] 张贵锋 张建勋 王士元.日本液相扩散焊(TLP)钢管对焊技术研究近况[J].焊管,2003,26(5):56-60
    [45] 任家烈,吴爱萍.先进材料的连接.先进焊接制造技术丛书[M].北京:机械工业出版社,2000:198-203
    [46] 邹家生.材料连接原理[M].哈尔滨工业大学出版社,2005:362-367
    [47] 安继儒.中外常用金属材料手册[M].陕西:陕西科学技术出版社出版发行,1998:988
    [48] 王海芳.耐蚀耐磨膏状渗剂的制备及其性能研究[D]:[硕士学位论文].中国石油大学,东营:2006
    [49]C·C·索采夫,A·T·图曼诺夫.金属加热用保护涂层[M].北京:机械工业出版社.陆索,北行,乐而伯译.1979,北京:1-41
    [50] 欧雪梅,倪振尧.膏剂渗硼不装箱法的工艺研究与分析[J].中国矿业大学学报,1998,27(2):200-203
    [51] 吴贵生.试验设计与数据处理.冶金工业出版社[M].1997:1-3
    [52] 吴贵生.试验设计与数据处理.冶金工业出版社[M].1997:52-63
    [53] 杨蕴林、李志、 李炎.恒温超塑性焊接接头断口分析分析[J].金属学报,1995,31(8):B384-B388
    [54] 刘翠荣,张彦华,尹利涛.异种金属材料扩散焊界面断裂分析[J].金属学报,1999,20(2):100-105
    [55]HackelfoordJF.Introductiontomaterialsscienceforengineers[M].NewJersey:PrenticeHall,2000:164-174
    [56] 张蕾.SiCp/101 铝基复合材料中间夹层扩散焊工艺研究[D]:[硕士学位论文]. 哈尔滨工业大学,哈尔滨:2002
    [57] Joshua D S,Joseph T M,Takaya A.Transient-liquid-phase andliquid-film-assistedjoiningofceramics[J].J.Eur.Ceram.Soc.,2006,26(4/5):363-372
    [58] Peteves S D,Paulasto M,Ceccone G.The reactive route to ceramicjoining:Fabrication,interfacial chemistry and joint properties [J].Acta.Master.,1998,46(7):2407-2414
    [59] 徐前刚,张海峰,胡壮麒.Fe78B13Si9 熔体与铁的润湿行为[M].中国有色金属学报,2006,16(10):1660-1664
    [60] 陈定华,钱乙余.Al/Cu 接触反应钎焊中反应铺展现象和氧化膜行为[J].金属学报,1989,25(1):B42-B47
    [61] Takahashi Y,Takahahi K,Nishiguchi K.ANumerical analysis of voidshrinkage process controlled by coupled surface and interface diffusion [J].Acta.Master.,1991,39(12):3199-3216
    [62] 谢二庆,王文武,姜宁等.锰硅化物的固相反应生长研究[J].物理学报,2002,51(4):873-876
    [63] 史耀武,夏志东,陈之刚等.电子组装钎料研究的新进展[J].电子工艺技术,2001,22(4):139-143
    [64] 陈通,张跃峰.AutoCAD2000 中文版入门与提高[M].北京:清华大学出版社,2000
    [65] Takahashi Y,Inoue K.Recent void shrinkage models and theirapplicability to diffusion bonding [J]. Mater. Sci. Technol.,1982,8(10):953-964
    [66] 刘涛,杨凤鹏.精通ANSYS[M].北京:清华大学出版社,2002:66-72
    [67] 李皓月,周田朋,刘相新.ANSYS 工程计算应用教程[M].上海:中国铁道出版社,2002:95-101

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700