西南天山柯坪推覆系晚更新世古地震及其分段性地貌响应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以往的古地震研究主要以单条断层或者某一断层段落为研究对象,研究它的复发和破裂规律。其中蕴含一个潜在假设:各个断层或断层段落之间相对独立。但是近年来越来越多的大地震研究结果表明,相邻的断层,各个断层段落以及同一块体的边界断层之间有着一定的相关性。一些学者研究单条走滑断层的破裂行为,在海原断裂带上多个地点探槽开挖以及历史地震资料通过逐次限定方法揭示出海原断裂带三个段落地震破裂行为具有一定的响应关系,具体表现为单段破裂、双段破裂和全段破裂模式。在川西安宁河断裂与则木河断裂的古地震响应关系做的研究中,古地震破裂行为表现为安宁河断裂很可能为级联破裂模式,同时则木河断裂上的大地震都在安宁河断裂上找到了相对应的响应古地震事件,相反的,在安宁河上的破裂,则木河断裂没有相应的事件。
     在逆断层系统中似乎有类似的特点。例如,2008年汶川Ms8.0级地震,造成了北川-映秀和江油-灌县两条断层级联破裂,并且同时龙门山中段和北段级联破裂。龙门山古地震的研究表明该区域之前也存在类似汶川地震的事件。相对于走滑断层的级联破裂形式,多排逆断层推覆系统中走向和垂向双方向上都可能发生级联破裂的情况显得更加复杂。如何较准确地描述逆断层系统中古地震破裂行为的特点是一个重要的科学问题。
     在中国大陆地区,最为主要的逆断层分布在西北天山地区。由于潮湿的海洋季风无法企及,在深入大陆内部的中国西北地区多以干旱和半干旱气候为主。天山造山带正是位于此类地区,在这些地区植被很少,且地貌侵蚀改造较少,一直是地质构造变形的运动学和几何学研究的理想地区。但同时可信度高的14C测年样品的匮乏一直制约了活动构造研究中对时间参数的分析,尤其是古地震事件时间和复发周期的研究。怎样解决古地震事件的定年问题成为获得天山地区逆断层的古地震破裂规律的关键技术问题。最近兴起的宇宙成因核素定年方法为干旱和半干旱地区的古地震研究开启了新的思路。宇宙成因核素年代学方法用于干旱区地貌年龄的测定具有明显的优势在于其样品物质来源丰富,漂砾、河流砾石和粗砂均可用于测年。同时根据地区岩石元素组成选择不同的核素进行测定。干旱区地貌面常使用10Be元素进行暴露年龄的测定,并具有很高的可信度。前人曾经尝试利用多级地貌面宇宙核素统计年龄结果分析古地震复发规律,并得到与14C测定的结果基本相一致。不过由于受限于到时的10Be测量手段的局限对古地震研究较为粗略。如果利用传统探槽技术对古地震事件进行精确控制,再通过地貌面变形分析配合多级地貌面的10Be年龄应该可以较好的解决干旱地区古地震研究方面的短板。在获得的可行度更高古地震研究结果补充下,对地区的地震危险性分析提供资料。
     大量的地质和地震研究发现,断层的破裂过程在一次独立的地震中并非沿着整条断裂全部破裂,而是仅仅破裂其中的一部分。如果一条断层长期以来活动强度和破裂端点的位置比较稳定,那么这条断层就具有明显的分段特征。了解这种断层的分段特征对它的地震危险性的判断具有重要意义。对于逆断层的分段,一直以来研究都较为薄弱。断层弯曲、分叉和横向构造是逆断层走向上最为常见的端点,但它们被破裂贯通的频次很高。所以如果没有历史大地震记录的破裂长度和段落边界,仅依靠构造不连续端点作为段落边界和仅通过古地震探槽和古地震陡坎的高度和形态特征获得古地震的破裂长度,都难以确定逆断层的分段特点。按照构造地貌学的原理,构造活动会对地貌的演化造成一定的影响。所以一旦存在古地震的破裂分段规律,肯定会对地表破裂带附近的地貌面留下影响的记录。各个不同段落的破裂行为的差异特点会对位于在这个段落中的地貌面参数发生改变。如果可以排除导致地貌面参数改变的其他原因,也就可以将其与古地震的破裂行为建立联系,从而作为古地震破裂分段的一项证据。结合实际的古地震陡坎分布和高度等特征,加强对古地震破裂长度的控制,提高古地震的研究程度。
     本文对西南天山柯坪推覆系晚更新世以来的古地震进行研究,利用宇宙成因核素测年得到的地貌面年龄对古地震事件时间进行限定,并利用地貌面陡坎模拟的平均断层滑动速率对古地震事件的位移量进行对比分析。此外还进行了柯坪推覆系中第一排的柯坪塔格山前断裂陡坎和冲洪积扇形态的分析。系统的讨论柯坪推覆系中各排的古地震规律和在整个系统中各排古地震之间的响应关系。具体的主要结论如下:
     (1)柯坪推覆系东段的前两排山前断裂具有较为明显的同时期破裂和总位移量大致相等的特点。从柯坪推覆系东段整体上看,既具有较为相似的3m左右位移量,又具有较稳定的5ka左右的复发间隔,古地震更符合理想的复发模型。东段第三排的卡拉布克塔格山前断裂第四纪以来不再活动。
     (2)柯坪推覆系西段的三排山前断裂目前都在活动,但活动性从南向北逐渐递减。第一排西柯坪塔格山前断裂活动性最强,第三排托克塔格山前断裂活动性最弱。各排之间的古地震单次位移量差异较大,且由于时间控制力度不够,没见明显的各排间变形的相关性。
     (3)利用10Be深度剖面和混合样品测年方法能在侵蚀速率较小的干旱地区可以获得较理想的地貌面测年结果,利用上下两级地貌面年龄可以对古地震发生时间进行界定。界定的精度由两级地貌面形成时间间隔长短和两级地貌面之间发生的古地震次数控制。且位移量和复发间隔与滑动速率相匹配。利用10Be年代学,地貌面形变和古地震探槽三者结合方法得到的古地震复发间隔可以具有较高的可信度。
     (4)通过详细的陡坎填图,和冲洪积扇形态分析。我们发现断层陡坎的分段与冲洪积扇形态的分段非常一致。在柯坪塔格山前断裂存在两个段落边界:一个为皮羌断裂,另一个为距离柯坪岔口约30km处,该处的东侧褶皱山向前突出约1km。两个边界将整个第一排柯坪塔格山前断层分为三段,皮羌断裂以西为西柯坪塔格段,皮羌断裂以东为东柯坪塔格段,最东端30km为柯坪岔口段。西柯坪塔格段内的最高陡坎位置在五间房附近,最新地貌面上的陡坎高度约1.5-2m,累计陡坎高度约4m,陡坎向两侧高度逐渐减低。在该段内冲洪积扇形态表现为高构造活动区特点,即冲洪积扇剖面为直线型,冲洪积扇宽长比大于1,扇体展开角很大等特点。利用古地震探槽和地貌测量获得的断层滑动速率为1.45(+1.68/-0.44)mm/a。东柯坪塔格段内的最高陡坎位置在三岔口附近,最新地貌面上的陡坎高度约1-1.5m,累计陡坎高度约3m,陡坎也向两侧高度逐渐减低,在该段内的冲洪积扇形态表现为低构造活动区特点,即冲洪积扇剖面多为下凹性,冲洪积扇宽长比小于1,扇体展开角小等特点。利用古地震探槽和地貌测量获得的断层滑动速率约0.31(+0.21/-0.18) mm/a。柯坪岔口段内未发育任何古地震断层陡坎,冲洪积扇形态变现为无构造活动区的特点,即流域宽长比和冲洪积扇宽长比均大于1,流域和冲洪积扇坡度较小,剖面为下凹形等。
     (5)在东柯坪塔格段内的满古特断裂和三岔口附近的褶皱带分叉并没有明显阻碍古地震破裂的能力,并不能作为永久性边界。这两个构造部位对晚更新世的活动并不具有控制作用。
     (6)级联破裂和古地震规律的差异:推覆系东段第三排第四纪以来不活动,而前两排具有明显的同时期破裂的现象,并且同一时期内的前两排古地震事件的总位移量都保持在3m左右,可能存在前后排同时破裂的情况。在西段三排中,第一排西柯坪塔格断裂的构造活动最强,每次事件的位移量可以达到3m左右,复发间隔约为4ka;第二排奥兹塔格断裂具有最短的复发间隔约2ka,但每次事件的位移量仅1m左右;第三排托克塔格断裂活动性最弱,近7ka以来仅发生一次约2m左右位移量的古地震事件,没有明显同期破裂的现象。造成这种东西段古地震规律差异的原因可能与构造活动的强弱程度相关。西段断层的滑动速率明显高于东段各条断裂的滑动速率。较高的断层滑动速率是更快地震释放的表现,所以西段不容易积累发生多条断裂级联破裂的能量;而断层滑动速率较低的东段则正好相反,两条断层可能在都集中了大量能量时,由于一条断层的破裂可能诱发另一条断层在相近时间内也破裂,甚至发生同时破裂。
Previous paleoseismic research usually focuses on only one fault or one segmentof the fault to study its recurrence and rupture behavior. It seems to be based on such ahypothesis that faults or fault segments are relatively independent during their ruptureprocesses. However, increasing evidence from large earthquakes shows that there maybe possible correlation among neighboring faults or fault segments. Some scholarshave revealed such relationships for strike faults. For example, the three segments ofthe Haiyuan fault zone exhibit distinct rupture behaviors, which was explained by thesingle fracture, double fracture and whole fracture models, respectively. TheAnninghe fault possibly shows a cascading rupture behavior, on whichpaleoearthquakes were found corresponding to those major events on the adjacentZemuhe fault. On contrary, the Zemuhe fault is featured by single-direction rupturing,on which no response to the events on the Anninghe fault was identified.
     The similar characteristics are also present in thrust systems. For example, theBeichuan-Yingxiu fault and the Jiangyou-Guanxian fault simultaneously rupturedduring the Wenchuan Ms8.0earthquake of2008. The Longmen Shan fault zoneshows a cascading rupture behavior in its middle and the northern segments. Theresearch has proved that paleoseismic events like the Wenchuan earthquake haveoccurred in the Longmen Shan fault zone before several thousands years. Comparedwith strike faults, the rupture behavior of the thrust system is more complex, as it cansimultaneously rupture along the strike and the vertical direction. How to describe therupturing behavior of paleoearthquakes in thrust fault systems is an important issue tobe studied in detail.
     Many thrust faults developed in the Tian Shan Mountains in northwest China.Because the humid monsoons of the Pacific and Indian Ocean are far away, the climate is arid in this region. Plus less erosion, the Tian Shan orogenic belt is an idealarea to study active tectonics. But a lack of samples for14C dating restricts the studyof the recurrence intervals of paleoearthquakes. The key technique is an adaptivedating to determine the intervals of thrust paleoearthquakes in the Tian Shan area. Theterrestrial cosmogenic nuclide dating is a good dating method to solve this problem.The advantages of10Be nuclide dating include its suitability for sampling and the highreliability of the estimated exposure age of the alluvial fans in arid areas. In previouswork, attempt has been made to estimate the timing of boulder deposition andabandonment of the faulted fan by TCN dating and calculate the average recurrenceinterval of the surface rupture on the alluvial fan in the Owens valley. The result wasbased on two assumptions that the influence of the inherited nuclide concentrationwas negligible and that the displacements created on the surface of the alluvial fans bythe various earthquakes were similar. Because10Be depth profile dating has beenimproved in recent years, the exposure age of the alluvial fans can be determinedmore accurately and the errors of the age can be more reliably estimated by the MonteCarlo simulation method.
     Many researches show the earthquake usually not rupture whole fault but onesegment of the fault. If the end point of the surface rupture is regular, the fault has anobvious segmentation feature. So the segmentation is important to determine theseismic risk. The length of the paleoearthquake surface rupture zone is difficult todetermine by the trench method in the case lacking historical records. As thepaleoseismic scarp cannot be preserved well for many years, segments ofpaleoearthquake derived from scarp mapping is not very credible. Active tectonics canaffect geomorphic evolution. Therefore, paleoearthquakes could leave records of theevolution of alluvial fans near the fault. Geomorphic parameters of alluvial fans arevariable in every paleoseismic segment which has different displacements andintervals of paleoearthquake. Combined with geomorphic parameters andpaleoseismic scarps, it is possible to improve the investigations of paleoseismicsegments.
     This work attempted to determine the ages of the alluvial fans by10Be TCN dating, the deformation of fault scarps by GPS measurement, and the displacement ofpaleoseismic events by a geomorphic trench survey. With the combination of the dataobtained, the interval and slip rate of the large-earthquake in every segment of theKalpin system were estimated and the recurrence of paleoearthquakes in the wholeKalpin system was calculated. Besides, in terms of geomorphic parameters of alluvialfans and fault scarps, this thesis discusses segmentation of the Kalpintage fault. Theprimary research results of this work are summarized below.
     (1) The front two rows of front-range faults in the eastern Kalpin thrust systemruptured in the same period with roughly same total displacement of paleoearthquakes.As a whole, the paleoseismic events of this system can be explained by the model ofthe characteristic earthquakes, of which each event has3m of displacement and5kaof the recurrence interval. The Kalabuketage fault of the third row is not active sincethe Quaternary.
     (2) The three rows of range-front faults of the western Kalpin system are activeat present, but their activity diminishes from south to north. The west Kalpintage faultof the first row mountain is most active, while the Tuoketage fault of the third row isthe weakest in activity. As displacements of paleoseismic events differ much betweenthe faults of these rows and time constraints of intervals are not enough, it isimpossible to determine the correlation between rows of faults.
     (3) In the arid area that contains large deposits of coarse gravel that lack14Csamples, a paleoseismic study that combines TCN daing with a geomorphicdeformation survey and trench excavation is an alternative approach for datingtectonic activities. The accuracy of intervals of paleoseismic events is limited byintervals of two alluvial fan ages and times of paleoearthquakes.
     (4) Using detailed scarps mapping and alluvial fan geomorphic analysis, thiswork found segments of the fault scarp are very consistent with segments of alluvialfans. There are two obvious boundaries of segments in the Kalpintege fault: one is thePiqiang fault; the other is a protruding point of the fold mountain30km far awayfrom the Kalpin fork. The two boundaries divide the first row of the range-front faultat the Kalpintage in to three segments: the west Kalpintage segment west of the Piqiang fault, the east Kalpintage segment east of the Piqiang fault, and the Kepinfork segment in the easternmost30km. The highest scarp with cumulative height4mis near the Wujianfang in the west Kalpintge segment, where scarps are about1.5-2mhigh in newest alluvial fans and lower on two flanks. The geomorphic characteristicsof alluvial fans express highly active structures: the constant slope in longitudinalprofile of alluvial fans; the WLF value>1; the “open fans” plan-view geomorphologyand the slip rate of the fault is1.45(+1.68/-0.44) mm/year and so forth. The site of thehighest scarp with3m is near the Sanchakou in the west Kalpintge segment with1-1.5m height scarps in newest alluvial fans, also lowering toward two flanks. Thegeomorphic characteristics of alluvial fans show low activity: the concave slope inlongitudinal profile of alluvial fans; the WLF value <1; the “closed fans” plan-viewgeomorphology and the slip rate of fault is0.31(+0.21/-0.18) mm/year. No faultscarps in the Kepin fork segment was seen, and the geomorphic characteristics ofalluvial fans indicate non-active tectonics: the WLF and WLD value>1; small slopesof alluvial fans and basins; and the concave slope in longitudinal profile of alluvialfans.
     (5) The Mangute fault and the bifurcation of fold belt near the Sanchakou are notthe permanent boundary and can not obstruct occurrence of earthquakes in the eastKalpintage fault.
     (6) The cascading rupture pattern and the diversity of paleoearthquakes in theKalpin thrust system: the front two rows, east Kalpintage fault and the Saergantagefault in the eastern segment possibly have a cascading rupturing behavior with3m ofthe total displacement of paleoearthquakes, which might ruptured simultaneously. Oncontrary, the west Kalpintage fault, the Aozitage fault and the Tuoketage fault in thewestern segment show a diversity of paleoearthquake events. The different intensitiesof tectonic activity may be the reason for differences between the eastern and thewestern Kalpin thrust system. High slip rates of the faults in the west Kalpin canexplain short recurrence intervals of earthquakes, and this section can not accumulateenough energy for cascading ruptures on multiple faults. On contrary, the low sliprates of faults in the east segment may lead to accumulation of large energy in its two faults, where the rupture of one fault could induce break of the other fault, or even thetwo faults might rupture at the same time resulting in earthquakes.
引文
安艳芬,2009.鲜水河断裂带地震破裂段落的边界特征研究.博士学位论文.中国地震局地质研究所.
    陈杰,丁国瑜,Burbank D W,等.2001.中国西南天山山前的晚新生代构造与地震活动[J].中国地震,17(2):134-155.
    陈文寄,彭贵,1991.年轻地质体系的年代测定[M].北京:地震出版社.
    陈文寄等,1999.年轻地质体系的年代测定(续)[M].北京:地震出版社.
    邓起东,冯先岳,张培震,等.2000.天山活动构造[M].地震出版社,北京.
    丁国瑜.1995.活断层的分段模型[J].地学前缘,2(1):195-202.
    郭召杰,吴泰然,王东,等.2004.塔里木西北缘晚新生代印干断层及其由于帕米尔构造结的关系[J].自然科学进展,14(9):1072-1076.
    何文渊,李江海,钱详麟,等.2002.塔里木盆地柯坪断隆断裂构造分析[J].中国地质,29(1):37-43.
    刘华国,2011.基于高分辨率遥感影像的柯坪推覆构造系的构造变形研究.硕士学位论文.中国地震局地质所
    刘静,徐锡伟,李岩峰等,2007.以海原断裂甘肃老虎山段为例浅析走滑断裂古地震记录的完整性——兼论古地震研究中的若干问题[J].地质通报,26(6):650-660.
    刘启元,陈九辉等,2000.新疆伽师强震群区三维地壳上地幔S波速度结构及其地震成因的探讨,地球物理学报,43(3):356-365.
    刘志宏,卢华复,贾承造,等.2000.库车再生前陆逆冲带造山运动时间、断层滑移速率的厘定及其意义[J].石油勘探与开发,27(1):12-15.
    卢华复,贾东,陈楚铭等.1999.库车新生代构造性质和变形时间[J].地学前缘,6(4):215-221.
    毛风英,张培震.1995.古地震研究中的逐次限定法与新疆北部主要断裂带的古地震研究.活动断裂研究(4).北京:地震出版社.153-164.
    闵伟,宋芳敏,韩竹君,等.2006.柯坪塔格断裂西段古地震初步研究[J].地震地质,28(2):234-244.
    曲国胜,李亦刚,陈杰等,2003.柯坪塔格推覆构造几何学,运动学及其构造演化[J].地学前缘,10(特刊):142-152.
    冉勇康.1997.我国几个典型地点的古地震细研究和大地震重复行为探讨.博士学位论文.中国地震局地质所
    冉勇康,杨晓平,徐锡伟,等.2006.西南天山柯坪推覆构造东段晚第四纪变形样式与缩短速率[J].地震地质,28(2):179-193.
    沈军,汪一鹏,李萤甄,等.2003.中国新疆天山博阿断裂晚第四纪右旋走滑活动特征[J].地震地质,25(2):183-194.
    宋方敏,闵伟,韩竹军等,2006.柯坪塔格推覆体的新生代变形与扩展[J].地震地质,28(2):224-233.
    汪新,贾承造,杨树锋,等.2002.南天山库车褶皱冲断带构造几何学和运动学[J].地质科学,37(3):372-384.
    汪新.2005.南天山山前复杂褶皱的构造形态分析:以库车秋里塔克背斜和柯坪八盘水磨背斜为例[J].高校地质学报,11(4):568-576.
    王国林,李曰俊,孙建华,等.2009.塔里木盆地西北缘柯坪冲断带构造变形特征[J].地质科学,44(1):50~62.
    王虎.2012.川西安宁河-则木河断裂带上大地震复发及其相关性研究.博士学位论文.中国地震局地质所
    王琪,丁国瑜,乔学军,等.2000.用GPS研究南天山(伽师)地区现今地壳变形[J].地震学报,22(3):263-271.
    王晓强,李杰,王琪,等.2005.天山现今地壳运动的形变场分析[J].大地测量与地球动力学,25(3):63-68.
    闻学泽.1995.活动断裂地震潜势的定量评估.北京:地震出版社.
    徐良鑫,2012.:西南天山柯坪推覆系山前层状地貌面10Be-26Al年龄及构造、气候指示意义.硕士学位论文.中国地震局地质所
    杨海军,李曰俊,师骏,等.2010.南天山晚新生代褶皱冲断带构造特征[J].第四纪研究,30(5):1030-1043.
    杨晓平,沈军.2000.天山内部博罗可努断裂精河-阿拉山口段晚更新世以来的活动特征[J].地震地质,22(3):305-315.
    杨晓平,周本刚,李军,等.2001.新疆南天山亚肯背斜晚更新世以来的隆起和缩短[J].地震地质,23(4):501-509.
    杨晓平,冉勇康,程建武,等.2006a.柯坪推覆构造中的几个新生褶皱带阶地变形测量与地壳缩短[J].中国科学:D辑,36(10):905-913.
    杨晓平,冉勇康,宋方敏,等.2006b.西南天山柯坪逆冲推覆构造带的地壳缩短分析[J].地震地质,28(2):194-204.
    杨晓平,邓起东,张培震,等.2008.天山山前主要推覆构造区的地壳缩短[J].地震地质,30(1):111-131.
    姚檀栋.2000.古里雅冰芯氧同位素地层学.第四纪研究.20(002),165-170.
    尹金辉,郑勇刚,刘粤霞.2005.古地震14C年龄的日历年代校正[J].地震地质,27(4):578-585.
    曾融生,丁志峰,吴庆举等,1998.喜马拉雅-祁连山地壳构造与大陆碰撞过程[J].地球物理学报,41(1):49-60.
    张培震,邓起东,杨晓平,等.1995.天山北麓的冰水冲洪积地貌与新构造运动[A].见:国家地震局地质研究所编.活动断裂研究(4).北京:地震出版社.63—78.
    张培震,邓起东,杨晓平,等.1996.天山的晚新生代构造变形及其地球动力学问题[J].中国地震,12(2):127-140.
    张培震,闵伟,邓起东,等.2003.海原活动断裂带的古地震与强震复发规律[J].中国科学D辑:地球科学,33(8):705-713.
    张培震,王敏,甘卫军,等.2003. GPS观测的活动断裂滑动速率及其对现今大陆动力作用的制约[J].地学前缘,10(特刊):81-92.
    张先康,赵金仁,等.2002.帕米尔东北侧地壳结构研究[J],地球物理学报,45(5):665-671.
    郑荣章,徐锡伟,马文涛,李建平.2011.阿尔金断裂带西段莫勒切河河口阶地的构造及气候意义.地震地质.33(2),323-334.
    周本刚,柳覃卓,张裕明.1999.天山北麓岩石漆显微层理层序的初步建立及其年代学意义[J].地震地质,21(4):301—309.
    Allen M B, Zhang Chi, and Guo Jinhui.1993. Evolution of the Turpan basin, Chinese CentralAsia[J], Tectonics,12(4):889-896.
    Allen M B, Vincent S J, Wheeler P J.1999. Late Cenozoic tectonics of the Kepingtage thrust zone:Interactions of the Tien Shan and Tarim Basin, northwest China [J]. Tectonics,18(4):639–654.
    Allen P A and Densmore A L.2000. Sediment flux from an uplifting fault block [J]. BasinResearch,12:367-380.
    Anderson R S, Repka J L, Dick G S.1996. Explicit treatment of inheritance in dating depositionalsurfaces using in situ10Be and26Al [J]. Geology,96:47—51.
    Amos CB, Burbank DW, Read SA.2010. Along-strike growth of the Ostler fault, New Zealand:Consequences for drainage deflection above active thrusts. Tectonics,29: TC4021.
    Avouac.J.P, Tapponnier.P.T, Bai.M, et al,1993. Active thrusting and folding along the northernTienshan, and Late Cenozoic rotation of the Tarim relative to Dzhungaria and Kazakhstan [J].Journal of Geophysical Research,98:6755-6840.
    Balco G, Stone J O, Lifton N A, et al.2008. A complete and easily accessible means ofcalculating surface exposure ages or erosion rates from10Be and26Al measurements[J].Quaternary Geochronology,3:174–195.
    Barka A A and Gulen L.1989. Complex evolution of the Erzincan Basin (Eastern Turkey)[J].Journal of Strucural Geology,11(3):275-283.
    Beaty C B.1970. Age and estimated rate of accumulation of an alluvial fan, White Mountains,California, U.S.A [J]. American Journal of Science,268:50-70.
    Beaumont P.1972. Alluvial fans along the foothills of the Elburz Mountains, Iran [J].Paleogeography, Paleoclimatology, Paleoecology,12:251-273.
    Bierman,1995, Cosmogenic ages for earthquake recurrence intervals and debris flow fandeposition, Owens Valley, California[J]. Science,270:447-450.
    Bull W B.1961. Tectonic significance of radial profiles of alluvial fans in western Fresno County,California [J]. U.S. Geological Survey Professional Paper,424-B:181-184.
    Bull W B.1964. Geomorphology of segmented alluvial fans in western Fresno Vounty, California[J]. U.S. Geological Survey Professional Paper,352-E:89-129.
    Bull W B.1968. Alluvial fans [J]. Journal of Geologic Education,16:101-106.
    Bull W B.1972. Recognition of alluvial fan deposits in the stratigraphic record [J]. In Hamblin WK and Rigby J K (eds), Recognition of Ancient Sedimentary Environments, Society ofEconomic Paleontologists and mineralogists Special Publication,16:63-83.
    Bull W B.1977. The alluvial fan environment [J]. Progress in Physical Geography,1:222-270.
    Bull, W. B.1990. Stream-terrace genesis: implications for soil development. Geomorphology.3(3-4),351-367.
    Bulllen M E, Burband D W, Abdrakhmotov K Y, et al.2001. Late Cenzoic tectonic evolution ofthe northwestern Tien Shan:Constraints form magnetostratigraphyy, detrital fission track,andbasin ayalysis[J].Geol Soc Am Bull,113:544-1559.
    Chen J, Burbank D W, Scharer K M, et al.2002. Magnetechronology of the upper Cenozioc stratain the Southwestern Chinese Tian Shan: rates of Pleistocene folding and thrusting [J]. Earthand Planetary Science Letters,195:113-130.
    Burchfiel.B.C, Brown.E.T, Deng Qidong, et al.1999. Crustal shortening on the margins of theTienshan, Xinjiang, China[J]. International Geology Review,41:665-700
    Burtman.V.S, Skolelev.S.F, Molnar.P.1996.Late Cenozoic slip on the Talas-Ferghana,theTienshan, Central Asia[J]. GSA Bulletin,108(8):1004-1021.
    Carryer S J.1966. A note on the formation fo alluvial fans, New Zealand [J]. Journal of Geologyand Geophysics,9:91-94.
    Colin B.A, Douglas W B and Stuart A L R,2010. Along-strike growth of the Ostler fault, NewZealand: Consequences for drainage deflection above active thrusts [J]. Tectonic,29:TC4021.
    Crone A J.1989. Segmentation of basin-and-range normal faults: examples from east-cental Idahoand southwestern Montana. USGS Open-file Report,89-315.
    Crone A J and Haller K M.1991. Segmentation and the coseismic behavior of Basin and Rangenormal faults: examples from east-central Idaho and southwestern Montana, U.S.A [J].Journal of Structural Geology,13(2):151-164.
    Denny C S.1967. Fans and pediments [J]. American Journal of Science,265:81-105.
    Dunai TJ.2000. Scaling factors for production rates of in situ produced cosmogenic nuclides: acritical reevaluation. Earth and Planetary science Letters,176:157-169.
    Freed A M, Lin J.2001. Delayed triggering of the1999Hector Mine earthquake by viscoelasticstress transfer [J]. Nature,411(6834):180-183.
    Gosse J C, Phillips F M.2001. Terrestrial in situ cosmogenic nuclides theory and application [J].Quarternary Science Reviews,20:1475—1560.
    Harvey A M.1990. Factors influencing Quaternary alluvial fan development in southeast Spain.In: Rachocki A H, Church M (Eds.), Alluvial fans: A Field Approach. Wiley, New York,247-269.
    Hendrix.M.S, Graham.S.A, Carroll.A.R, et al.1992. Sedimentary record and climatic implicationsof recurrent deformation in the Tianshan: evidence form Mesozoic strata of the north Tarim,south Junggar and Turpan Basin [J]. GSA Bulletin,104:53-79.
    Handrix M S, Dumitra T A, Graham S A.1994. Late Oligocene-early Miocene unroofing in theCheinese Tianshan: An early effect of the India-Asia collision [J]. Geology,22:487-490.
    Hidy A J, Gosse J C,Pederson J L,et al.2010. A geologically constrained Monte Carlo approachto modeling exposure ages from profiles of cosmogenic nuclides: An example from LeesFerry, Arizona [J]. Geochem. Geophys. Geosyst.,11, Q0AA10.1-18.
    Hooke R L.1968. Steady-state relationships of arid-region alluvial fans in closed basins [J].American Journal of Science,266:609-629.
    Hooke R L and Rohrer W L.1977. Ralative erodibility of source-area rock types, as determinedfrom second-order variations in alluvial-fan size [J]. Geological Society of America Bulletin,88:2073-2098.
    Jamison W R.1987. Geometric analysis of fold development in overthurst terraces [J]. Journal ofStructur Geology,9:207-219.
    Kirby E, Whipple K, Harkins N.2008. Topography reveals seismic hazard [J]. Nature Geoscience,1:485-487.
    Kohl C P, Nishiizumi K.1992. Chemical isolation of quartz for measurement of in situ-producedcosmogenic nuclides [J]. Geochimica et Cosmochimica Acta,56:3583—3587.
    Lal D.1991. Cosmic ray labeling of erosion surfaces_in situ nuclide production rates and erosionmodels[J]. Earth and Planetary Science Letters,104:424—439.
    Li A, Ran Y K, Xu L X, et al.2013. Paleoseismic study of the east Kalpintage fault in southwestTianshan based on deformation of alluvial fans and10Be dating [J]. Natural Harzards, DOI10.1007/s11069-013-0675-1.
    Lisiecki, L. E.,M. E. Raymo.2005. A Plio-Pleistocene stack of57globally distributed benthicδ18O records. Paleoceanography.20(1).
    Lustig L K.1965. Clastic sedimentation in Deep Springs Valley, California [J]. U.S. GeologicalSurvey Professional Paper,352-F:131-192.
    McCalpin.1987.Geological criteria of recognition for individual paleoseismic events inenvironments.USGS Open File Report87-683,102-114
    McPherson H J and Hirst F.1972. Sediment changes on two alluvial fans in the CanadianCordillera [J]. British Columbia Geographical Series.14:161-175.
    Melton M A.1965. The geomorphic and paleoclimatic significance of alluvial deposits insouthern Arizona [J]. Journal of Geology,73:1-38.
    Pan, B., D. Burbank, Y. Wang, G. Wu, J. Li,Q. Guan.2003. A900ky record of strath terraceformation during glacial-interglacial transitions in northwest China. Geology.31(11),957-960.
    Parsons T, Dreger D S.2000. Static-stress impact of the1992Landers earthquake sequence onnucleation and slip at the site of the1999M=7.1Hector Mine earthquake, southernCalifornia [J]. Geophysical Research Letters,27(13):1949-1952.
    Roed M A and Wasylyk D G.1973. Age of inactive alluvial fans–Bow river Valley, Alberta [J].Canadian Journal of Earth Sciences,10:1834-1840.
    Ryder J M.1971a. The stratigraphy and morphology of paraglacial fans in south-central BritishColumbia [J]. Canadian Journal of Earth Sciences,8:279-298.
    Ryder J M.1971b. Some aspects of the morphometry of paraglacial alluvial fans in south-centralBritish Columbia [J]. Canadian Journal of Earth Sciences,8:1252-1264.
    Sanders C O.1989. Fault segmentation and earthquake occurrence in the strike-slip SanJacintofault zone, California. USGS Open-flie Report,89-315.
    Savage J C, Cockerham R S,1987.Quasi-periodic occurrence of earthquakes in the1978-1986Bishop-Mammoth Lakes sequence, Eastern California. Bull Seimol Soc Amer,77:1347–1358
    Scholz C H.2010. Large Earthquake Triggering, Clustering, and the Synchronization of Faults [J].Bulletin of the Seismological Society of America,100(3):901-909.
    Shimazaki K, Nakata T.1980, Time-predictable recurrence model for large earthquakes. GeophysRes Lett,7:279–282
    Sieh K.1989. A more precise chronology of earthquake produced by the San Andreas Fault insouthern California. J Geophy Res,94:603–623
    Stein R S, Barka A A, Dieterich J H.1997. Progressive failure on the North Anatolian fault since1939by earthquake stress triggering [J]. Geophysical Journal International,128(3):594-604.
    Schwartz D P, Coppersmith K J.1986. Seismic hazards: new trends in analysis using geologicaldata [M]. Active Tectonics. Washington D C: National Academy Press.
    Schwartz D P and Lund W R.1987. Paleoseismicity and earthquake recurrence at LittleCottonwood Canyon Wasatch fault zone, Utah. In: the footsteps of G. K. Gilbert--Bonnevilleand Neotectonics of the Eastern Basin and range Province (edited by Machette, M. N.). UtahGeology and Min Surv Misc Publ88(1):82-85.
    Schwartz D P.1989a. Paleoseismicity, persistence of segments, and temporal clustering of largeearthquake–example from the San Andreas, Wasatch, and Lost River fault Zone. USGSOpen-flie Report,89-315
    Schwartz D P, Sibson R H.1989b. Fault segmentation and controls of rupture initiatjion andtermination [M]. Department of the Interior, US Geological Survey.
    Soble E R, Dumitru T A.1997. Thrusting and exhumation around the margins of the westernTarim basin during the India-Asia collision [J]. Journal of Geophysical Research,102:5043-5063.
    Solonenko V P.1973. Paleoseismogeology. Izv Acad Sci Ussr Phys Solid Earth,9:3-16.
    Stone J O.2000. Air pressure and cosmogenic isotope production[J]. Journal of GeophysicalResearch,105:23,753—23,759.
    Suppe J.1983.Geometry and kinematics of fault-bend folding[J].American Journal ofScience,283:684-721.
    Suppe J, Medweff D A.1990. Geometry and kinematics of fault-propagation folding [J].Ecologacgeol Helv,83(30):409-454.
    Thompson, L., T. Yao, M. Davis, K. Henderson, E. Mosley-Thompson, P. N. Lin, J. Beer, H. A.Synal, J. Cole-Dai,J. Bolzan.1997. Tropical climate instability: The last glacial cycle from aQinghai-Tibetan ice core. Science.276(5320),1821-1825.
    Thompson S C, Weldon R J, Rubin C M, et al,.2002. Late Quaternary slip rates across the centralTien Shan, Kyrgyzstan, central Asia[J]. Journal of Geophysical Research,107(B9):1-32.
    Van der Woerd J,Tapponnier P,Ryerson FJ et al.2002. Uniform postglacial slip-rate along thecentral600km of the Kunlun fault,from26Al,10Be,and14C dating of riser offsets,andclimatic origin of the regional morphology [J].Geophysical Journal International,I48:356~388.
    Van der Woerd J, Y. Klinger, K Sieh, et al.2006. Long-term slip rate of the southern San AndreasFault from10Be-26Al surface exposure dating of an offset alluvial fan, J. Geophys. Res.,111,B04407, doi:10.1029/2004JB003559
    Viseras C, Calvache M L, Soria J M, et al.2003. Differential features of alluvial fans controlledby tectonic or eustatic accommodation space. Examples from the Betic Cordillera, Spain [J].Geomorphology,50:181-202.
    Wallace R E.1986. Active Tectionics: Studies in Geophysics. Natl Acad Science. Washington,DC.
    Wang X L, Lu Y C, Wintle A G.2006. Recuperated OSL dating of fine-grained quartz in Chineseloess [J]. Quaternary Geochronology,1:89-100.
    Windley,B.F, M.B.Allen, C.zhang, et al.1990. Paleozoic accretion and Cenozoic redeformation ofthe Chinese Tianshan Range, central Asia[J], Geology.18:128-131.
    Xu X W, Wen X Z, Yu G H, et al.2009. Coseismic reverse-and oblique-slip surface faultinggenerated by the2008Mw7.9Wenchuan earthquake, China [J]. Geology,37(6):515-518.
    Yeats R S, Sieh K, Allen C R.1997. The geology of Earthquakes. Oxford University Press, NewYork.
    Yin A, Nie S, Craig P, et al.1998. Late Cenozoic tectonic evolution of the southern Chinese TianShan [J]. Tectonics,17(1):1–27.
    Zhang P Z.2013. Beware of slowly slipping faults [J]. Nature Geoscience,6:323-324.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700