浅覆软弱围岩隧道超前预支护作用机理及工程应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
摘要:浅覆软弱围岩隧道施工过程中,需采取有效的超前预支护才能保证围岩稳定、满足围岩和地表的变形控制要求。在软弱围岩变形特征及控制技术总结基础上,依托多个浅覆软弱围岩隧道工程,采用现场测试、数值计算、解析求解等手段,重点对长管棚、水平旋喷预支护作用机理进行探讨。论文主要研究内容及成果如下:
     (1)将隧道围岩变形从空间上分为超前沉降、掌子面挤出变形及掌子面后方变形,总结出浅覆软弱围岩隧道变形存在超前沉降范围大、在总沉降量中所占比例大、掌子面挤出变形大的特征,提出浅覆软弱隧道围岩预支护(加固)方法的选择规律及范围的确定方法。
     (2)依托石头岗浅覆软弱围岩隧道,在长管棚现场测试分析基础上,建立精细化的数值模型对长管棚作用机理进行研究,提出管棚预支护结构受力的纵向分区,按其与掌子面相对位置分为前方受拉区、后方受压区及靠近洞口受拉区。总结各区应力及范围分布随掌子面掘进的变化规律表明,各区应力随隧道掘进而增长,且表现为先快后慢趋势,各区长度除掌子面前方受拉区基本稳定外,其余两区长度随掌子面掘进而增长,可供预支护设计参考
     (3)针对既有弹性地基梁的不足,提出考虑初支综合延滞效应、掌子面前方岩土体变基床系数、围岩应力释放时空效应等因素的改进模型,根据有限差分原理,以石头岗隧道为例对改进的Winkler弹性地基梁模型进行求解,现场测试结果验证了该方法的有效性。
     (4)依托富水软弱地层隧道工程,在对围岩加固前后现场取样,进行物理力学参数实验基础上,建立考虑流固祸合的三维数值模型,对水平旋喷预支护作用机理及效果进行研究提出,水平旋喷桩在纵向上起支护梁作用,横向上为受压拱效应,可有效改善围岩条件及隧道受力。
     (5)受材料特性、工艺所限,水平旋喷预支护存在抗拉(剪)强度低、完整性较差等缺陷,为此提出水平旋喷与管棚组合的预支护方式,并用数值手段论证,该方式可减小桩体的塑性区范围、拉应力,改善旋喷桩的受力,形成能充分发挥各自力学优点的组合结构,并成功应用于江门隧道下穿泄洪道工程。
     (6)掌子面加固可提高掌子面稳定性的同时,改善水平旋喷的受力,是水平旋喷桩缺陷克服的另一有效措施,对水平旋喷预支护及掌子面加固进行参数研究表明,水平旋喷预支护桩径、刚度及掌子面加固的面积比超过一定值后,加固效果增长有限,应根据具体工程选择最佳值。
     (7)对管棚与水平旋喷的设计与施工进行了探讨,设计中需根据具体工程条件及控制要求,本着安全、经济、高效的原则,选择预支护(加固)手段及参数,特殊工程需考虑局部加强或多手段结合,针对管棚、水平旋喷的施工问题应加强参数控制与施工管理。本文有图96幅,表36个,参考文献160篇。
Abstract:Tunneling with lower overburden in weak stratum, Effective advanced support is essential to ensure stability of surrounding rock and meet the control standards of ground deformation. Based on the summary of deformation mechanism and controlling techniques for weak rock tunnel, and taking several real projects as examples, the reinforcement mechanism of pipe-roof and sub-horizontal jet-grouting were discussed by means of the analytical solution, field test, numerical analyses and so on. The main contents of this thesis are:
     (1) The deformation of tunnel surrounding rock can be divided into pre-convergence、face extrusion and convergence. Tunneling in weak ground usually results in wider pre-convergence range which takes a greater percentage of the total deformation. A large tunnel face extrusion is accompanied with in soft and weak ground than normal ground. Suggestions on the selection of pre-reinforcement method for tunneling in weak ground with low overburden were proposed.
     (2) A specific numerical model was established to study the mechanism of long pipe roof based on field test carried out at Shitougang Tunnel. The pipe roof turns out three stress region with respect to the position tunnel face:tension area in front of excavating face, compression area behind the excavation face, and tension area at the tunnel entrance. The length of the tension area in front of tunnel face is constant while the other two tension areas increase with the advance of the tunnel face, and they fall into a regular "slow after the first fast" pattern.
     (3) In order to overcome the deficiencies of the original elastic foundation beam, Improved elastic foundation beam model has been proposed. The new model considers comprehensive carryover effect of initial support、variable bedding value of surrounding rock in front of the tunnel face and time-space effect of rock or soil stress release. Numerical analysis based on Shitougang tunnel shows that, The modified Winkler elastic foundation beam model can results a good agreement with field testing. The effectiveness of the modified Winkler elastic foundation beam model has been highlighted.
     (4) Soil samples was taken from the spillway section of Jiangmen Tunnel which is pre-reinforced by sub-horizontal jet-grouting. Physical and mechanical parameters of the soil before and after reinforcement was obtained by lab test. The specific numerical model which consider the fluid-structure interaction is established to study the mechanism of sub-horizontal jet-grouting. Results show that sub-horizontal jet-grouting can play good "arch effect" in transverse direction and significant "beam effect" in the longitudinal direction. As a result, the stability of surrounding rock and the effects of reinforcement has been increased.
     (5) Sub-horizontal jet-grouting have some unconquerable defects because of limitation on the material properties and construction techniques, such as the tensile and shear strength is very low. The measure of combining with pipe roof has been proposed to add pipe roof under sub-horizontal jet-grouting pile. Numerical simulation shows this method can reduce plastic zone and tensile stress of the pipe, and improve force of columns. The composite structure brings their respective mechanical advantage into full play. It has been applied successfully in the spillway section of Jiangmen Tunnel.
     (6) Tunnel face reinforcement not only can reduce the face extrusion deformation increasing the stability of working face, but also change the stress pattern of sub-horizontal jet grouting columns. This is another method to overcome the defects of sub-horizontal jet-grouting. The study on reinforcement parameter for sub-horizontal jet-grouting and face shows that the effect on controlling the surface settlement is very limited after the diameter and stiffness of sub-horizontal jet-grouting columns and the ratio of reinforcement area to tunnel face reaching to a certain amount. These values should be chose according to the circumstance.
     (7) Based on the existing design theory and construction technology of pipe-roof and sub-horizontal jet-grouting, the design parameters of pre-support (reinforcement) should follow the principles of safe, economical and efficient according to engineering ground conditions and control requirements. In special circumstances, comprehensive measures are necessary, and the parameters for control and management should be strengthened. There are95figures,36tables and160references.
引文
[1]Peila, A. D. A theoretical study of reinforcement influence on the stability of a tunnel face[J].Geotechnical and Geological Engineering,1994,12(3):145-168.
    [2]Peila,A. D. Oreste,P.P., et al. Study on the influence of sub-horizontal fiber-glass pipes on the stability of a tunnel face. Proceedings of International conference on North American Tunnelling 96, Vol 7,425-432.
    [3]Lunaidi,P. The design and construction of tunnels using the approach based on the analysis of contronlled deformation in rock and soil? T & T International ADECO-RS Approach May 2000.
    [4]Tonon, F. Sequential Excavation, NATM and ADECO:What They Have in Common and How They Differ. Tunnelling and Underground Space Technology,25:245-265.
    [5]赵勇.隧道软弱围岩变形机制与控制技术研究[D].北京:北京交通大学,2012.
    [6]朱永全,宋玉香.隧道工程[M].北京:中国铁道出版社,2005.
    [7]孔恒.城市地下工程浅埋暗挖地层预加固理论与实践[M].北京:中国建筑工业出版社,2009.
    [8]JTG D70-2004.公路隧道设计规范[S].北京:人民交通出版社,2004.
    [9]关宝树.隧道工程施工要点集[M].北京:人民交通出版社,2011.
    [10]关宝树.软弱围岩隧道变形及其控制技术[J].隧道建设,2011,31(1):1-17.
    [11]Singh, B., Viladkar, M.N., Samadhiya,N.K. A semi-empirical method for the design of support systems in under ground openings[J]. Tunnelling and Under ground Space Technolgy.1995,10(3),375-383.
    [12]Geoff, P. Ground Treatment[J]. World Tunnelling,1996,(4),100-107.
    [13]Satoh,S., Furuyama,S., Murai,Y. Construction of subway tunnel just beneath a conventional railway by means of large-diameter long Pile-roof method. Proceedings of International conference on North American Tunnelling 96, Vol 7,473-481.
    [14]Musso, G. Jacked pipe provides roof for underground construction in busy urban area[J]. ASCE, Civil Engineering,1979,49(11):79-82.
    [15]Miwa, M.,Ogasawara M. Tunneling through an embankment using all ground fasten method[J].Tunneling and Underground Space Technology,2005,20 (2):121-127.
    [16]王克丽.穿越坍方区及断层带的隧洞检修洞施工方案[J].岩土力学,2004,25(4):651-653.
    [17]马涛.浅埋隧道塌方处治方法研究[J].岩石力学与工程学报,2006,25(s2):3976-3981.
    [18]夏才初,龚建伍,陈佑新,等.滑行道下超长管棚一箱涵顶进地表沉降分析[J].岩石力学与工程学报,2008,27(4):696-702.
    [19]姚海波,王梦恕,张顶立,等.热力隧道下穿地面建筑物的安全评价与对策[J].岩土力学,2006,27(1):112-116.
    [20]Ocak,I. Control of surface settlements with umbrella arch method in second stage excavations of Istanbul Metro[J]. Tunnelling and Underground Space Technology,2008,23(6):674-681.
    [21]伍振志,傅志锋,王静,等.浅埋松软地层开挖中管棚注浆法的加固机制及效果分析[J].岩石力学与工程学报,2005,24(6):1025-1029.
    [22]武建伟,宋卫东.浅埋暗挖管棚超前预支护的受力分析[[J].岩土工程技术,2007,21(3):116-121.
    [23]程小彬.地下工程管棚支护有限元分析[D].西安:西北工业大学,2007.
    [24]贾金青,王海涛,涂兵雄,等.管棚力学行为的解析分析与现场测试[J].岩土.力学,2010,31(6):1858-1864.
    [25]王海涛.隧道管棚预支护体系的力学机理与开挖面稳定性研究[D].大连:大连理工大学,2009.
    [26]董新平.软弱地层中管棚作用机理及管径因素研究[D].上海:同济大学,2006.
    [27]王海波,徐明,宋二祥.超前支护的均一化横观各向同性弹性模型[J].华南理工大学学报,2009,37(12):127-131.
    [28]郑俊杰,章荣军,杨庆年.浅埋隧道变基床系数下管棚的力学机制分析[J].岩土工程学报,2009,31(8):1165-1171.
    [29]张明聚,林毅,黄明琦,等.厦门翔安隧道洞口段管棚设计与施工[J].北京工业大学学报,2007,33(10):1056-1059.
    [30]张印涛,陶连金,张飞劲,等.矿山法开挖近距离下穿越既有线隧道的三维数值模拟[J].北京工业大学学报,2007,33(12):1273-1277.
    [31]高健,张义同.实施超前注浆管棚支护的隧道开挖面稳定分析[J].天津大学学报,2009,42(8):666-2570.
    [32]郭衍敬,房倩,李兵.浅埋暗挖地铁车站管棚的数值模拟及其加固效果分析[J].北京工业大学学报,2010,36(1):526-531.
    [33]Kotake, N., Ymamoto,Y.,Oka,K.,et al. Design for umbrella method based on numerical analyses and field measurements. Tunneling and Ground Conditions (ed M.E.Abdel Salam).Balkema,1994,501-508.
    [34]Tan, W.L., Ranjit,P.G. Numerical analysis of pipe roof reinforcement in soft ground tunnelling[C].ASCE Engineering Mechanics Conference Session Schedule.
    [35]Yoo, C. Finite-element analysis of tunnel face reinforced by longitudinal pipes [J]. Computers and Geotechnics,2002,29(1):73-94.
    [36]Yoo, C., Shin, H.K. Deformation behavior of tunnel face reinforced with longitudinal pipes-laboratory and numerical investigation. Tunneling and Underground Space Technology,2003,8(4):303-319.
    [37]Aksoy,C.O., Onargan,T. The role of umbrella arch and face bolt as deformation preventing support system in preventing building damages[J]. Tunnelling and Underground Space Technology,2010,25(5),553-559.
    [38]董敏.既有公路下大断面隧道施工围岩稳定性研究[D].长沙:中南大学,2010.
    [39]陈浩,姜景山,姚海波.崇文门车站过既有线管棚施工及变形分析[J].隧道建设,2006,26(1):78-80.
    [40]苟德明,阳军生,张戈.浅埋暗挖隧道管棚变形监测及受力机制分析[J].岩石力学与工程学报,2007,26(6):1258-1264.
    [41]钟放平.下穿既有公路的土江冲隧道双层管棚设计及监测分析[J].现代隧道技术,2007,44(4):36-40.
    [42]李健,谭忠盛,喻渝,等.浅埋下穿高速公路黄土隧道管棚变形监测及受力机制分析[J].岩石力学与工程学报,2011,30(s1):3002-3008.
    [43]Hisatake, M., Ohno, S. Effects of pipe roof supports and the excavation method on the displacements above a tunnel face[J]. Tunnelling and Underground Space Technology.2008,23 (2),120-127.
    [44]Jong, H.S., Yong, K.C., Oh, Y.K., et al. Model testing for pipe-reinforced tunnel heading in a granular soil[J]. Tunnelling and Underground Space Technology,2008,23(3),241-250.
    [45]Juneja, A.,Hegde,A.,Lee,F.H. Centrifuge modeling of tunnel face reinforcement using forepoling[J].Tunnelling and underground space technology,2010,25(4), 377-381.
    [46]周顺华,张先锋,佘才高.南京地铁软流塑地层浅埋暗挖法施工技术的探讨[J].岩石力学与工程学报,2005,24(3):526-531.
    [47]周顺华.软弱地层浅埋暗挖施工中管棚法的棚架原理[J].岩石力学与工程学报,2005,24(14):2565-2570.
    [48]刑厚俊,徐祯祥.大管棚在浅埋暗挖大跨度隧道工程中的应用[J].岩石力学与工程学报,1999,18(s):1059-1061.
    [49]常艄东.管棚法超前预支护作用机理的研究[D].成都:西南交通大学,1999.
    [50]李术才,朱维申.弹塑性大位移有限元方法在软岩隧道变形预估系统研究中的应用[J].岩石力学与工程学报,2002,21(4):466-470.
    [51]宋卫东,谢政平,张继清.天坛东门站浅埋暗挖施工顺序对地表沉降影响的数值模拟分析[J].岩石力学与工程学报,2005,24(s2):773-778.
    [52]王绍君,刘宗仁,陶夏新.浅埋暗挖隧道施工性态的数值模拟与分析[J].土木工程学报,2007,40(6):75-79.
    [53]Galli,G,, Grimaldi, A,, Leonardi, A. Three-dimensional modelling of tunnel excavation and lining[J].Computers and Geotechnics,2004,31(3):171-183.
    [54]孙旻,徐伟.软土地层管幕法施工三维数值模拟[J].岩土工程学报,2006,28(s):1497-1500.
    [55]武建伟,宋卫东.浅埋暗挖管棚超前预支护的受力分析[J].岩土工程技术,2007,21(3):116-121.
    [56]朱国卫,程小彬.管棚支护因素在多种工况下有限元分析[J].低温建筑技术,2007(6):79-81.
    [57]李志雄.浅埋暗挖隧道大管棚引起地表沉降研究[D].上海:同济大学,2004.
    [58]周顺华,庄丽,王炳龙,等.管棚成孔失水引起地表沉降因素分析[J].中国铁道科学报,2006,27(1):23-26.
    [59]Volkmann, G., Schubert,W. Optimization of excavation and support in pipe roof supported tunnel sections. In Proceedings of the 32nd ITA-AITES World Tunneling Congress, Seoul,2006.
    [60]孙星亮,徐文明,姚铁军.国内外水平旋喷注浆加固技术应用发展概况[J].世界隧道.2000,(6),42-47.
    [61]Yoshida,K., Isao,K., Yoshida,H., et al.Analyses of hydrodynamic structure of water jet and its application to jet grouting. Proceedings of the 4th ASME/JSME Joint Fluids Engineering Conference:Volume 1,2003,741-746.
    [62]Mussger,K.,Koinig,J.,Reischl,St. Jet grouting in combination with NATM. Proceedings-Rapid Excavation and Tunneling Conference,1987,292-308.
    [63]Tsuboi,H.,Fukada,H.,Ootsuka,M.,et al. Quality characteristics of improved soil columns by new type jet grout mixing method. Proceedings of the International off shore and Polar Engineering Conference. ISOPE 2007,1276-1281.
    [64]Haider,T., Byle, M. Verification of jet grouting for structure rehabilitation. Performance Confirmation of Constructed Geotechnical Facilities:2000,pp. 441-455.
    [65]Pelizza,S., Peila,D. Soil and Rock Reinforcements in Tunnelling[J]. Tunnelling and Underground Space Technology,1993,8(3):223-233.
    [66]Hong Won-Pyo,Kim Dong-Wook,Lee Mun-Ku, et al.Case Study on Ground Improvement by High Pressure Jet Grouting. Proceedings of the 12th International Off shore and Polar Engineering Conference,2002,610-615.
    [67]Lewis, D. A., Taube,M.G. North Airfield drainage improvement at Chicago-O'Hare International airport:Soil stabilization using jet grouting, and Ground Treatment:2003,pp.464-473.
    [68]Meyers,J., Myers,T., Petrasic K. Jet grout stabilization of steeply excavated soil slope. Geotechnical and Ground Treatment:2003,pp.318-329.
    [69]Johnson. Jet grouting aids driveage in loose rock[J].Tunnels and Tunnelling, 1989,10:53-54.
    [70]Davia,A., Marotta, M. High pressure jet grouting for a collapsed tunnel-a case study[J]. International conference and exhibition on tunnelling and trechless technology 7-9 march 2006,subang, selangor,malaysia.143-155.
    [71]Nikbakhtan, B., Osanloo, M. Effect of grout pressure and grout flow on soil physical and mechanical properties in jet grouting operations[J]. International Journal of Rock Mechanics & Mining Sciences,2009,46:498-505.
    [72]Nikbakhtan, B., Ahangarik, K., Rahmani, N. Estimation of jet grouting parame-ters in Shahriar dam, Iran[J]. Mining Science and Technology,2010,20: 472-477.
    [73]Coulter,S., Martin,C.D. Effect of jet-grout on surface settlements above the Aeschertunnel, Switzerland[J]. Tunnelling and Underground Space Technology, 2006,21:542-553.
    [74]Coulter,S., Martin,C.D. Single fluid jet-grout strength and deformation properties[J].Tunnelling and Underground Space Technology,2006,21:690-695.
    [75]Christian, P., Roman, L., Yvonne S.,etal. Thermochemomechanical Assessmentof Ground Improvement by Jet Grouting in Tunneling[J].Journal ofEngineering Mechanics,2003,19 (8):951-962.
    [76]Christian, P., Roman, L., Lothar M., et al. Optimization of jet-grouted support in NATM tunnelling[J]. International Journal for Numerical and Analytical Methods in Geomechanics,2004,28:781-796.
    [77]Lignola,G.P., Flora,A.G. Manfredi. Simple method for the design of jet grouted umbrellas in tuneling[J]. Journal of Geotechnical and Geoenviron-mental engineering,2008,134(12):1778-1790.
    [78]Tonon, F. ADECO full-face tunnel excavation of two 260 m2 tubes in clays with sub-horizontal jet-grouting under minimal urban cover[J]. Tunnelling and Undergro-und Space Technology,2011,26(2):253-266.
    [79]景诗庭,王海珍,孙星亮.水平钻孔喷射注浆技术的应用与研究展望[J].石家庄铁道学院学报,1999,(2):9-12.
    [80]孙星亮,王海珍.水平旋喷固结体力学性能试验及分析[J].岩石力学与工程学报,2003,22(10):1695-1698.
    [81]高成雷,朱永全.两种超前预支护技术控制地层沉降效果对比研究[J].铁道标准设计,2003,(7):59-61.
    [82]刘勇,孙星亮,等.水平旋喷预支护技术在铁路隧道中的应用[J].岩石力学与工程学报,2002,21(6):905-909.
    [83]刘晓曦,韩跃.水平旋喷桩在软弱土质隧道施工中的应用[J].世界隧道,2000,2:63-65.
    [84]况成明,刘定初,翟金书.水平旋喷预支护技术在某隧道施工中的应用[J].西部探矿工程,2001,(2):74-75.
    [85]赵崇科.水平旋喷预支护技术在沙哈拉峁隧道施工中的应用铁道[J].建筑技术,2004,4:40-42.
    [86]孟凤朝.深圳地铁大~科区间隧道水平旋喷桩施工技术[J].铁道工程学报,2003,(6):1-4.
    [87]周振强.连拱隧道浅埋暗挖法施工对地面下沉控制与试验研究[J].市政技术,2004,(6):267-271.
    [88]吴波,高波,骆建军.地铁区间隧道水平旋喷预加固效果数值模拟[J].西南交通大学学报,2004,39(5):605-608.
    [89]吴波,刘维宁,高波,等.深圳地铁区间隧道富水地层非降水施工技术研究[J].土木工程学报,2004,37(4):93-98.
    [90]仝学让,薛模美.水平旋喷桩在地铁暗挖隧道施工中的应用[J].现代隧道技术,2003,(6):51-54.
    [91]李林,李德才.深圳地铁区间隧道软弱围岩超前预加固施工技术研究[J].现代隧道技术,2005,42(4):76-79.
    [92]王圣涛,邓敦毅.水平旋喷桩在地铁暗挖隧道流塑状粘性土中的应用[J].现代隧道技术,2003,40(5):26-29.
    [93]张彦斌.水平旋喷注浆预支护技术作用机理与效果研究[D].北京:北京交通大学,2006.
    [94]唐亮.水平旋喷注浆超前加固机理及在隧道工程中的应用[D].北京:北京交通大学,2007.
    [95]刘钟,柳建国,张义,等.隧道全方位高压喷射注浆拱棚超前支护新技术[J].岩石力学与工程学报,2009,28(1):59-65.
    [96]李永东.水平旋喷施工工法的理论与试验研究[D].北京:中国地质大学,2008.
    [97]黎中银.水平高压旋喷工法在预加固工程中的应用研究[D].北京:中国地质大学,2009.
    [98]张慧乐,柳建国,张慧东,等.水平旋喷拱棚承载特性及破坏机理的有限元分析[J].工业建筑,2010,40(9):66-69.
    [99]柳建国,张慧乐,张慧东,等.水平旋喷拱棚新工艺与载荷试验研究[J].岩土工程学报,2011,33(6):921-927.
    [100]张慧乐,张慧东,王述红,等.水平旋喷拱棚结构的承载特性及机理研究[J].土木工程学报,2012,45(8):131-139.
    [101]赵玉良.北京地铁5号线崇东区间渡线隧道穿越密集民房超前预加固地层施工方案探讨[J].铁道标准设计,2003,12:22-24.
    [102]梁正银.北京地铁五号线崇文门站工程水平旋喷桩帷幕止水技术的应用[J].岩土工程程界,2005,8(8):72-73.
    [103]张亮标,唐玉文.草桥热力外线隧道暗挖水平旋喷桩加筋支护[J].岩土工程界,2005,8(12):68-70.
    [104]李显峰.水平旋喷桩在浅埋暗挖隧道工程中的应用研究[J].市政技术,2008,26(4):323-325.
    [105]杨箐轩,陆景慧,等.水平旋喷桩超前支护技术在热力暗挖隧道工程中的应用[J].特种结构,2005,22(2):4-5.
    [106]王银献,陈浩生.水平高压旋喷注浆技术在浅埋隧道预支护中的应用[J].施工技术,2004,33(10):63-64.
    [107]张云星,崔江余.水平旋喷桩在长安街复线热力管道中的应用[J].西部探矿工程,2004,101(10):4-5.
    [108]王海彦.北京地下热力管线隧道水平旋喷桩预支护技术[J].国防交通工程与技术,2005,(1):42-44.
    [109]田岩平,王海彦,崔春霞.地下工程中水平旋喷预加固技术[J].石家庄铁路职业技术学院学报,2003,4(1):23-26.
    [110]路德富.水平高压旋喷注浆技术在城市浅埋隧道预支护中的应用[J].探矿工程,2008,35(2):72-74.
    [111]侯桐,董珍.水平旋喷桩在北京地铁工程中的应用[J].地下空间与工程学报,2012,8(s2):1796-1799.
    [112]张建华,梁杰忠.水平旋喷桩工艺在广州地铁2号线工程施工中的应用[J].水运工程,2002,(8):72-75.
    [113]蔡凌燕.水平旋喷搅拌技术在广州地铁二号线工程中的应用[J].广东水利水电,2002,(3):52-56.
    [114]韩莉.水平旋喷搅拌桩在含水砂层超浅埋地铁隧道中的应用[J].广东土木与建筑,2004,(8):6-7.
    [115]刘建国.水平旋喷搅拌桩工法应用研究[J].铁道工程学报,2002,2:103-106.
    [116]彭斌,曾庆义.深圳地铁香车区间隧道的截水防渗处理[J].岩土工程界,2002,5(11):54-57.
    [117]刘俊成.水平旋喷技术在城市地铁富水砂层中的应用[J].铁道建筑技术,2010,(4):51-54.
    [118]罗成江.黄土隧道中水平旋喷桩预支护施工技术[J].贵州工业大学学报(自然科学版),2008,37(6):189-192.
    [119]张晓,杨建国,王运周,等.水平旋喷桩预支护在软弱黄土隧道中的试验研究[J].现代隧道技术,2010,47(1):36-40.
    [120]于家宝.水平旋喷桩预支护施工技术[J].铁道建筑,2003,(9):40-42.
    [121]刘娟,王海江.水平旋喷桩在酸刺沟隧道拱顶支护中的应用[J].山西建筑,2009,35(28):318-319.
    [122]魏文义,杜立新,毕德灵,等.水平旋喷在饱和粉细砂围岩中的应用[J].现代隧道技术,2011,48(2):174-176.
    [123]白聚敏.软流塑地层暗挖隧道的水平旋喷注浆[J].隧道建设,2008,28(4):498-500.
    [124]彭少杰.水平旋喷加固体的成桩机理与直径分析研究[J].地下工程与隧道,2008,(3):42-44.
    [125]张崚.青岛地铁富水砂层段水平旋喷桩技术的应用[J].价值工程,2011,(20):75-76.
    [126]杨宏射.水平旋喷技术在兴旺峁隧道砂层加固施工中的应用[J].隧道建设,2010,30(1):100-105.
    [127]苏立华.富水浅覆不均匀地层大断面隧道快速施工技术研究[J].铁道建筑,2012,(1):51-53.
    [128]石钰锋,阳军生,杨峰.超浅覆大断面暗挖隧道下穿富水河道的风险分析及控制研究[J].岩土力学,2012,30(s2):229-234.
    [129]Chambon, P., Corte, J. E. Shallow tunnels in cohesionless soil stability of tunnel face[J]. Journal of Geotechnical Engineering,1994,120(7):1148-1165.
    [130]Dias. D., Kastner. R., Subrin, D. et al. Behaviour of a tunnel face reinforced by bolts:comparison between analytical numerical models. In:The Geotechnics of Hard Soils—Soft Rocks.Balkema,1998. pp.961-72.
    [131]Ng,C. W. W., Lee,G. T. K. A three-dimensional parametric study of the use of soil nails for stabilizing tunnel faces[J]. Computers and Geotechnics,2002,29: 673-697.
    [132]Hirohisa, K., Hideto, M. Centrifuge model test of tunnel face reinforcement by bolting[J]. Tunnelling and underground space technology,2003,18(2):205-212.
    [133]Date, K.,Soga, K.,Mair, R. J. Reinforcing effects of forepoling and face bolts in tunneling[C]. Proceedings of the 6th International Symposium on Geotechnical Aspects of Underground Construction in Soft Ground. Shanghai,2009: 635-640.
    [134]Bernaud, D., Maghous, S., et al. A numerical approach for design of bolt supported tunnels regarded as homogenized structeres[J]. Tunnelling and underground space technology,2009,24(5):533-546.
    [135]Dias, D. Convengence-confinement approach for designing tunnel face reinforcement by horizontal bolting[J]. Tunnelling and underground space technology,2011,26(4):517-523.
    [136]Bobet,A., Einstein, H.H. Tunnel reinforcement with rockbolt[J]. Tunnelling and underground space technology,2011,26(1):100-123.
    [137]Sterpi, D., Rizzo, F., Renda, D.,et al. Soil nailing at the tunnel face in difficult conditions:A case study[J]. Tunnelling and underground space technology, 2013,38(9):129-139.
    [138]翟进营,杨会军,王莉莉.新意法隧道设计施工概述[J].隧道建设,2008,28(1):46-55.
    [139]梅志荣,陈涛.高速铁路隧道全断面预加固技术的应用研究[J].隧道建设,2008,28(5):542-547.
    [140]师晓权,张志强,李化云.软弱围岩隧道超前预加固技术试验研究[J].岩石力学与工程学报,2011,30(9):1803-1809.
    [141]何满潮,景海河,孙晓明.软岩工程力学[M].北京:科学出版社,2002.
    [142]傅金阳.富水复合地层浅埋暗挖地铁施工对邻近建筑物影响分析[D].长沙:中南大学,2010.
    [143]石钰锋,阳军生,杨峰,等.软弱地层浅埋隧道加固范围及强度参数的研究[J].公路交通科技,2014,31(4):105-110.
    [144]Mollon, G., Dias D., Soubra, A. H. Two new limit analysis mechanisms for the computation of the collapse pressures of circular tunnel driven by a pressurized shield[C].2th International conference on computational methods in tunneling, Ruhr University Bochum,9-11 September 2009, Aedificatio Publishers, 849-856.
    [145]中铁第二勘察设计院集团有限公司.湘桂铁路扩改工程II标石头岗隧道勘察设计报告[R].成都:2009.
    [146]赵建平.浅埋暗挖隧道管棚预支护机理及其效用研究[D].长沙:中南大学,2005.
    [147]苟德明.既有公路下连拱隧道管棚变形测试与作用机理研究[D].长沙:长沙理工大学,2007.
    [148]刘松涛,张国安,杨秀竹,等.上软下硬地层铁路隧道下穿既有高速公路施工方法研究[J].铁道科学与工程学报,2011,8(5):35-39.
    [149]Itasca Consulting Group. FLAC3D fluid-mechanical interaction(V2.1) [R]. [S.1.]:Itasca Consulting Group,2003.
    [150]孙书伟,林航.FLAC3D在岩土工程中的应用[M].中国水利水电出版社,2011.
    [151]余铎.软岩隧道施工时空效应研究[D].西安:长安大学,2011.
    [152]Davis, R.O., Selvadurai, A.P.S. Elasticity and Geomechanics[M]. Cambridge, UK:Cambridge University Press,1996.
    [153]黄义,何芳社.弹性地基上的梁、板、壳[M].北京:科学出版社,2005.
    [154]常燕庭.喷射混凝土早期材科性质对支护效果的影响[J].长江科学院院报,1992,9(3):8-16.
    [155]Ding, Y, Kusterle, W. Comparative study of steel fibre-reinforced concrete and steel mesh-Reinforced concrete at early ages in panel tests [J]. Cement and Concrete Research,1999,29(11):1827-1834.
    [156]Oreste,P.P.,Pella,D. Modelling progressive hardening of shotcrete in converg-ence confinement approach to tunnel design[J]. Tunneling and Underground space,1997,12(3):425-431.
    [157]石钰锋,阳军生,杨峰,等.软弱围岩大断面隧道相向施工围岩稳定性分析与掌子面加固研究[J].公路交通科技,2013,30(4):82-88.
    [158]中铁第四勘察设计院集团有限公司.江门隧道暗挖段勘察设计报告[R].武汉:2008.
    [159]Yoo, C. Interaction between tunneling and groundwater numerical investigation using three dimensional stress-pore pressure coupled analysis[J] Journal of Geotechnical and Geoenvironmental Engineering,2005,131(2):240-250.
    [160]关岩鹏,黄明利,彭峰.大断面软岩隧道新意法加固参数研究[J].公路交通科技,2013,30(3):105-110.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700