猪瘟病毒SM株E2蛋白单克隆抗体的制备及其识别位点的鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
猪瘟(classical swine fever, CSF)是猪的一种最重要的传染病,其病原是猪瘟病毒(HCV,裁CSFV)。猪瘟毒为RNA病毒,属于黄病毒科瘟病毒属成员。CSF病理特征是微血管壁变性,致使内脏器官多发性出血、梗塞和坏死,以出血和发热为主要特征,呈急性或慢性经过,对养猪业危害极大。新近研究表明,在CSF流行地区,其症状呈现非典型化,甚至在免疫猪群中也有发病;CSFV流行毒株已经从以前的group 1转向group 2。有迹象表明我国目前使用的group 1兔化弱毒C株疫苗对group 2 CSFV流行毒株难以提供有效保护。
     本研究目的是:(1)初步探明浙江省猪瘟病毒的分子流行病学特征;(2)制备并鉴定猪瘟病毒SM株E2蛋白的单克隆抗体:(3)猪瘟病毒SM株E2蛋白单克隆抗体识别位点的鉴定。
     1、猪瘟病毒的检测及分子流行病学研究
     在CSFV-E2基因的上、下游保守区域分别设计两对简并引物用于套式RT-PCR检测。结果表明,该体系具有很好的特异性和灵敏性,检测下限为1400拷贝数的CSFV基因组。根据不同毒株E2基因中Mspl酶切位点排布的不同,建立了鉴别检测疫苗株和野毒株的RFLP方法。应用此方法对2009年浙江地区猪场采集的59份组织样品进行CSFV检测,结果发现9份样品能扩增出CSFV特异性条带,阳性PCR产物经Mspl酶切鉴别鉴定,4份样品中含有疫苗株;4份为野毒感染,其余1份能同时检出疫苗株与野毒株。根据普遍应用的CSFV E2基因5’-端高变区190bp序列进行遗传进化分析,发现2009年实验室检测的流行于浙江省及周边地区的CSFV都属于genotype 2.1b。我国目前使用的疫苗株C株属于subgroup 1.1,在进化树中与本地区的流行毒株进化关系较远。
     2、猪瘟病毒SM株E2蛋白单克隆抗体的制备与鉴定
     为了进一步探索E2蛋白N端高变区域内与抗体识别相关的一些关键氨基酸位点差异对不同毒株抗原结构的影响,我们以猪瘟经典强毒株SM株E2为抗原免疫BALB/c小鼠,应用杂交瘤技术结合IFA筛选,获得了1株持续、稳定分泌小鼠抗SM株E2蛋白的单克隆抗体的杂交瘤细胞株2B10,亚型鉴定为IgG2a。IFA显示2B10能与SM毒株反应。结果表明:单抗2B10识别的抗原表位只存在于SM毒株中。
     3、单克隆抗体2B10识别位点的鉴定
     制备的单克隆抗体2B10通过Western blot和间接ELISA检测显示,该单抗与重组蛋白E2-AD有较强的反应性,且该单抗能与截短的E2-BC发生反应,表明该单抗识别的线性表位位于E21-125位氨基酸残基内。应用获得的这株单抗进行流行毒株E2抗原多样性分析,结果表明,单抗2B10能只识别group 1中的SM病毒,而不能与group 1中的疫苗株和group 2中的任何流行毒株发生反应。证明了单抗的抗原识别位点只存在与SM毒株中,而通过与流行毒株和疫苗株的截短的E2-BC基因序列比较发现了一些差异位点,对这些位点进行点突变后制备突变蛋白。取单抗与突变蛋白进行了Western blot和间接ELISA检测,结果发现该单抗识别位点为P709位点。
     上述试验结果为深入开展CSFV病毒变异与抗原多样性的关系研究和新型高效疫苗开发奠定了良好基础。
Classical swine fever (CSF) is a highly contagious disease of swine and wild boars, causing significant economical losses in a wide range of the world. The causative agent of this disease is classical swine fever virus (CSFV), a member of the Pestivirus genus within the Flaviviridae family. CSFV is an enveloped RNA virus with the whole genome length being approximately 12.3 kb. The typical pathological change caused by CSFV is degeneration of vascular wall, which may result in hemorrhage, infarction and necrosis of internal organs in addition to fever. CSF is contracted mainly through direct contact. Pigs carring CSFV often act as sources of transmission, and can spread the virus to the environmennts via faeces before any clinical syndroms can be observed. Recent research indicates that the prevalent genotype of CSFV has changed to group 2 from group 1 to which the vaccine C-strain belongs, suggesting that current vaccine could not provide efficient protection against infections by field CSFV.
     The present study was aimed to:(1) probe the molecular epidemiology of CSFV in Zhejiang, (2) characterize monoclonal antibodies against E2 protein of CSFV strain SM, (3) identify the recognition sites of monoclonal antibodies on the E2 protein. Results thus obtained may provide the foundation for further analysis of antigenic diversity of classical swine fever virus.
     1. Detection and molecular epidemiology of CSFV
     Two pairs of primers were designed for nest RT-PCR based on the conserved regions upstream and downstream of E2 gene. This PCR reaction exhibited good specificity and could detect as low as 1400 copies of CSFV genome. An RFLP approach was developed to differentiate vaccine strain and wild strains based on the distinct distribution of Mspl enzyme restriction sites in their E2 genes. This method was applied to screen CSFV in 59 sapmles from swines in Zhejiang Province. The results revealed that 9 samples were recognized by PCR, with 4 belonging to vaccine strains,4 to wild strains, and the remaining representing the mixture of vaccine strains and wild strains. Phylogenetic analysis of the 190bp variable region of E2 gene indicates that the field viruse isolates recovered in Zhejiang and neibourghing areas belonged to genotype 2.1b, which were divergent from the group 1 isolates including the vaccine C-strain.
     2. Characterization of E2 monoclonal antibodies from CSFV strain SM
     To investigate the effects of some key amino acids involved in the antibody recognition within highly variable region of E2 protein on the antigen structures, we vaccinated BALB/c mice with E2 protein from CSFV classical virulent strain SM, and obtained one hybridoma cells (2B10) that could secrete antibodies against the E protein via hybridoma technique and IFA screening. Subtyping indicated that the monoclonal antibody was IgG2a isotype.2B10 could react with strain SM in IFA assay. These reaults demonstrated that the recognition sites by 2B10 only existed in strain SM.
     3. Identification of recognition sites of the monoclonal antibody 2B10
     Monoclonal antibody 2B10 had strong reaction with recombinant protein E2-AD, and also reacts with truncated E2-BC by Western blot and indirect ELISA, indicating that the linear epitopes were located within the 1-125 amino acid resdues of E2. The diversity of E2 protein from prevalent strains was analyzed using two monoclonal antibodies.2B10 could recognize SM strain belonging to group 1, but failed to recognize vaccine strain of the same group and wild strains of group 2. Given that the vaccine strain or wild strains could not react with 2B10, the recognition sites were present only in strain SM. Some amino acids differences were found through comparison of E2-BC sequences between wild strains and the vaccine strain. These amino acids were site-mutated, and mutant peptides were expressed. These peptides were subsequently subjected to reaction with 2B10. The results demonstrated that the recongnition site for 2B10 was P709 in E2 of CSFV strain SM.
     In summary, this study has provided good foundation for continuing research on the relationship between variations of CSFV E2 gene and antigenic divergence as well as on the development of more effective anti-CSF vaccine.
引文
[1]Horst HS, Huirne RB, Dijkhuizen AA. Risks and economic consequences of introducing classical swine fever into The Netherlands by feeding swill to swine. Rev Sci Tech,1997,16(1):207-14.
    [2]Moennig V. Introduction to classical swine fever:virus, disease and control policy. Vet Microbiol 2000,73(2-3):93-102.
    [3]Paton DJ, et al. Genetic typing of classical swine fever virus. Vet Microbiol,2000,73(2-3):137-57.
    [4]Moennig V, Floegel-Niesmann G, Greiser-Wilke I. Clinical signs and epidemiology of classical swine fever:a review of new knowledge. Vet J,2003,165(1):11-20.
    [5]Flores-Gutierrez GH, Infante F. Resolution of a classical swine fever outbreak in the United States-Mexico border region. Transbound Emerg Dis,2008,55(9-10):377-81.
    [6]Pereda AJ, Greiser-Wilke I, Schmitt B, Rincon MA, Mogollon JD, Sabogal ZY, et al. Phylogenetic analysis of classical swine fever virus (CSFV) field isolates from outbreaks in South and Central America. Virus Res,2005,110(1-2):111-8.
    [7]Pan CH, Jong MH, Huang TS, Liu HF, Lin SY, Lai SS. Phylogenetic analysis of classical swine fever virus in Taiwan. Arch Virol,2005,150(6):1101-19.
    [8]Deng MC, Huang CC, Huang TS, Chang CY, Lin YJ, Chien-MS, et al. Phylogenetic analysis of classical swine fever virus isolated from Taiwan. Vet Microbiol,2005,106(3-4):187-93.
    [9]de Arce HD, Ganges L, Barrera M, Naranjo D,-Sobrino-F,-Frias-MT,et al.Origin-and evolution of viruses causing classical swine fever in Cuba. Virus Res,2005,112(1-2):123-31.
    [10]Blacksell SD, Khounsy S,-Boyle DB, Gleeson LJ,-Westbury HA, Mackenzie JS. Genetic typing of classical swine fever viruses from Lao PDR by analysis of the 5'non-coding region. Virus Genes, 2005,31(3):349-55.
    [11]Blacksell SD, Khounsy S, Boyle DB, Greiser-Wilke I, Gleeson LJ, Westbury HA, et al. Phylogenetic analysis of the E2 gene of classical swine fever viruses from Lao PDR. Virus Res,2004, 104(1):87-92.
    [12]Jemersic L, Greiser-Wilke I, Barlic-Maganja D, Lojkic M, Madic J, Terzic S, et al. Genetic typing of recent classical swine fever virus isolates from Croatia. Vet Microbiol,2003,96(1):25-33.
    [13]Tu C, Lu Z, Li H, Yu X, Liu X, Li Y, et al. Phylogenetic comparison of classical swine fever virus in China. Virus Res,2001,81 (1-2):29-37.
    [14]Biagetti M, Greiser-Wilke I, Rutili D. Molecular epidemiology of classical swine fever in Italy. Vet Microbiol,2001,83(3):205-15.
    [15]Greiser-Wilke I, Fritzemeier J, Koenen F, Vanderhallen H, Rutili D, De Mia GM, et al. Molecular epidemiology of a large classical swine fever epidemic in the European Union in 1997-1998. Vet Microbiol,2000,77(1-2):17-27.
    [16]Bartak P, Greiser-Wilke I. Genetic typing of classical swine fever virus isolates from the territory of the Czech Republic. Vet Microbiol,2000,77(1-2):59-70.
    [17]Widjojoatmodjo MN, van Gennip HG, de Smit AJ, Moormann RJ. Comparative sequence analysis of
    classical swine fever virus isolates from the epizootic in The Netherlands in 1997-1998. Vet Microbiol,1999,66(4):291-9.
    [18]Lowings P, Ibata G, De Mia GM, Rutili D, Paton D. Classical swine fever in Sardinia:epidemiology of recent outbreaks. Epidemiol Infect,1999,122(3):553-9.
    [19]Diaz de Arce H, Nunez JI, Ganges L, Barreras M, Teresa Frias M, Sobrino F. Molecular epidemiology of classical swine fever in Cuba. Virus Res,1999,64(1):61-7.
    [20]Vilcek S, Stadejek T, Takacsova I, Strojny L, Mojzis M. Genetic analysis of classical swine fever virus isolates from a small geographic area. Dtsch Tierarztl Wochenschr,1997,104(1):9-12.
    [21]Stadejek T, Vilcek S, Lowings JP, Ballagi-Pordany A, Paton DJ, Belak S. Genetic heterogeneity of classical swine fever virus in Central Europe. Virus Res,1997,52(2):195-204.
    [22]Cha SH, Choi EJ, Park JH, Yoon SR, Kwon JH, Yoon KJ, et al. Phylogenetic characterization of classical swine fever viruses isolated in Korea between 1988 and 2003. Virus Res,2007 126(1-2):256-61.
    [23]Sabogal ZY, Mogollon JD, Rincon MA, Clavijo A. Phylogenetic analysis of recent isolates of classical swine fever virus from Colombia. Virus Res,2006,115(1):99-103.
    [24]Chen N, Hu H, Zhang Z, Shuai J, Jiang L,-Fang W. Genetic diversity of the envelope glycoprotein E2 of classical swine fever virus:recent isolates branched away from historical andvaccine strains. Vet Microbiol,2008,127(3-4):286-99.
    [25]Liu L, Xia H, Wahlberg N, Belak S, Baule C. Phylogeny, classification-and-evolutionary-insights into pestiviruses. Virology,2009,385(2):351-7.
    [26]Becher P, Avalos Ramirez R, Orlich M, Cedillo Rosales S, Konig M,Schweizer M,et al. Genetic and antigenic characterization of novel pestivirus genotypes:implications for classification. Virology, 2003,311(1):96-104.
    [27]Schirrmeier H, Strebelow G, Depner K, Hoffmann B, Beer M. Genetic and antigenic characterization of an atypical pestivirus isolate, a putative member of a novel pestivirus species. J Gen Virol,2004, 85(Pt 12):3647-52.
    [28]Stalder HP, Meier P, Pfaffen G, Wageck-Canal C, Rufenacht J, Schaller P, et al. Genetic heterogeneity of pestiviruses of ruminants in Switzerland. Prev Vet Med,2005,72(1-2):37-41; discussion 215-9.
    [29]Stahl K, Kampa J, Alenius S, Persson Wadman A, Baule C, Aiumlamai S, et al. Natural infection of cattle with an atypical'HoBi'-like pestivirus--implications for BVD control and for the safety of biological products. Vet Res,2007,38(3):517-23.
    [30]Vilcek S, Ridpath JF, Van Campen H, Cavender JL, Warg J. Characterization of a novel pestivirus originating from a pronghorn antelope. Virus Res,2005,108(1-2):187-93.
    [31]Kirkland PD, Frost MJ, Finlaison DS, King KR,-Ridpath JF, Gu X. Identification of anovel virus in pigs--Bungowannah virus:a possible new species of pestivirus. Virus Res,2007,129(1):26-34.
    [32]Finlaison DS, King KR, Frost MJ, Kirkland PD. Field and laboratory evidence that Bungowannah virus, a recently recognised pestivirus, is the causative agent of the porcine myocarditis syndrome (PMC). Vet Microbiol,2008.
    [33]Thabti F, Letellier C, Hammami S, Pepin M, Ribiere M, Mesplede A, et al. Detection of a novel
    border disease virus subgroup in Tunisian sheep. Arch Virol,2005,150(2):215-29.
    [34]Beer M, Reimann I, Hoffmann B, Depner K. Novel marker vaccines against classical swine fever. Vaccine,2007,25(30):5665-70.
    [35]Grummer B, Fischer S, Depner K, Riebe R, Blome S, Greiser-Wilke I. Replication of classical swine fever virus strains and isolates in different porcine cell lines. Dtsch Tierarztl Wochenschr,2006, 113(4):138-42.
    [36]Vilcek S, Paton D, Lowings P, Bjorklund H, Nettleton P, Belak S. Genetic analysis of pestiviruses at the 3'end of the genome. Virus Genes,1999,18(2):107-14.
    [37]Bjorklund HV, Stadejek T, Vilcek S, Belak S. Molecular characterization of the 3'noncoding region of classical swine fever virus vaccine strains. Virus Genes,1998,16(3):307-12.
    [38]Vilcek S, Belak S. Organization and diversity of the 3'-noncoding region of classical swine fever virus genome. Virus Genes,1997,15(2):181-6.
    [39]Kolupaeva VG, Pestova TV, Hellen CU. Ribosomal binding to the internal ribosomal entry site of classical swine fever virus. RNA,2000,6(12):1791-807.
    [40]Fletcher SP, Ali IK, Kaminski A, Digard P, Jackson RJ. The influence of viral coding sequences on pestivirus IRES activity reveals further parallels with translation initiation in prokaryotes. RNA, 2002,8(12):1558-71.
    [41]Fletcher SP, Jackson RJ. Pestivirus internal ribosome entry site (IRES) structure and function: elements in the 5'untranslated region important for IRES function.J Virol,.2002,76(10);5024-33.
    [42]Risatti GR, Borca MV, Kutish GF, Lu Z, Holinka LG, French RA, et al. The E2 glycoprotein of classical swine fever virus is a virulence determinant in swine. J Virol,2005,79(6):3787-96.
    [43]Ruggli N, Tratschin JD, Mittelholzer C, Hofmann MA. Nucleotide sequence of classical swine fever virus strain Alfort/187 and transcription of infectious RNA from stably cloned.full-length cDNA. J Virol,1996,70(6):3478-87.
    [44]Moormann RJ, van Gennip HG, Miedema GK, Hulst MM, van Rijn PA. Infectious RNA transcribed from an engineered full-length cDNA template of the genome of a pestivirus. J Virol,1996, 70(2):763-70.
    [45]Meyers G, Thiel HJ, Rumenapf T. Classical swine fever virus:recovery of infectious viruses from cDNA constructs and generation of recombinant cytopathogenic defective interfering particles. J Virol,1996,70(3):1588-95.
    [46]Mayer D, Thayer TM, Hofmann MA, Tratschin JD. Establishment and characterisation of two cDNA-derived strains of classical swine fever virus, one highly virulent and one avirulent. Virus Res, 2003,98(2):105-16.
    [47]Fan Y, Zhao Q, Zhao Y, Wang Q, Ning Y, Zhang Z. Complete genome sequence of attenuated low-temperature Thiverval strain of classical swine fever virus. Virus Genes,2008,36(3):531-8.
    [48]Lin YJ, Chien MS, Deng MC, Huang CC. Complete sequence of a subgroup 3.4 strain of classical swine fever virus from Taiwan. Virus Genes,2007,35(3):737-44.
    [49]Li X, Xu Z, He Y, Yao Q, Zhang K, Jin M, et al. Genome comparison of a novel classical swine fever virus isolated in China in 2004 with other CSFV strains. Virus Genes,2006,33(2):133-42.
    [50]Wong ML, Peng BY, Liu JJ, Chang TJ. Cloning and sequencing of full-length cDNA of classical swine fever virus LPC strain. Virus Genes,2001,23(2):187-92.
    [51]Li H, Liu X, Li X, Han X, Tu C, Yin Z. [Molecular clone and sequence analysis of cDNA fragments of hog cholera virus strain C. Wei Sheng Wu Xue Bao,1999,39(6):554-8.
    [52]Xu X, Zhang Q, Yu X, Liang L, Xiao C, Xiang H, et al. Sequencing and comparative analysis of a pig bovine viral diarrhea virus genome. Virus Res,2006,122(1-2):164-70.
    [53]Murray CL, Jones CT, Rice CM. Architects of assembly:roles of Flaviviridae non-structural proteins in virion morphogenesis. Nat Rev Microbiol,2008,6(9):699-708.
    [54]Ruggli N, Summerfield A, Fiebach AR, Guzylack-Piriou L, Bauhofer O, Lamm CG, et al. Classical swine fever virus can remain virulent after specific elimination of the interferon regulatory factor 3-degrading function of Npro. J Virol,2009,83(2):817-29.
    [55]Tratschin JD, Moser C, Ruggli N, Hofmann MA. Classical swine fever virus leader proteinase Npro is not required for viral replication in cell culture. J Virol,1998,72(9):7681-4.
    [56]La Rocca SA, Herbert RJ, Crooke H, Drew TW, Wileman TE, Powell PP. Loss of interferon regulatory factor 3 in cells infected with classical swine fever virus involves the N-terminal protease, Npro. J Virol,2005,79(11):7239-47.
    [57]Seago J, Hilton L, Reid E, Doceul V, Jeyatheesan J, Moganeradj K, et al. The Npro product of classical swine fever virus and bovine viral diarrhea virus uses a conserved mechanism to target interferon regulatory factor-3. J Gen Virol,2007,88(Pt 11):3002-6.
    [58]Tews BA, Meyers G. The pestivirus glycoprotein Erns is anchored in plane in the membrane via an amphipathic helix. J Biol Chem,2007,282(45):32730-41.
    [59]Langedijk JP. Translocation activity of C-terminal domain of pestivirus Erns and ribotoxin L3 loop. J Biol Chem,2002,277(7):5308-14.
    [60]Hausmann Y, Roman-Sosa G, Thiel HJ, Rumenapf T. Classical swine fever virus glycoprotein E rns is an endoribonuclease with an unusual base specificity. J Virol,2004,78(10):5507-12.
    [61]Bruschke CJ, Hulst MM, Moonnann RJ, van Rijn PA, van Oirschot JT. Glycoprotein Erns of pestiviruses induces apoptosis in lymphocytes of several species. J Virol,1997,71(9):6692-6.
    [62]Langedijk JP, Middel WG, Meloen RH, Kramps JA, de Smit JA. Enzyme-linked immunosorbent assay using a virus type-specific peptide based on a subdomain of envelope protein E(rns) for serologic diagnosis of pestivirus infections in swine. J Clin Microbiol,2001,39(3):906-12.
    [63]Lin M, Trottier E, Pasick J. Antibody responses of pigs to defined Erns fragments after infection with classical swine fever virus. Clin Diagn Lab Immunol,2005,12(1):180-6.
    [64]Lin M, Trottier E, Mallory M. Enzyme-linked immunosorbent-assay based on a chimeric antigen bearing antigenic regions of structural proteins Erns and E2 for serodiagnosis of classical swine fever virus infection. Clin Diagn Lab Immunol,2005,12(7):877-81.
    [65]He DM, Qian KX, Shen GF, Zhang ZF, Li YN, Su ZL, et al. Recombination and expression of classical swine fever virus (CSFV) structural protein E2 gene in Chlamydomonas reinhardtii chroloplasts. Colloids Surf B Biointerfaces,2007,55(1):26-30.
    [66]Ronecker S, Zimmer G, Herrler G, Greiser-Wilke I, Grummer B. Formation of bovine viral diarrhea
    virus E1-E2 heterodimers is essential for virus entry and depends on charged residues in the transmembrane domains. J Gen Virol,2008,89(Pt 9):2114-21.
    [67]Hulst MM, Moormann RJ. Inhibition of pestivirus infection in cell culture by envelope proteins E(rns) and E2 of classical swine fever virus:E(rns) and E2 interact with different receptors. J Gen Virol, 1997,78 (Pt 11):2779-87.
    [68]Hulst MM, van Gennip HG, Moormann RJ. Passage of classical swine fever virus in cultured swine kidney cells selects virus variants that bind to heparan sulfate due to a single amino acid change in envelope protein E(rns). J Virol,2000,74(20):9553-61.
    [69]Hulst MM, van Gennip HG, Vlot AC, Schooten E, de Smit AJ, Moormann RJ. Interaction of classical swine fever virus with membrane-associated heparan sulfate:role for virus replication in vivo and virulence. J Virol,2001,75(20):9585-95.
    [70]Risatti GR, Holinka LG, Fernandez Sainz I, Carrillo C, Lu Z, Borca MV. N-linked glycosylation status of classical swine fever virus strain Brescia E2 glycoprotein influences virulence in swine. J Virol,2007,81 (2):924-33.
    [71]van Rijn PA, van Gennip HG, de Meijer EJ, Moormann RJ. Epitope mapping of envelope glycoprotein E1 of hog cholera virus strain Brescia. J Gen Virol,1993,74-(Pt 10):2053-60.
    [72]Lin M, Lin F, Mallory M, Clavijo A. Deletions of structural glycoprotein E2 of classical swine fever virus strain alfort/187 resolve a linear epitope of monoclonal antibody WH303-and-the minimal N-terminal domain essential for binding immunoglobulin G antibodies of a pig hyperimmune serum. J Virol,2000,74(24):11619-25.
    [73]Zhang F, Yu M, Weiland E, Morrissy C, Zhang N, Westbury H, et al. Characterization of epitopes for neutralizing monoclonal antibodies to classical swine fever virus E2 and Erns using phage-displayed random peptide library. Arch Virol,2006,151(1):37-54.
    [74]Peng WP, Hou Q, Xia ZH, Chen D, Li N, Sun Y, et al. Identification of conserved linear B-cell epitope at the N-terminus of the E2 glycoprotein of Classical swine fever virus by phage-displayed random peptide library. Virus Res,200,135(2):267-72.
    [75]Dong XN, Chen Y, Wu Y, Chen YH. Candidate multi-peptide-vaccine against classical swine fever virus induced potent immunity with serological marker. Vaccine,2005,23(28):3630-3.
    [76]Dong XN, Chen YH. Spying the neutralizing epitopes on E2 N-terminal by candidate epitope-vaccines against classical swine fever virus. Vaccine,2006,24(19):4029-34.
    [77]Dong XN, Chen YH. Candidate peptide-vaccines induced immunity against CSFV and identified sequential neutralizing determinants in antigenic domain A of glycoprotein E2. Vaccine,2006, 24(11):1906-13.
    [78]Dong XN, Chen YH. Marker vaccine strategies and candidate CSFV marker vaccines. Vaccine,2007, 25(2):205-30.
    [79]Dong XN, Qi Y, Ying J, Chen X, Chen YH. Candidate peptide-vaccine induced potent protection against CSFV and identified a principal sequential neutralizing determinant on E2. Vaccine,2006, 24(4):426-34.
    [80]Dong XN, Wei K, Liu ZQ, Chen YH. Candidate peptide vaccine induced protection against classical
    swine fever virus. Vaccine,2002,21(3-4):167-73.
    [81]Yu M, Wang LF, Shiell BJ, Morrissy CJ, Westbury HA. Fine mapping of a C-terminal linear epitope highly conserved among the major envelope glycoprotein E2 (gp51 to gp54) of different pestiviruses. Virology,1996,222(1):289-92.
    [82]Risatti GR, Holinka LG, Fernandez Sainz I, Carrillo C, Kutish GF, Lu Z, et al. Mutations in the carboxyl terminal region of E2 glycoprotein of classical swine fever virus are responsible for viral attenuation in swine. Virology,2007,364(2):371-82.
    [83]Risatti GR, Borca MV, Kutish GF, Lu Z, Holinka LG, French RA, et al. The E2 glycoprotein of classical swine fever virus is a virulence determinant in swine. J Virol,2005,79(6):3787-96.
    [84]Risatti GR, Holinka LG, Fernandez Sainz 1, Carrillo C, Kutish GF, Lu Z, et al. Mutations in the carboxyl terminal region of E2 glycoprotein of classical swine fever virus are responsible for viral attenuation in swine. Virology,2007,364(2):371-82.
    [85]Clavijo A, Zhou EM, Vydelingum S, Heckert R. Development and evaluation of a novel antigen capture assay for the detection of classical swine fever virus antigens. Vet Microbiol,1998, 60(2-4):155-68.
    [86]Narita M, Kimura K, Tanimura N, Ozaki H. Immunohistochemical detection of hog cholera virus antigen in paraffin wax-embedded tissues from naturally infected pigs. J Comp Pathol,1999, 121(3):283-6.
    [87]Kaden V, Hubert P, Strebelow G, Lange E, Steyer H, Steinhagen P. [Comparison of laboratory diagnostic methods for the detection of infection with the virus of classical swine fever in the early inspection phase:an experimental study]. Berl Munch Tierarztl Wochenschr,1999,112(2):52-7.
    [88]Haegeman A, Dewulf J, Vrancken R, Tignon M, Ribbens S, Koenen F. Characterisation of the discrepancy between PCR and virus isolation in relation to classical swine fever virus detection. J Virol Methods,2006,136(1-2):44-50.
    [89]Vydelingum S, Tao T, Balazsi K, Hecker R. Comparison of a reverse transcription-polymerase chain reaction assay and virus isolation for the detection of classical swine fever virus. Rev Sci Tech,1998, 17(3):674-81.
    [90]Lin M, Trottier E, Mallory M. Enzyme-linked immunosorbent assay based on a chimeric antigen bearing antigenic regions of structural proteins Erns and E2 for serodiagnosis of classical swine fever virus infection. Clin Diagn Lab Immunol,2005,12(7):877-81.
    [91]Clavijo A, Lin M, Riva J, Mallory M, Lin F, Zhou EM. Development of a competitive ELISA using a truncated E2 recombinant protein as antigen for detection of antibodies to classical swine fever virus. Res Vet Sci,2001,70(1):1-7.
    [92]Langedijk JP, Middel WG, Meloen RH, Kramps JA, de Smit JA. Enzyme-linked immunosorbent assay using a virus type-specific peptide based on a subdomain of envelope protein E(rns) for serologic diagnosis of pestivirus infections in swine. J Clin Microbiol,2001,39(3):906-12.
    [93]Jamnikar Ciglenecki U, Grom J, Toplak I, Jemersic L, Barlic-Maganja D. Real-time RT-PCR assay for rapid and specific detection of classical swine fever virus:comparison of SYBR Green and TaqMan MGB detection methods using novel MGB probes. J Virol Methods,2008,147(2):257-64.
    [94]Liu L, Widen F, Baule C, Belak S. A one-step, gel-based RT-PCR assay with comparable performance to real-time RT-PCR for detection of classical swine fever virus. J Virol Methods,2007, 139(2):203-7.
    [95]Ophuis RJ, Morrissy CJ, Boyle DB. Detection and quantitative pathogenesis study of classical swine fever virus using a real time RT-PCR assay. J Virol Methods,2006,131(1):78-85.
    [96]Risatti G, Holinka L, Lu Z, Kutish G, Callahan JD, Nelson WM, et al. Diagnostic evaluation of a real-time reverse transcriptase PCR assay for detection of classical swine fever virus. J Clin Microbiol,2005,43(1):468-71.
    [97]Li Y, Zhao JJ, Li N, Shi Z, Cheng D, Zhu QH, et al. A multiplex nested RT-PCR for the detection and differentiation of wild-type viruses from C-strain vaccine of classical swine fever virus. J Virol Methods,2007,143(1):16-22.
    [98]Zhao JJ, Cheng D, Li N, Sun Y, Shi Z, Zhu QH, et al. Evaluation of a multiplex real-time RT-PCR for quantitative and differential detection of wild-type viruses and C-strain vaccine of Classical swine fever virus. Vet Microbiol,2008,126(1-3):1-10.
    [99]Pan CH, Jong MH, Huang YL, Huang TS, Chao PH, Lai SS. Rapid detection and differentiation of wild-type and three attenuated lapinized vaccine strains of classical swine fever virus by reverse transcription polymerase chain reaction. J Vet Diagn Invest,2008,20(4):448-56.
    [100]Wensvoort G C. Topographical and functional mapping of epitopes on hog cholera virus with monoclonal antibodies[J]. J Gen Virol,1989,70:2865-2876.
    [101]Kosmidou A, Ahl R, Thiel H J, et al. Differentiation of classical swine fever virus(csfv) strains using monoclonal antibodies against structural glycoproteins[J]. Vet Microbiol,1995,47:111-118.
    [103]Weiland E,Ahr R, Stark R, et al. A second envelop glycoprotein mediates neutralization of a pestivirus hog cholera virus [J]. J Virol,1992,66:3766-3682.
    [104]王在时 丘惠深.猪瘟单抗诊断试剂的生产与推广应用[J].中国兽药杂志.
    [105]Thiel H J, Stark R. Hog cholerea viral molecular composition of virus from pestivirus[J]. Virology,1991,65 4705-4712.
    [105]Rumenapf T, Stark R, Meyers G, et al. Structural proteins of hog cholera virus expressed by vaccinia virus:further characterization and induction of protective immunity[J]. J Virol,1991,65:589-597.
    [106]Van Zijl M, Wensvoot G. Live attenuated pseudorabies virus expressing envelope glycoprotein Et of hog cholera virus protects swine against both pseudorabies and hog cholera [J]. J Virot,1991,65: 2761-2765.
    [107]王钰璇,姚凤,伏小平等.猪瘟病毒R蛋白的表达与抗原性研究[J].中国动物检疫,2007,24(8):29-31.
    [108]Van Rijn P A, Van Gennip H G P. A preliminary map of epitopes on envelope glycoprotein E1 of hcv strain brescia[J]. Vet Microbiol,1992,33:221-230.
    [109]Yu M,Wang L F,Shiell B J, et al. Fine mapping of a c-terminal linear epitope highly conserved among the major envelope glycoprotein E2 of different pestiviruses [J]. Virology,1996,222:289-292.
    [110]Lin M, Trottier E, Mallory M, et al. Enzyme-linked immunosorbent assay based on a chimeric antigen bearing antigenic regions of Atructural proteins Erns and E2 for serodiagnosis of classical
    swine fever virus infection[J]. Clin Diagn Lab Immunol,2005,12:877-881.
    [111]马刚,李作生等.猪瘟病毒保护性抗原E2蛋白单抗的制备及其抗原表位的初步分析[J].中国兽医学报.
    [112]侯强,彭伍平,孙元等.猪瘟病毒E2蛋白主要抗原区编码基因的原核表达及其单克隆抗体的制备[J].中国兽医科学,2008,38(1):1-5.
    [113]Sanchez O, Barrera M, Rodriguez MP, Frias MT, Figueroa NE, Naranjo P, et al. Classical swine fever virus E2 glycoprotein antigen produced in adenovirally transduced PK-15 cells confers complete protection in pigs upon viral challenge. Vaccine,2008,26(7):988-97.
    [114]Dewulf J, Laevens H, Koenen F, Mintiens K, de Kruif A. Efficacy of E2-sub-unit marker and C-strain vaccines in reducing horizontal transmission of classical swine fever virus in weaner pigs. Prev Vet Med,2004,65(3-4):121-33.
    [115]Dortmans JC, Loeffen WL, Weerdmeester K, van der Poel WH, de Bruin MG. Efficacy of intradermally administrated E2 subunit vaccines in reducing horizontal transmission of classical swine fever virus. Vaccine,2008,26(9):1235-42.
    [116]van Rijn PA, Miedema GK, Wensvoort G, van Gennip HQ Moormann RJ. Antigenic structure of envelope glycoprotein E1 of hog cholera virus. J Virol,1994,68(6):3934-42.
    [117]Wensvoort G, Terpstra C, de Kluijver EP, Kragten C, Warnaar JC. Antigenic differentiation of pestivirus strains with monoclonal antibodies against hog cholera virus. Vet Microbiol,1989, 21(1):9-20.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700