温度和阿维菌素胁迫下朱砂叶螨Hsp70s基因表达研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
朱砂叶螨(Tetranychus cinnabarinus)在我国分布广泛,是严重为害棉花、蔬菜等多种作物而又难于防治的一种害螨。该螨繁殖能力强,产卵力高,世代周期短,在短时间里能够迅速形成一定数量的种群,并且容易产生抗药性。
     热激蛋白70(Hsp70)是热休克蛋白家族中最重要的一类家族成员,它具有“分子伴侣”、细胞保护、抗凋亡以及肿瘤免疫治疗等独特而复杂的生物学功能,对Hsp70研究已成为生命科学领域研究的热点之一。
     本项研究通过RACE技术克隆获得4条朱砂叶螨Hsp70基因cDNA全长,并用Real-timeRT-PCR技术检测了分别经阿维菌素和不同温度胁迫后4条Hsp70基因在朱砂叶螨雌成螨体内的表达变化情况,从分子水平初步探讨了朱砂叶螨Hsp70基因的表达变化与其适应逆境胁迫之间的内在联系。本研究得到了国家自然科学基金(30600059)的资助,获得以下主要研究结果:
     (1)成功克隆出4条朱砂叶螨Hsp70基因cDNA全长序列,分别命名为TCHsp70-1、TCHsp70-2、TCHsp70-3和TCHsp70-4。TCHsp70-1核苷酸序列在GenBank中的登录号为EU679412,cDNA全长2446bp,包括1965bp的开放阅读框,起始密码子为ATG,终止密码子为TAA,编码655个氨基酸。其理论分子量为71.28 kDa,等电点(pI)为5.37;5′端非编码区长274bp,3′端非编码区长207bp,poly(A)加尾信号AATAAA位于poly(A)上游14bp处。TCHsp70-2核苷酸序列在GenBank中的登录号为EU679413,cDNA全长2305bp,包括2016bp的开放阅读框,起始密码子为ATG,终止密码子为TAG,编码672个氨基酸。其理论分子量为73.78 kDa,pI为5.26;5′端非编码区长189bp,3′端非编码区长97bp,poly(A)加尾信号AACAAA位于poly(A)上游27bp处。TCHsp70-3核苷酸序列在GenBank中的登录号为EU679414,cDNA全长2284 bp,包括1980 bp的开放阅读框,起始密码子为ATG,终止密码子为TAA,编码660个氨基酸。其理论分子量为71.86 kDa,pI为5.39;5′端非编码区长134 bp,3′端非编码区长165 bp,poly(A)加尾信号AATAAA位于poly(A)上游13 bp处。TCHsp70-4核苷酸序列在GenBank中的登录号为EU977182,cDNA全长2182 bp,包括1956 bp的开放阅读框,编码652个氨基酸。推测其理论分子量为70.9 kDa,pI为5.40;5′端非编码区长106 bp,3′端非编码区长117bp,poly(A)加尾信号AATAAA位于poly(A)上游14bp处。
     (2)同源比对分析结果表明克隆获得的4条朱砂叶螨Hsp70基因与其它物种的Hsp70基因有很高的相似性,且都包含有Hsp70完整的典型基序(Motif),而且N端的保守性高于C端。克隆获得的4条Hsp70s之间的相似性最低为57.33%(TCHsp70-1与TCHsp70-2),最高为91.90%(TCHsp70-3与TCHsp70-4)。系统进化树显示TCHsp70-1、TCHsp70-3和TCHsp70-4属于细胞质Hsp70;TCHsp70-2属于内质网Hsp70。
     (3)运用实时定量RT-PCR体系检测、比较了朱砂叶螨雌成螨受不同温度胁迫后4条Hsp70基因的表达情况。结果显示,TCHsp70-1经冷激(7℃、10℃)后的表达要显著高于热激(34℃、37℃)后的表达,说明该基因更倾向于响应冷激;TCHsp70-3热激(34℃、37℃)后的表达比冷激(7℃、10℃)后显著升高,说明该基因对热激更敏感;而TCHsp70-4热激(34℃、37℃)和冷激(7℃、10℃)后都大量表达,对冷热刺激都较敏感;经不同温度处理后TCHsp70-2的表达相对稳定,其表达量都显著低于TCHsp70-1、TCHsp70-3和TCHsp70-4;这些结果一方面揭示了TCHsp70s的表达模式受它们在细胞内所处位置的影响,另一方面说明4条TCHsp70,尤其是TCHsp70-1、TCHsp70-3和TCHsp70-4基因在介导朱砂叶螨的耐寒、耐热力中扮演着重要角色。
     (4)运用实时定量RT-PCR体系检测、比较了敏感、阿维菌素抗性和37℃高温饲养3个品系的朱砂叶螨雌成螨体内4条Hsp70基因的表达情况,结果显示阿维菌素抗性品系和37℃高温饲养品系4条Hsp70基因的表达量都显著高于敏感品系(TCHsp70-1表达在敏感和阿维菌素抗性品系中差异不显著,TCHsp70-2在阿维菌素抗性和37℃高温饲养品系中差异不显著除外),而且37℃高温饲养品系表达量最高。这表明阿维菌素和高温胁迫,都能诱导朱砂叶螨Hsp70s表达增加,但高温的诱导作用更强:阿维菌素胁迫诱导朱砂叶螨Hsp70s表达增加,可能是阿维菌素抗性品系高温下具有适合度优势的重要原因之一。
The carmine spider mite,Tetranychus cinnabarinus(Boisduval),is one of the most important pests on cotton,vegetables and other crops;it is widely distributed in China.Because of high fecundity and short generation time,the mite can rapidly developing a certain number of population and resistance to acaricides easily in a short period of time,result in difficult to prevent and control.
     Heat shock protein 70 kDa(Hsp70s) is the most important proteins among members of heat shock proteins,and functions mainly as molecular chaperones.Moreover,they play important roles in cellular protection,anti-apoptotic effects,and immune therapy of tumor.Therefore,studies on Hsp70s have been one of important and prospective focuses in fields of life sciences.
     The four full-length cDNA of Tetranychus cinnabarinus(Boisduval) heat shock protein 70s were cloned by using the technique of rapid amplification of cDNA ends(RACE).The mRNA expression levels of four Hsp70 genes in female T.cinnabarinus which were dealed with different temperature and abamectin were detected by Real-time RT-PCR technology.
     In this study,we primarily discussed the inherent relationship between the expression of the Hsp70 genes in T.cinnabarinus and its fitness to environment stress from molecular level.This work was supported by the National Nature Science Foundation of China(No.30600059).The main results are as the following:
     Four Hsp70 cDNAs were isolated from carmine spider mite,Tetranychus cinnabarinus.They were tentatively named as TCHsp70-1,TCHsp70-2,TCHsp70-3 and TCHsp70-4.
     The complete cDNA of the T.cinnabarinus Hsp70-1 gene was deposited in GenBank under the accession numbers EU679412.The full length of TCHsp70-1 cDNA was 2446 bp,with a single open reading frame(ORF) of 1965 bp that encoded a protein of 655 amino acids.The theoretical molecular weight of TCHsp 70-1 based on the deduced amino acid sequence was calculated to be 71.28 kDa,with an isoelectronic point(pI) of 5.37.TCHsp70-1 cDNA included a 5' untranslated region(UTR) located 274 bp upstream of the putative start codon(ATG) and a 3' UTR of 207 nucleotides that ends in a poly(A) tail.A possible consensus signal sequence for polyadenylation (AATAAA) was located 14 bp upstream of the poly(A) tail.
     The complete cDNA of the T.cinnabarinus Hsp70-2 gene was deposited in GenBank under the accession numbers EU679413.The full length of TCHsp70-2 cDNA was 2305 bp,with a single open reading frame(ORF) of 2016 bp that encoded a protein of 672 amino acids.The theoretical molecular weight of TCHsp70-2 based on the deduced amino acid sequence was calculated to be 73.78 kDa,with an isoelectronic point(pI) of 5.26.TCHsp70-2 cDNA included a 5' untranslated region(UTR) located 189 bp upstream of the putative start codon(ATG) and a 3' UTR of 97 nucleotides that ends in a poly(A) tail.A possible consensus signal sequence for polyadenylation (AACAAA) was located 27 bp upstream of the poly(A) tail.
     The complete cDNA of the T.cinnabarinus Hsp70-3 gene was deposited in GenBank under the accession numbers EU679414.The full length of TCHsp70-3 cDNA was 2284 bp,with a single open reading frame(ORF) of 1980 bp that encoded a protein of 660 amino acids.The theoretical molecular weight of TCHsp70-3 based on the deduced amino acid sequence was calculated to be 71.86 kDa with an isoelectronic point(pI) of 5.39.TCHsp70-3 cDNA included a 5' untranslated region(UTR) located 134 bp upstream of the putative start codon(ATG) and a 3' UTR of 165 nucleotides that ends in a poly(A) tail.A possible consensus signal sequence for polyadenylation (AATAAA) was located 13 bp upstream of the poly(A) tail.
     The complete cDNA of the T.cinnabarinus Hsp70-4 gene was deposited in GenBank under the accession numbers EU977182.The full length of TCHsp70-4 cDNA was 2182 bp,with a single open reading frame(ORF) of 1956 bp that encoded a protein of 652 amino acids.The theoretical molecular weight of TCHsp70-4 based on the deduced amino acid sequence was calculated to be 70.9 kDa with an isoelectronic point(pI) of 5.40.TCHsp70-3 cDNA included a 5' untranslated region(UTR) located 106 bp upstream of the putative start codon(ATG) and a 3' UTR of 117 nucleotides that ends in a poly(A) tail.A possible consensus signal sequence for polyadenylation (AATAAA) was located 14 bp upstream of the poly(A) tail.
     The BLAST program analysis showed that the deduced amino acid sequences of the four TCHsp70 genes shared high homology with other known Hsp70 genes,they all contained the highly conserve functional motifs of the Hsp70 family,and the conservation of the N-terminus was higher than that of the C-terminus.
     Comparison of deduced amino acid sequences,the lowest identity of four Hsp70 genes was 57.33%(TCHsp70-1 and TCHsp70-2) and the highest identity was 91.90%(TCHsp70-3 and TCHsp70-4).The phylogenetic tree suggested that TCHsp70-1,TCHsp70-3 and TCHsp70-4 were cytoplasm Hsp70,TCHsp70-2 was endoplasmic reticulum Hsp70.
     Real-time comparative quantitative PCR was used to compare and analyze the expression levels of four Hsp70 genes in female T.cinnabarinus after being treated with different temperatures.The results showed that after cold shock(7℃,10℃),the expression levels of TCHsp70-1 genes was higher than that after heat shock(34℃,37℃),indicated TCHsp70-1 was more sensitive to cold shock.After cold shock(7℃,10℃),the expression levels of TCHsp70-3 genes was lower than that after heat shock(34℃,37℃),indicated TCHsp70-3 was more sensitive to heat shock.The expression levels of TCHsp70-4 genes increased both after cold shock(7℃,10℃) and heat shock (34℃,37℃),suggested it was sensitive to cold and heat shock.The expression level of TCHsp70-2 was stable after being treated with different temperatures and significant lower than that of TCHsp70-1,TCHsp70-3 and TCHsp70-4.These results possibly indicated the expression patterns of TCHsp70s were affected by their location in different cellular compartments and the four TCHsp70s, especially TCHsp70-1,TCHsp70-3 and TCHsp70-4 may play an important role in mediating tolerance to cold,thermal stress for T.cinnabarinus.
     Real-time comparative quantitative PCR was also used to compare and analyze the expression levels of four Hsp70 genes in female T.cinnabarinus within the susceptible strain(SS), abamectin-resistant strain(AbR) and 37℃high temperature domestication strain(HR).The expression levels of four Hsp70 genes in AbR and HR were higher than that in SS,and the highest expression level was in HR.All of the results have significant differences except the expression of TCHsp70-1 in SS and AbR and that of TCHsp70-2 in AbR and HR.The above results indicated abamectin and high temperature stress both can induce the expression of TCHsp70s,but the latter induced more;and abamectin induced the expression of TCHsp70s may play an important role on AbR which showed fitness advantages in high temperature.
引文
1.陈劲松.2001.热休克蛋白的分子遗传学研究进展.国外医学遗传学分册,24(3):128-132.
    2.程立生,刘君成,宋国敏.1989.拟小食螨瓢虫成虫对朱砂叶螨捕食作用的研究.热带作物学报,10(2):99-105.
    3.陈小芬,杨玉荣.2005.果蝇对冷热极限温度耐受能力的研究.厦门大学学报(自然科学版),44:188-190.
    4.董慧琴,杨琰云,梁来荣.1995.二种植绥螨对朱砂叶螨利他素定位反应的比较.复旦学报(自然科学版),34(4):445-450.
    5.方才君,胡仕林.2007.植物精油对朱砂叶螨的毒性试验.西南师范大学学报(自然科学版),22(4):470-472.
    6.范志金,陈年春.1996.截形叶螨抗药性主导机制的研究.植物保护学报,23(2):175-180.
    7.郭凤英,赵志模.1999.朱砂叶螨对不同农药抗药性发展趋势的研究.蛛形学报,8(2):118-121.
    8.郭俊生,赵法,王枫.1998.热暴露对果蝇寿命及热应激蛋白含量的影响.解放军预防医学杂志,16(4):247.
    9.黄尔田,张夫其.1989.桑园朱砂叶螨生物学及测报方法的研究.蚕业科学,15(1):18-22.
    10.贺春贵.1996.几种植物杀虫剂的初步研究.甘肃农业大学学报,31(3):233-235.
    11.何洪俊,柯道秀,熊映清.1991.草间小黑蛛对朱砂叶螨的捕食反应.昆虫天敌,13(3):107-112.
    12.何林,赵志模,曹小芳,邓新平,王进军.2005。温度对抗性朱砂叶螨发育和繁殖的影响.昆虫学报,48(2):203-207.
    13.何林,赵志模,邓新平,王进军,刘怀,刘映红.2003.朱砂叶螨对3种杀螨剂的抗性选育及抗性治理研究.中国农业科学,36(4):403-408.
    14.侯辉,赵莉蔺,曹挥,李照会,师光禄.2004.地肤中杀螨活性成分的提取与初步分离.山东农业科学,8(1):47-48.
    15.李冰祥,陈永林,蔡惠罗.2001.飞蝗不同地理种群抗寒性研究.生态学报,21(12):2023-2030.
    16.刘波,桂连友.2007.我国朱砂叶螨研究进展.长江大学学报(自然版)农学卷,4(3):9-12.
    17.林钟婷,朱静,翁银标,郑醒超.2007.热休克蛋白70的研究进展.中国畜牧兽医,34(3):67-70.
    18.刘开林,何林,缪应林.2007.高温和阿维菌素对朱砂叶螨的胁迫效应及热休克蛋白研究.中国农学通报,23:249-253.
    19.秦素研,刘怀.2006.食物对尼氏钝真绥螨发育繁殖和朱砂叶螨捕食量的研究.西南农业大学学报(自然科学),28(1):87-93.
    20.任莉萍,曹小汉.2006.热休克蛋白研究进展.安徽农业科学,34(10):2040-2042.
    21.施卫兵,冯明光.2003.两种丝孢类昆虫痫原真菌对朱砂叶螨卵的侵染及杀灭活性.科学通报,48(24):2534-2538.
    22.陶士强,吴福安,余茂德.2005b.危害丰驰桑的朱砂叶螨实验种群生命表参数分析.蛛形学报,14(1):33-36.
    23.陶士强,吴福安,余茂德,王俊,程嘉翎.2005a.朱砂叶螨在桑品种育71-1上的实验种群生命参数研究.蚕业科学,31(3):344-347.
    24.田立道,吴福安.1995.桑树病虫害防治技术.北京:金盾出版社,86-177.
    25.王彩琴,李燕,宋丽莉.2006.热激蛋白的结构与功能.长治学院学报,23(4):13-16
    26.王海鸿.2005.B型烟粉虱热休克蛋白基因的克隆和表达及其与胁迫耐受性关系的研究.学位论文,北京:中国农业科学院,90-95.
    27.王海鸿,雷仲仁.2005.昆虫热休克蛋白的研究进展.中国农业科学,38(10):2023-2034.
    28.王宪辉,陈兵,康乐.2003.飞蝗热休克蛋白70 cDNA片断的克隆和序列分析.动物学研究,24(5):349-354.
    29.吴福安,田立道.1993.双甲脒防治桑树害虫朱砂叶螨的研究.蚕业科学,19(2):70-74.
    30.吴孔明,刘芹轩.1994a.朱砂叶螨对久效磷抗性的遗传分析.中国农业科学,27(3):50-55.
    31.吴孔明,刘芹轩.1994b.朱砂叶螨抗氧化乐果品系选育及遗传分析.生态学报,14(4):392-396.
    32.吴孔明,秦夏卿.1990.朱砂叶螨抗药性研究.华北农学报,5(2):117-123.
    33.吴千红,陈晓峰.1988.拟长毛饨绥螨对朱砂叶螨的捕食效应.复旦学报(自然科学版),27(4):414-420.
    34.吴千红,杨国平.1996.茄子田朱砂叶螨-天敌关系灰色关联分析.复旦学报(自然科学版),35(2):170-176.
    35.忻介六.1988.农业螨类学.北京:中国农业出版社,237-238.
    36.杨金莹,孙爱清,刘箭.2006.热激蛋白ClpB的结果和功能.植物生理学通讯,42(2):326-330.
    37.杨琰云,董慧琴,梁来荣.1995.朱砂叶螨利他素对拟长毛饨绥螨定位反应的影响.蛛形学报,4(2):111-115.
    38.张侠.2004.植物热激蛋白70.植物生理学通讯,40(4):500-504.
    39.张永强,丁伟,赵志模,王进军,廖涵杰.2004.姜黄对朱砂叶螨的生物活性.植物保护学报,31(4):390-394.
    40.周宇杰,丁伟,王春升.2006.青蒿粗提物对朱砂叶螨生物活性的初步研究.西南农业大学学报(自然科学版),28(2):305-308.
    41.Baker E D,Tuttle D M.1994.A Guide to Spider Mites(Tetranychidae) from the United States.West bloom field,Michigan:Indira Publishing House.
    42.Bayley M,Petersen S O,Knigge T.2001.Drought acclimation confers cold tolerance in the soil collembolan Folsomia candida.J Insect Physiol,47:1197-1204.
    43.Bhargav D,Pratap M S,Murthy R C.2007.Toxic potential of municipal solid waste leachates in transgenic Drosophila melanogaster(hsp70-lacZ):hsp70 as a marker of cellular damage.Ecotox Environ Safe,2(12):105-109.
    44.Boutet I,Tanguy A,Moraga D.2003.Organization and nucleotide sequence of the European flat oysters Ostrea edulis heat shock cognate 70(hsc70) and heat shock protein 70(hsp) genes.Aquat Toxicol,65:221-225.
    45.Bustin S A.2000.Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction as says.J Mol Endocrinol.(25):169-193
    46.Chuang K H,Ho S H,Song Y L.2007.Cloning and expression analysis of heat shock cognate 70 gene promoter in tiger shrimp.Gene,405:10-18
    47.Croft B A,Miller R W,Nelson R D,Westigard P H.1984.Inheritance of early-stage resistance to formetanate and cyhexatin in Tetranychus urticae Koch (Acarina:Tetranychidae).J Econ Entomol,77 (3):574-578.
    48.Dahlgaard J,Loeschcke V P,Michalak J.1998.Induced thermotolerance and associated expression of the heat-shock protein Hsp70 in adult Drosophila melanogaster.Fund Ecol,12:786-793.
    49.Daugaard M,Rohde M,Jaattela M.2007.The heat shock protein 70 family:Highly homologous proteins with overlapping and distinct functions.FEBS letters,581:3689-3694.
    50.David G,Michael B,Evgenev M,Feder E,Olga G.2003.Zatsepina Evolution of thermotolerance and the heat-shock response:evidence from inter/intraspecific comparison and interspecific hybridization in the virilis species group of Drosophila.J Exp Biol,206:2399-2408.
    51.Denlinger D L,Rinehart J P,Yocum G D.2001.Stress proteins:a role in insect diapause? Insect Timing:Circadian Rhythmicity to Seasonality.Elsevier Science,Amsterdam,155-171.
    52.Dennehy T J,Granett J.1984.Spider mite resistance to dicofol in San Joaquin valley cotton:inter-and intraspecific variability in susceptibility of three species (Acari:Tetranychidae).J Econ Entomol,77 (6):1380-1385.
    53.Dennehy T J,Granett J,Leigh T F,Colvin A.1987.Laboratory and field investigations of spider mite (Acari:Tetranychidae) resistance to the selective acaricide propargite.J Econ Entomol,80 (3):565-574.
    54.Feder J H,Rossi J M,Solomon J,Solomon N,Lindquist S.1992.The consequences of expressing Hsp70 in Drosophila cells at normal temperatures.Genes,6:1402-1413.
    55.Feder M E.1996.Ecological and evolutionary physiology of stress proteins and the stress response:the Drosophila melanogaster model.Tnjohnston I A.and Bennett A FA (eds)Animals and temperature:Phenotypic and Evolutionary Adaptation UK,79-102.
    56.Feder M E,Krebs R A.1997.Ecological and evolutionary physiology of heat shock proteins and the stress response in Drosophila:complementary insights from genetic engineering and natural variation.EXS,83:155-73.
    57.Ferre L,Rie J V.2002.Biochemistry and Genetics of insect Resistance* to Bacillus thuringiensis.Anna Rev Entomol,47:501-533.
    58.Gabriele M.2007.Heat shock protein 70:Membrane location export and immunological relevance.Methods,43:229-237.
    59.Georghiou G P,Saito T.1988.Pest Resistance to pesticides,Planum press.New York,71-98.
    60.Goff G L,Boundy S,Daborn P J,Yen J L,Sofer L,Lind R,Sabourault C,Madi-Ravazzi L.ffrench-Constant R H.2003.Functional genomics approaches to shudies of the Cytochrome P450 Superfamily.Insect Biochem Molec,33:701-708.
    61.Graham A P,Barbara F,Shabana M.2007.A non-receptor-mediated mechanism for internalization of molecular chaperones.Methods,43:238-244.
    62.Gregorc A,Bowen ID.1999.In situ localization of heat-shock and histone proteins in honey-bee (apis melliferal.) larvae infected with paenibacillus larvae.Cell Biol Int,23:211-218.
    63.Guy C L,Li Q B.1998.The organization and evolution of the spinach stress 70 molecular chaperone gene family.Plant Cell,10 (6):539-556.
    64.Hazan A,Gerson U,Tahori A S,1974.The production of webbing under various environmental conditions.Acarologia,16:68-84.
    65.Helle W,Sabeles M W,1985.Spider Mites-Their biology,Natural Enemies and Control.World Crop Pests A:279-316.
    66.Hemingway J,Hawkes N,Propanthadara L,Jayawardenal K G,Ranson H.2002.The role of gene splicing gene amplification and regulation in mosquito insecticide resistance.Philos T Roy SOCB,353:1695-1699.
    67.Ho C C,Lo C C,Chen W H,1997.Spider mite (Acari:Tetranychidae) on various crops in Taiwan.Journal of Agricultural Research of China,46:333-346.
    68.Hoffmann A A.1995.Acclimation:increasing survival at a cost.Trends EcolEvol,10:1-2.
    69.Holt R A,Subramanian G M,Halpem A,Sutton G G.2002.The Genome Sequence of the Malaria Mosquito Anopheles gambiae.Science,298:129-149.
    70.Huang LH,Chen B,Kang L.2007.Impact of mild temperature hardening on thermotolerance,fecundity and Hsp gene expression in Liriomyza huidobrensis.J Insect Physiol,53 (12),1199-1205.
    71.Jang E B,Chan H T,Nishijima K A.2001.Effect of heat shock and quarantine cold treatment with a warm temperature spike on survival of Mediterranean fruit fly eggs and fruit quality in Hawaii-grown“sharwil” avocado.Postharvest Biol Tec,21:311-320
    72.Jones C D,Yeung C,Zehnder J L.2003.Comprenensive validation of a realtime quantitative bcrabl assay for clinical laboratory use.AM J Clin Pathol^ 120 (1):42-48.
    73.Jose A.2008.Superoxide dismutase overexpression protects dopaminergic neurons in a Drosophila model of Parkinson's disease.Neurobiol Dis,30:65-73.
    74.Kampinga H H.1993.Thermotolerance in mammalian cells.Protein denaturation and stress proteins.J Cell Sci,104:11-17.
    75.Keena M A,Garnett J.1987.Cyhexatin and propargite resistance in populations of spider mites (Acan:'Tetranychide) from California almonds.JEcon Entomol,11 (3):560-564.
    76.Kiang J G,Tsokos G C.1998.Heat shock protein 70 kDa:molecular biology,biochemistry,and physiology.J Vet Pharmacol Ther 80:183-201.
    77.Koehn R K,Bayne B L.1989.Towards a physiological and genetical understanding of the energetics of the stress response.Biol J Linn Socy,37:157-171.
    78.Krebs R A,1999.A comparison of Hsp70 expression and thermotolerance in adults and larvae of three Drosophila species.Cell Stress Chap,4:243-249.
    79.Krebs R A,Roberts S P,Bettencourt B R,Feder M E.2001.Changes in thermotolerance and Hsp70 expression with domestication in Drosophila melanogaster.J Evol Biol,14:75-82.
    80.Laetitia D J,Moreau X,Jean S,Scher O,Thiery A.2006.Expression of the heat shock protein Hsp70 in chloride target cells of mayfly larvae from motorway retention pond:Abiomarker of osmotic shock.Sci Total Environ,366 (1)31:164-173.
    81.Lansing E,Justesen J,Loeschcke V,2000.Variation in the expression of Hsp70,the major heat-shock protein,and thermotolerance in larval and adult selection lines of Drosophila melanogaster.J Therm Biol,25:443-450.
    82.Le B E,Valenti P,Lucchetta P,Payre F.2001.Effects of mild heat shocks at young age on aging and longevity in Drosophila melanogaster.Biogerontology,2:155-164.
    83.Lee S M,Lee S B,Park C H,Choi J.2006.Expression of heat shock protein and hemoglobin genes in Chironomus tentans (Diptera chironomidae) larvae exposed to various environmental pollutants:A potential biomarker of freshwater monitoring.Chemosphere,65 (6):1074-1081.
    84.Leignel V,Cibois M,Moreau B,Chenais B.2007.Identification of new subgroup of HSP70 in Bythograeidae (hydrothermal crabs) and Xanthidae.Gene,396:84-92.
    85.Li A Q,Popova D H.2007.Proteomics of the flesh fly brain reveals an abundance of upregulated heat shock proteins during pupal diapause.J Insect Physiol,53 (4):385-391.
    86.Lisete G,Isabel B,Claudina R P.1984.Response of Tetrahymena pyriformis to stress induced by starvation.Biochem,139:163-171
    87.Liu F,Miyata T,Wu Z J.2008.Effects of temperature on fitness costs,insecticide susceptibility and heat shock protein in insecticide-resistant and susceptible Plutella xylostella.Pestic Biochemand Phys,91:45-52
    88.Luo W J.2008.Adipose tissue-specific PPARy deficiency increases resistance to oxidative stress.Exp Gerontol,43:154-163.
    89.Mahroof R,Yan Zhu K,Neven L,Subramanyam B,Jianfa B.2005.Expression patterns of three heat shock protein 70 genes among developmental stages of the red flour beetle,Tribolium castaneum (Coleoptera:Tenebrionidae).Comp Biochem Phys A,141 (2):247-256.
    90.Misra S,Crosby M A,Mungall C J,Matthews B.2002.Annotation of the Drosophila melanogaster euchromatic genome:a systematic review.Genome Biology,3 (12):00831-00832
    91.Moseley P L.1997.Heat shock proteins and heat adaptation of the whole organism.J Appl Physiol,83:1413-1417.
    92.Nakano K,Lwama G K.2002.The 70-kDa heat shock protein response in two intertidal sculpins,Oligocottus maculosus and O.snyderi:relationship of hsp70 and thermal tolerance.Comp Biochem Phys,133 (1):79-94.
    93.Oakeshott J G,Home I,Sutherland T D,Russell R J.2003.The genomics of insecticide resistance.Genome Biology,4 (1):202.
    94.Ogata T,Oishi Y,Roy R R.2003.Endogenous expression and development changes of HSP72 in rat skeletal muscels.JAppl Physiol,95:1279-1286.
    95.Oppert B,Hammel R,Throne J E,Kramer K J.2000.Fitness costs of resistance to Bacillus thuringiensis in the Indianmeal moth,Plodia interpunctella.Entomo Exp Appl,96:281-287.
    96.Parsell D A,Lindquist S.1993.The function of heat-shock proteins in stress tolerance:degradation and reactivation of damaged proteins.Annu Rev Genet,27:437-496.
    97.Piano A,Franzellitti S,Tinti F,Fabbri E F.2005.Sequencing and expression pattern of inducible heat shock gene products in the European flat oyster Ostrea edulis,gene,361:119-126:
    98.Ranson H,Claudianos C,Ortelli F,Abgrall C.2002.Evolution of supergene families associated with insecticide resistance.Science,298:179-181.
    99.Rinehart J P,Li A,Yocum G D.2007.Up-regulation of heat shock proteins is essential for cold survival during insect diapause.Proc Natl Acad Sci,104(27),11130-11137.
    100.Rinehart J P,Yocum G D,Denlinger D L.2000.Developmental upregulation of inducible hsp70 transcripts,but not the cognate form,during pupal diapause in the flesh fly,Sarcophaga crassipalpis.Insect Biochem Molec,30:515-521.
    101.Robert P,Lawernce I,Gilbert.2000.cDNA cloning and expression of a hormone-regulated heat shock protein(hsc70)from the prothoracic gland ofManduca sexta.Insect Biochem Molec,30:579-589.
    102.Roberts S P,Feder M E.2000.Changing fitness consequences of hsp70 copy number in transgenic Drosophila larvae undergoing natural thermal stress.Funct Ecol,14:353-357
    103.Roush R T,Daly J C,Inroush R T,Tabashnik B E.1990.Pesticide Resistance in Arthropods.New York:Chapman and Hall Press.97-153.
    104.Ruden D M,Garfinkel M D,Sollars V E,Lu X.2003.Waddington's widget:Hsp90 and the inheritance of acquired characters.Semin Cell Dev Biol,5:301-310
    105.Rybczynski R,Gilbert L I.2000.cDNA cloning and expression of a hormone-regulated heat shock protein(hsc 70) from the prothoracic gland of Manduca sexta.Insect Biochem Molec,30(7):579-589.
    106.Sanders B M,Pascoe V M,Nakagawa P A.1992.Persistence of the heat shock response over time in the common mussel,MytiIusedulis.Mol Mar Biol Biotechnol,1:147-155.
    107.Schuermann J P,Jiang J,Cuellar J,Llorca O,Wang L.2008.Structure of the Hsp110:Hsc70nucleotide exchange machine.Mol Cell,31:232-243.
    108.Scott J G,Roush R T,Liu N.1991.Selection of high-level abamectin resistance from field-collected house flies Musca domestic.Cell Mol Life Sci,47:288-291.
    109.Shim J K,Jung D O,Park J W,Kim D W,Ha M D,Lee K Y.(2006) Molecular cloning of the heat-shock cognate 70(Hsc 70) gene from the two-spotted spider mite,Tetranychus urticae,and its expression in response to heat shock and starvation.Comp Biochem Phys B,145:288-295.
    110.Shim J K,Ha D M,Nho S K,Song K S,Lee KY 2007.Upregulation of heat shock protein genes by envenomation of ectoparasitoid Bracon hebetor in larval host of Indian meal moth Plodia interpunctella.J InvertebrPathol,10(5):66-71.
    111.Shirk P D,Broza R,Hemphill M.2008.a-Crystallin protein cognates in eggs of the moth,Plodia interpunctella:possible chaperones for the follicular epithelium yolk protein,Insect Biochem Molec,28:151-161.
    112.Siebert P D.1997.Methods in molecular medicine In:UReischi,Editors,Molecular diagnosis of infectious diseases,Humana press,Clifon,NJ,13.
    113.Solomon J M,Rossi J M,Golic K,McGarry T,Lindquist S.1991.Changes in hsp70 alter thermotolerance and heat-shock regulation in Drosophila.New Biol,3:1106-1120.
    114.S(?)rensen J G,Loeschcke V.2001.Larval crowding in Drosophila melanogaster induces Hsp70 expression,and leads to increased adult longevity and adult thermal stress resistance.J Insect Physiol,47 (11):1301-1307.
    115.S(?)rensen J G,Kristensen T N,Loeschcke V,2003.The evolutionary and ecological role of heat shock proteins.Ecol Lett,6:1025-1037.
    116.S(?)rensen J G,Kristensen T N,Kristensen K V,Loeschcke V.2007.Sex specific effects of heat induced hormesis in Hsf-deficient Drosophila melanogaster,Exp Gerontol,42(12):1123-1129.
    117.Tian L,Feng M G.2006.Evaluation of the time-concentration-mortality responses of Plutella xylostella larvae to the interaction of Beauveria bassiana with a nereistoxin analogue insecticide.Pest Manag Scie,62 (1):69-76.
    118.Tsagkarakou A,Pasteur N,Cuany A,Chevillon C,Navajas M.2002.Mechanisms of resistance to organophosphates in Tetranychus urticae (Acari:Tetranychidae) from Greece.Insect Biochem Molec,32:417-424.
    119.Vander L P,Elliot S L,Breeuwer J A,Beerling E A.2000.Diseases of mites.Exp ApplAcarol,24 (7):497-560.
    120.Veerman A,1985.Photoperiodic termination of diapause in Spider Mites.Nature,266:526-527.
    121.Vermeulen C J,Loeschcke V.2007.Longevity and the stress response in Drosophila.Exp Gerontol,42:153-159.
    122.Volker B,Leif G,Nanette C,Bellmann K.2008.Deficient heat shock protein 70 response tostress in leukocytes at onset of type 1 diabetes.Biochem biophl res co,369:421-425.
    123.Walters T J,Ryan K L,Tehrany M R.1998.Hsp70 expression in the CNS in response to exercise and heat stress in rats.Appl Physiol,84:1269-1277.
    124.Werner W M,Stone D E.Craig E A.1987.Complex interactions among members of an essential subfamily of hsp70 genes in Saccharomyces cerevisiae.Mol Cell Biol,7:2568-2577.
    125.Wittwer C T,Hermann M G,Moss A A,Rasmussen.1997.Continuous fluorescence monitoring of rapid cycle DNA amplification.Biotechniques,22:130-138.
    126.Xia Q Y,Zhou Z Y,Lu C,Cheng D J,Dai F,Li P,Zhao P.2004.A Draft Sequence for the Genome of the Domesticated Silkworm (Bombyx mori).Science,306:1937-1940.
    127.Yocum G D.2001.Differential expression of two HSP70 transcripts in response to cold shock,thermoperiod,and adult diapause in the Colorado potato beetle.J Insect Physiol,47 (10):1139-1145.
    128.Yocum G D,Kemp W P.2005.Developmental upregulation of an inducible hsp70 transcript in field collected overwintering alfalfa leafcutting bees Megachile.J Insect Physiol,51 (6):621-629.
    129.Yocum G D,Kemp W P,Bosch J Knoblett J N.2006.Thermal history influences diapause development in the solitary bee Megachile rotundata.J Insect Physiol,52:1113-1120.
    130.Yoshimi T,Minowa K,Natalie K,Renier K,Watanabe C,Sugaya Y,Miura T.2001.Activation of a stress-induced gene by insecticides in the midge,Chironomus yoshimatsui.J Biochem Mol Toxic,16:10-17.
    131.Zdobnov E M,Mering C,Letunic I,Torrents M.2002.Comparative Genome and Proteome Analysis of Anopheles gambiae and Drosophila melanogaster.Science,298:149-159.
    132.Zeng X C,Bhasin S,Wu X,Lee J G,Maffi S.2004.Hsp70 dynamics in vivo:effect of heat shock and protein aggregation.J cell sci,21:4991-5000.
    133.Zhong M,Kim S J,Wu C.1999.Sensitivity of Drosophila Heat Shock Transcription Factor to Low PH.J Biol Chem,5:3135-3140.
    134.Zubin D,Jean L D.2000.Nuclear translocation and aggregate formation of heat sock cognate protein 70(Hsc70) in oxidative stress and apoptosis.J cell sci,2845-2854.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700