超导材料YBCO的制备及性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超导材料是一种具有零电阻特性和麦斯纳(Meissner)效应的材料。在通常
    状态下超导材料是绝缘体或半导体,在低温状态下表现出其零电阻特性。超导
    材料分为低温超导材料和高温超导材料,40K是其分界点。高温超导体中YBCO
    转变温度最先达到90K,为高温超导的实用化提供了广阔的前景。本项研究分
    别采用了干法和湿法中的溶胶-凝胶法,并在此基础上进行了改进,采取了不
    同的制备工艺,研究了O2含量、烧结时间、退火温度等条件对超导性质的影响。
    首先利用不同通氧量制备烧结了YBCO块材,用XRD等手段表征。结果
    表明,通氧量为35-40ml/min为最佳,氧含量为0时,所得样品为完全不超导
    相;氧含量过高时,劈裂峰不够完全。
    其次,改变烧结时间的长短所得到样品的性质有所不同,烧结时间过短会
    导致烧结不完全,只出现不超导相。原则上,烧结时间越长越好,但由于反应
    周期的限制,我们一般采用的较好烧结时间为3天;
    退火温度的高低及速度不同,所得到的样品性质不同。通过实验探索,最
    佳退火温度为960℃,退火速率为10℃/min,XRD图中出现2θ为32. 5左右时的
    主峰劈裂。
    在超导体的晶体结构中造成某种缺陷,能够提高他们在无阻时的载流能力
    将纳米棒放入超导结构中会将超导体电流提高10倍。本论文还对ZnO纳米棒
    的制备中对反应温度、反应时间、超声等影响因素进行了研究。
    在初始反应时,采用低温冰浴较之常温反应生成的纳米棒直径和长度都小,
    采用低温冰浴所得ZnO纳米棒的直径100nm,长度约1 μ m,而未利用冰浴的
    产物直径为1 μ m,长度为10 μ m;表面活性剂的用量越少,反应后所得棒的长
    度也越小,在所实验的样品中,表面活性剂含量为5%时长径比最佳;回流时间
    以7h左右为好,反应过程中采取超声方法所得产物的形貌和尺寸比未经过超声
    的均匀。
Superconductors are materials those have zero resistance and Meissner effect when they are in the low temperature. If the critical temperature is low than 40K,we call it low temperature superconductor, or it is high temperature supercondctor. The critical temperature of YBCO firstly reached 90K.We study the effect of O2 ontent, sintering time and annealling temperature to the sample.Firstly, Changing the sintering temperature can change the properties of YBCO.when the sintering temperature is low,the samples are non-supercondctive,and their color is green or gray.And we consider 960℃ is the appropriate temperature,the samples are black.In the XRD the primary peak appeared, it's superconductive. The annealling time also effects the material of YBCO.If the annealling time is too short, the chemical reaction cannot be completely, the time is longer, and the properties are best. But the reaction period is too long, so we adopted 3 days.Disfigurement can improve the Jc of superconductors when they are adulterated into the crystalloid. So ZnO nanorods are also studied in the research. At low temperature, the ZnO nanorods were synthesized by the refluxing method in the presence of DBS (Dodecyl benzene sulfonic acid sodiumsalt). The samples were characterized by SEM, optics microscopy and XRD techniques. It was found that the parameters including the temperature, the content of surfactant, the ultrasonic and refluxing time had important influence on the formation of the ZnO nanorods. Compared with other methods, that used ultrasonic and low temperature conditions were key to form uniform ZnO nanorods with smaller diameter.
引文
[1] 丁世英,神奇的超导材料科学出版社,2003.
    [2] 牧野 陹, 天津科技翻译出版公司,1988
    [3] Bednorz J G and Muller K A Z.Phys.B. 1986:189
    [4] 郝建民,Physics Today P48-51,1996
    [5] 林德华,佟存柱 重庆大学学报Vol.25,NO.8,Aug 2002
    [6] LANZARA A.BOGDANOV P V,Zhou X J.Nature,2001,(8) :412,510-514
    [7] NAGAMATSU J,et al. Nature,2001,(3) :410,63-64
    [8] EREMETS M I,et al.Science,2001 ,.(7) :272-274
    [9] 张杰,雒建林,白海洋,等 物理学报,2002,51(2) :342-346.
    [10] JEROME D,BECHGAARD KLAUS. Nature,2001,(3) :410,162-163
    [11] SCHON J H,et al. Science.2001,.293:2432-2434
    [12] 章立源 超导理论 科学出版社2003.
    [13] 韩汝珊,苏肇兵,王玉鹏.中国科学,1994,24(11) :11
    [14] Chan C J,Kin K B,K Won S C,et al.J Mall,Sci Lell,11(3) :346.
    [15] 曾文生,张光寅.物理学报,1993,42(2) :205
    [16] 顾秉林,王强,楼永明.中国科学,A缉,1987,17(7)
    [17] 余超凡,陈斌,向国柱,等物理学报,1994,43(7) :1157.
    [18] 王楠林,张其瑞.低温物理学报,1992,14(1) :26
    [19] 易林.物理学报,1994,43(9) :1523
    [20] GerberC, AnselmettiD, BednozG, etal.Nature, 1991, 350:279.
    [21] H aw leyM, Raisstrick ID, Beery J B andHoultonRJ.science, 1991, 251:1587.
    [22] Chang CC, WuXD, RameshR, et al.Phys.Lett, 1990, 57:1814.
    [23] Locquet Jean-pierre, Jaccardyvan, Appl.phys.Lett., 1993, 75:1426.
    [24] Singh RajiV K and Narayan J.phys.Rev.B, 1990, 41:8843.
    [25] 王强,张孝文 物理学报vol.40,NO.6 June 1991
    [26] 李明,曹阳 化学物理学报vol.9,NO.1 Feb 1996
    [27] 甘子钊,韩汝珊,张瑞明氧化物超导材料物性专题报告文集 北京大学 出版社1989
    [28] L.T.Wilie,Phys.Rev,B40(1989) ,6931
    [29] N.C.Bartlet,T. L.Einmein and L.T. Wilie, Phys.Rev,B40( 1989) , 10759
    [30] C.P.Burmester and L.T. Wilie, Phys.Rev,B40(1989) ,8795
    
    [31] C.Chailiout,M.A.Alario-Franco,Solid State Commun,65(1988) ,283
    [32] Y.Kubo,T.Ichihaahi,T.Manako,et al. Phys.Rev,B37(1988) ,7858
    [33] R.M.Fleming,L.F.Schneemeyer, Phys.Rev,B37(1988) ,7921
    [34] Wu,M.K.,Ashburn,J.R.Torng., Phys.Rev.Lett.,58,9. 8(1987)
    [35] Pickett,W.E.,Rev.Mod.Phys.,61,433(1989)
    [36] 王楠林,谭明秋。浙江大学学报No.4,Vol.25 July,1991
    [37] J.M.Taraseon,P.Barboux,P.F.Miceli.et al.,Phys.Rev.B37(1988) :7458
    [38] M.Elbschutg,M.Lines,et al., Phys.Rev.B38(1988) :2896
    [39] A.Manthiran,J.B.Goodenough,Appl.Phys.Lett.53(1988) :420
    [40] S.Massidda,J.Yu,et al. Phys.Lett.A 122 (1987) :198
    [41] 韩汝珊,甘子钊,尹乐道等,低温与超导,NO.3,(1989)
    [42] 金继荣,金新,低温物理学报vol.12,NO.1,Jan,1990
    [43] 钟山,陈龙武华东师范大学学报NO.3 1990
    [44] 邹金桥,卢建树 表面技术Vol.32 NO.1 Feb.2003
    [45] 庶民,应用物理Vol.64,NO.4,P.318-323,1995
    [46] Haessler W,Roding Ch,Schuber M,et al.Physica C.,2002,372-362(2) :984-987
    [47] Altenburg H,Plewa J,Jaszezuk W,et al. Physica C.,2002,372-362(2) :1046-1050
    [48] Yang Jian,Shi Dongqi, Physica C.,2000,337(l):67-70
    [49] Jin Mingji,Han Sangchul, Physica C.,2000,334(3-4) :243-248
    [50] Goyal A,Lee D F,List F A, Physica C.,2001,357-360(l):903-913
    [51] 方俊鑫.固体物理(下册).上海科学技术出版社,296
    [52] BednorzJG, Miiller K A.Z.phys.B, 1986, 64:189
    [53] 赵忠贤.科学通报.1987,32:661
    [54] Wu M Ketal.phys.Revkett, 1987, 58:908

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700