黑方台灌区台缘黄土滑坡稳定性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黄土滑坡,作为一种地质灾害,它与洪涝、飓风等自然灾害一样,可掩埋村庄、农田、摧毁工厂、中断交通、堵塞河流、造成人员伤亡等,给国家和人民生命财产、经济建设带来巨大的损失。尤其是近年来,黄土台塬区因农业灌溉而触发的滑坡正引起公众、各大媒体和工程地质界的重视。因此研究灌溉诱发型黄土滑坡的形成条件、形成机理及其稳定性,揭示该类滑坡孕育、发展直至消亡的过程,具有重要的理论意义和现实价值。
     本文以甘肃省永靖县黑方台台塬缘边黄土滑坡为研究对象,在系统归纳总结灌溉诱发型黄土滑坡研究现状基础上,通过收集、整理大量文献资料,分析了研究区的地质环境背景和滑坡灾害特征;利用计算机数值模拟手段研究灌溉渗透过程中地下水运移规律,从而分析探讨黄土边坡稳定性与灌溉渗透过程中地下水的相互关系;利用颗粒流(PFC2D)数值模拟软件对黑方台焦家崖头的黄土滑坡运动过程进行了模拟。论文研究取得了以下主要结论:
     1)研究区已发现的35处滑坡,主要是黄土滑坡和黄土-基岩滑坡,以黄土滑坡发育数量最多为主,且大部分是不稳定的中型浅层新滑坡;黄土-基岩滑坡发育数量少,但其规模较大,大部分是较稳定的大型深层新滑坡。划分出了6种平面形态类型和2种纵断面形态类型。从滑坡坡长、坡高、坡宽、坡度、主滑方向等,描述并总结了滑坡外形发育特征。从滑坡后缘、前缘发育特征分别总结了黄土滑坡和黄土-基岩滑坡的边界特征。对滑坡变形及运动特征提出了4个变形过程及2种运动形式。
     2)对灌区黄土层地下水的补给条件及排泄方式进行了分析,并在此基础上建立了水文地质概念模型及数学模型,利用FEFLOW进行了灌区地下水三维非饱和非稳定流数值模拟,分析结果可知:随着年灌溉量的不同,地下水分布情况有所不同,但总的趋势是地下水水位随着灌溉量的增加而升高,地下水由西向东流动,由东部台缘及两侧向外排泄;台塬中心黄土层饱水带厚度也是随灌溉量逐渐在增加的,厚度由中心向四周逐渐变薄;不同灌溉条件下,台塬不同位置地下水位变化幅度及水位上升幅度也有所不同,在灌溉的头5年间,地下水位上升最快,其后地下水渗流场趋于稳定流动,地下水变化幅度不仅和灌溉量的大小有关,而且和其所在地的位置有关系;依据监测点数据,找寻到了灌溉量与地下水位上升幅度的关系曲线。
     3)在已有地下水运移规律研究的基础上,针对研究区滑坡灾害发生机制,提出了考虑非饱和抗剪强度及渗透力的极限平衡方法,从8个方面对其进行了研究,并详细地推导了稳定系数计算公式。采用MATLAB语言对该方法进行编程使其程序化,编制了基于非饱和抗剪强度理论及渗透力的斜坡稳定性评价程序(PUSG)。
     4)选取黑方台焦家崖头的典型斜坡为例,设计了一系列计算方案,考虑不同工况下(不同年灌溉量下地下水位工况)的不同的评价方法(传统极限平衡法、基于非饱和抗剪强度及渗透力的极限平衡法),采用PUSG程序对其进行斜坡稳定性计算。对比两种方法计算结果,随着年灌溉量的增大,斜坡稳定系数呈递减趋势,但地下水位对计算结果的影响程度不同,传统极限平衡法的稳定系数计算结果显示,随着年灌溉量的增大,稳定系数从1.045降低到1.003,斜坡稳定系数均大于1,且小于1.1,表明斜坡为欠稳定状态,处于蠕动-拉裂阶段,地下水位对斜坡稳定性计算影响不明显。基于非饱和抗剪强度及渗透力的极限平衡法的稳定系数计算结果显示,随着年灌溉量的增大,稳定系数从1.283降低到0.796,当年灌溉量大于500×104m~3时,斜坡稳定系数均小于1.1,表明斜坡处于欠稳定或不稳定状态。因此,年灌溉量500×104m~3为一个界限值,即斜坡稳定年灌溉量界限值,当年灌溉量小于这个界限值时,该斜坡将处于稳定状态,当年灌溉量大于这个界限值时,该斜坡将处于不稳定状态,地下水位对斜坡稳定性计算影响较为显著。
     5)结合研究区滑坡变形特征及运动特征,利用颗粒流(PFC2D)数值模拟软件,对黑方台焦家崖头黄土滑坡“软化潜蚀”阶段、蠕动-拉裂阶段、滑动-破坏阶段和稳定-压密阶段4个阶段的运动过程进行模拟,并对模拟结果进行分析,再现黄土滑坡从变形、破坏到消亡的运动过程。
Loess landslides, as a kind of geological disasters, be similar to floods, hurricanes and othernatural disasters. It has brought a huge loss to people’s lives and property and the nationaleconomic construction, such as buried villages and farmlands, destroyed plants, interruptedtraffic, blocked rivers, and caused casualties, etc. In recent years, landslides of the Loess Plateautriggered by agricultural irrigation is attracting the attention of the public, the media andengineering geological community. Therefore, it has important theoretical significance andpractical value to study the formation conditions, formation mechanism and stability ofirrigation-induced loess landslides, and to reveal the landslides how to nurture, how to developuntil the landslides die out.
     In this paper, we focus on the landslides of the Heifangtai loess platform in YongjingCounty, Gansu Province. First of all, through summarized the research status ofirrigation-induced loess landslides and collected large number of documents, the geologicalenvironmental background and the characteristics of the landslide hazard are analyzed. Secondly,researching the groundwater migration law in the irrigation process by computer numericalsimulation based on indoor and outdoor test data. And the relationship between the slope stabilityand irrigation infiltration process was analyzed. The process of four movement stages of loesslandslide was simulated using PFC2Dsoftware. The main conclusions as follow:
     1)35landslides have been found in the study area, mainly loess landslides andloess-bedrock landslide. Large numbers of landslide are loess landslides and primarily are theunstable medium-sized shallow landslides. Small numbers of landslide are loess-bedrocklandslides and usually are the more stable large-scale deep landslides. Six kinds ofcross-sectional shape types and two kinds of longitudinal shape types are proposed. Thedevelopment characteristics of landslide shape are described and summarized from length, height,width, slope, the main slip direction and so on. The boundary feature of loess landslides andloess-bedrock landslides are summarized from the development features of landslide trailingedge and landslide front edge. Four kinds of deformation process and two kinds of movement patterns are proposed.
     2) Groundwater recharge and discharge in loess formation were analyzed, and on this basis,the hydro-geological conceptual model and mathematical model were established.Three-dimensional groundwater unsaturated flow in irrigation area was simulated by FEFLOWsoftware. The analysis of results shows that: with the different annual irrigation amount, thedistribution of groundwater was unlike. However, the overall trend is that the groundwater levelwas increased with the increasing annual irrigation amount; groundwater flow was from west toeast; water was excreted in the eastern platform margin and on both sides. The saturated zonethickness of center layer of the loess platform is gradually increasing with the increasing annualirrigation amount, and progressively becomes thinner thickness from the center to thesurrounding. Under different irrigating schemes, the change rates of groundwater level wereunlike in certainly platform locations. In the first five years of irrigation, groundwater levelraised the fastest, and groundwater seepage was tended to a steady flow with increasingirrigation time. The change rates of groundwater were not only with the annual irrigation amount,but also with the location in loess platform. According to the data of the monitoring points, therelationship curve was obtained between the annual irrigation amount and the change rates ofgroundwater level.
     3) Base on the mechanism of landslide formation and the research of groundwater migrationlaw in study area, unsaturated shear strength and seepage force of the general limit equilibriummethod was proposed. Then it was researched from eight aspects, and the computing formulas ofthe stability factor were derived in detail. Unsaturated shear strength and seepage force of thegeneral limit equilibrium method was programmed by the MATLAB language, and a slopestability assessment procedure was accomplished.
     4) Take a typical slope of the Heifangtai loess platform in study area as an example. UsingPUSG program the slope stability was calculated with a series of the designed calculationscheme, for instance, taking into account different conditions (under different in the amount ofirrigation), taking into account unlike evaluation methods (traditional limit equilibrium method,unsaturated shear strength and seepage force of the general limit equilibrium method). Contrastthe results obtained by the two methods and concluded that with the increase of annual irrigationamount, slope stability factor showed a decreasing trend, but the impact of groundwater on theresult is different. The calculated results of the stability factors based on the traditional limitequilibrium method show that with the increase of annual irrigation amount, stability factor decreased from1.045to1.003, the slope stability factor greater than1and less than1.1,indicating that the slope is in an unstable state and in creep-tensile stage, and the groundwaterwas a little impact on slope stability calculation. The calculated results of the stability factorsbased on the unsaturated shear strength and seepage force of general limit equilibrium methodshow that with the increase of annual irrigation amount, stability factor decreased from1.283to0.796. When the annual irrigation amount is greater than500×104m3, the slope stability factorsare less than1, indicating that the slope is in an unstable state. Therefore, the500×104m3is alimit value, which we called the limit value of the annual irrigation amount of slope stability.When the annual irrigation amount is less than the limit value, the slope will be in the stable state.In other words, when the annual irrigation amount is larger than the limit value, the slope will bein an unstable state. The groundwater was a relatively large impact on slope stability calculation.
     5) Combined with the characteristics of loess slides’s deformation and movement inresearch area, using PFC2Dsoftware to simulate the process of four movement stages of loesslandslide, such as, soften-erosion stage, peristalsis-tensile stage, sliding-failure stage,stable-compacted stage, and the simulation results are analyzed. It is a reproduction for the entireprocess of loess landslides from the deformation, damage to the demise.
引文
[1]孙建中.黄土学(上篇)[M].香港:香港考古学会出版社,2005.
    [2]刘东生等.中国的黄土堆积(中国黄土分布图说明书)[M].北京:科学出版社,1965.
    [3]王永炎.黄土与第四纪地质[M].西安:陕西人民出版社,1982.
    [4]文宝萍,李媛,王兴林等.黄土地区典型滑坡预测预报及减灾对策研究[M].北京:地质出版社,1997.
    [5]刘东生等.黄土的物质成分和结构[M].北京:科学出版社,1966.
    [6]王永炎,林在贯等.中国黄土的结构特征及物理力学性质[M].北京:科学出版社,1990.
    [7]乔平定,李增钧.黄土地区工程地质[M].北京:水利电力出版社,1990.
    [8]吴玮江,何琼,程建祥等.甘肃省东部滑坡发育规律[J].中国地质灾害与防治学报.1993(03):91-97.
    [9]王念秦,张倬元.黄土滑坡灾害研究[M].兰州:兰州大学出版社,2005.
    [10]陕西省滑坡工作办公室.陕西省滑坡分布图说明书(1:750000)[M].西安:西安地图出版社,1995.
    [11]陕西省滑坡工作办公室.陕西省滑坡分布图、陕西省滑坡灾害预测图[M].西安:西安地图出版社,1995.
    [12]中国科学院水利部成都山地灾害与环境研究所.中国滑坡灾害分布图[M].成都:成都地图出版社,1991.
    [13]吴玮江,王念秦.甘肃滑坡灾害[M].兰州:兰州大学出版社,2006.
    [14]网易新闻.甘肃永靖发生大面积滑坡灾害,暂无伤亡[EB/OL].[2009-03-09].http://news.163.com/09/0309/19/54056J4P0001124J.html
    [15]搜狐新闻.甘肃永靖境内昨日再发山体滑坡,62亩农田被埋[EB/OL].[2009-03-10].http://news.sohu.com/20090310/n262712684.shtml
    [16]甘肃民政信息网.永靖县盐锅峡镇黑方台黄茨段发生大面积山体滑坡灾害[EB/OL].[2006-5-26].http://www.gsmz.gov.cn/info/3654-1.htm
    [17]新浪新闻.大滑坡持续34年甘肃盐锅峡黑方台塬亟须治理[EB/OL].[2002-4-12].http://news.sina.com.cn/c/2002-04-12/0202543123.html
    [18]每日甘肃.永靖黑方台滑坡梦魇何时休[EB/OL].[2006-4-07].http://gansu.gansudaily.com.cn/system/2006/04/07/010014061_01.shtml
    [19]任仓钰.农业灌溉引起的环境地质问题[J].地质灾害与环境保护,2002,13(4):16-17.
    [20]胡广韬,张珂,毛延龙等.滑坡动力学[M].北京:地质出版社,1995.
    [21] Terzaghi K. Mechanism of landslides [J]. In S.Paige (Ed) Application of Geology to EngineeringPractice. Geological Society of America, Berkley,1950:83-123.
    [22] Terzaghi K. Peck R.B. Soil Mechanics in Engineering Practice [M]. N.Y.:John Willey&Sons (2nd ED),1967.
    [23] Za’ruba. Q, Mencl. V. Landslides and their control [M]. Publishing House of the CzechoslovakAcademy of Sciences,1969.
    [24] Haefeli,R.. Creep and progressive failure in snow, soil, rock and ice [J]. Proc. Sixth Intern, Conf. SoilMech. Found. Eng., Montreal,1965(3):134-147.
    [25] Mogenstern,N.R. The Influence of Groundwater on Stability [J]. In Stability in Open Pit Ming(Brawner,C.O., and Milligan, V., eds.),Society of Mining Engineers, American Institute of Mining, Metallurgicaland Petroleum Engineers, New York,1971, pp.65-81.
    [26] Hvorslev, M.J. Time Lag and Soil Permeability in Groundwater Observations [R]. U.S. Army EngineerWaterways Experiment Station, Vicksburg, Miss., Bulletin No.36,50pp.
    [27] Skempton A.W. Residual Strength of clays in landslide, folded strata, and the laboratory [J].Geotechnique,London,1985,35(1):3-18.
    [28] Skempton A.W. Some observation on tectonic shear zones [J]. Proc.1st. Int. Cong. Soc. Rock Mech.,Libson,1996,1:329-335.
    [29]弗雷德隆德,拉哈尔佐著,陈仲颐等译.非饱和土土力学[M].北京:中国建筑工业出版社,1997.
    [30] P.C. Knodel, C.T. Coffey. Measurement of Negative Pore Pressure of Unsaturated Soils-Shear and PorePressure Research-Earth Research Program [R]. U.S.B.R., Lab. Report No.EM-738, Soil Eng. Branch,Bureau of Reclamation, Denver, CO.,20pp.,1966.
    [31] H.J. Gibbs, C.T. Coffey. Techniques for Pore Pressure Measurements and Shear Testing of Soil [C].Proc.7th Int. Conf. Soil Mech. Found. Eng.(Mexico), vol.1,1969, pp.151-157.
    [32] H.J. Gibbs, J.W. Hilf, W.G. Holtz, F.C. Walker. Shear Strength of Cohesive Soils [C]. Proc. ASCE Res.Conf. Shear Strength of Cohesive Soils, Boulder, CO.,1960, pp.33-162.
    [33]沈珠江.理论土力学[M].北京:中国水利水电出版社,2000.
    [34]肇钧.土的破坏机理和土力学问题[C].中国地质学会工程地质专业委员会编.全国首届工程地质学术会议论文选集.北京:科学出版社,1983:115-120.
    [35]戴福初,陈守义,李焯芬.从土的应力应变特性探讨滑坡发生机理[J].岩土工程学报.2000,22(01):130-133.
    [36]汪发武.高速滑坡形成机制:土粒子破碎导致超孔隙水压力的产生[J].长春科技大学学报.2001,31(01):64-69.
    [37]李锡夔.非饱和土中的有效应力[J].大连理工大学学报.1997,37(04):381-385.
    [38]李靖,党进谦,刘祖典.非饱和黄土中的吸力与有效应力[J].西北农业大学学报.1997,25(4):23-27.
    [39]缪林昌,殷宗泽.非饱和土的剪切强度[J].岩土力学.1999,20(3):1-6.
    [40]包承纲,詹良通,龚壁卫.非饱和土的特性及其抗剪强度问题[Z].中国江苏南京:1999.
    [41]孙德安.非饱和土的水力和力学特性及其弹塑性描述[J].岩土力学.2009,30(11):3217-3231.
    [42] Ter-Stepanian, G. Creep of clay during shear and its theological model [J]. Geotechnique,1975,25(2):229-320
    [43]何习平,华锡生,何秀凤等.边坡变形预测研究现状与发展趋势[J].江西科学.2007,25(04):383-386.
    [44] Furuya.G, K. Sassa, H. Hiuta, et al. Mechanism of creep movement caused by landslide activity andunderground erosion in crystalline schist, Shikoku Island, southwestern Japan [J]. Engineering Geology,1999,53:311-325.
    [45] Y. Sasaki, A. Fujii, K. Asai. Soil creep process and its role in debris slide generation-field measurementson the north side of Tsukuba Mountain in Japan [J]. Developments in Geotechnical Engineering,2000,84:199-219.
    [46]叶米里扬诺娃.滑坡作用的基本规律[M].铁道部科学研究院西北所.重庆:重庆出版社,1986.
    [47]宋克强,杨作栋.西安地区黄土塬边滑坡的形成因素及机理分析[J].灾害学.1989,(3):50-54.
    [48]林斌.考虑损伤效应的黄土流变模型研究[D].长安大学,2005.
    [49]姜峰林.考虑黄土流变特性的边坡稳定性研究[D].西安建筑科技大学,2005.
    [50]谢星,王东红,赵法锁. Q_2黄土流变特性及其统计损伤流变模型[J].水文地质工程地质.2010,37(3):63-68.
    [51]龙建辉.高速远程黄土滑坡预测预报方法研究[D].长安大学,2008.
    [52] D. M. Cruden. Rock slope movements in the Canadian Cordillera [J]. Canadian Geotechnical Journal,1985,22(4):528-540.
    [53] D.J. varnes. Slope movement types and process, in Schuster R.L., Krizek R.J., eds., landslides: Analysisand control, Transportation research board, national academy of sciences, Washington, D.C.,1978,Special report176, Chapter2,11-33.
    [54] Evert Hoek, John Bray. Rock Slope Engineering [M]. Institution of Mining and Metallurgy,1974.
    [55] Theodor H. Erismann, Gerhard Abele. Dynamics of rockslides and rockfalls [M]. Berlin:Springer-Verlag,2001.
    [56] M.A. Foda. Landslides riding on basal pressure waves [J]. Continuum Mechanics and Thermodynamics,1994,6:61-79.
    [57] Y. Kobayashi. Long runout landslides riding on a basal guided wave [C]. In: Engineering Geology andthe Environment. Rotterdam: A.A. Balkema,1997,761-766.
    [58]殷坤龙,韩再生,李志忠.国际滑坡研究新进展[J].水文地质工程地质,2000,27(5):1-3.
    [59] Douglas Stead, Erik Eberhardt. Development in the analysis of footwall slopes in surface coalmining [J].Engineering Geology,1997,146(1):41-70.
    [60]张倬元,王士天,王兰生.工程地质分析原理(第二版)[M].北京:地质出版社,1994.
    [61]徐邦栋,王恭先.几类滑坡的发生机理及有效防治措施[R].铁路崩坍滑坡论文报告集,1982.
    [62]唐静.我国西北地区第三纪至老第四纪湖相地层中突发性、高速滑坡发育特征及形成机制[C].兰州滑坡学术讨论会论文摘要,1985.
    [63]刘光代.牵引推动式滑坡机制分析[M].北方铁道,1986.
    [64]徐峻岭.葡萄园1号滑坡机制分析[C].成都滑坡会议论文选集,1989.
    [65]徐峻岭.高速滑坡形成三要素及“闸门”效应[J].路基工程,1991,(1):20-24.
    [66]王思敬,王效宁.大型高速滑坡的能量分析及其灾害预测[C].成都滑坡会议论文选集,1989.
    [67]高根树.大型高速滑坡滑动机理.中国地质灾害与防治学报,1992,3(1):29-32.
    [68]廖小平,徐峻龄,郑静.高速远程滑坡的动力分析和运动模拟[J].中国地质灾害与防治学报.1993,4(02):26-31.
    [69]胡广韬等.滑坡动力学[M].北京:地质出版社,1995.
    [70]晏同珍.滑坡学[M].武汉:中国地质大学出版社,2000
    [71]王家鼎.高速黄土滑坡的一种机理——饱和黄土蠕动液化[J].地质论评.1992,38(6):532-539.
    [72]王家鼎,张倬元.地震诱发高速黄土滑坡的机理研究[J].岩土工程学报.1999,21(6):670-674.
    [73]王家鼎,白铭学,肖树芳.强震作用下低角度黄土斜坡滑移的复合机理研究[J].岩土工程学报.2001,23(4):445-449.
    [74]王家鼎,肖树芳,张倬元.灌溉诱发高速黄土滑坡的运动机理[J].工程地质学报.2001,9(3):241-246.
    [75] Fellenius W. Earth static calculations with friction and cohesion and use of circular sliding surfaces [M].Berlin: Emst,1927.
    [76] Bishop A W. The use of the slip circle in the stability analysis of earth slopes [J]. Geotechnique,1955,5(I):7-17.
    [77] Janbu N. Earth pressure and bearing capacity calculations by generalized procedure of slices [C].Proceedings of the fourth international conference on soil mechanics and foundation engineering, Vol.2,1957.
    [78] Morgenstern N R, Price V E. The analysis of the stability of general slip surfaces [J]. Geotechnique,1965,15(1):79-93.
    [79] Spencer E. A method of analysis of the stability of embankments assuming parallel inter-slice forces [J].Geotechnique,1967,17(1):11-26.
    [80]陈祖煜.土质边坡稳定分析[M].北京:中国水利水电出版社,2003.
    [81] Hoek E, Bray J W. Rock slope engineering [M]. The Institution of Metallurgy, London,1981.
    [82] Sarma S K. Stability analysis of embankments and slopes [J]. Geotechnique,1973,23(3):423-433.
    [83] Chen R, Chameau J L. Three-dimensional limit equilibrium analysis of slopes [J]. Geotechnique,1983,33:31-40.
    [84] Hungry O. An extension of Bishop’s simplified method of slope stability analysis to three dimensions[J]. Geotechnique,1987,37:113-117.
    [85] Lam L, Fredlund D G. A general limit equilibrium model for three-dimensional slope stability analysis[J]. Can Geotech J.,1993,30:905-919.
    [86] Zhang X. Three-dimensional stability analysis of concave slopes in plan view [J]. Journal ofGeotechnical Engineering ASCE,1988,(114):658-671.
    [87]陈祖煜,弥宏亮,汪小刚.边坡稳定三维分析的极限平衡方法[J].岩土工程学报.2001,23(5):524-529.
    [88]李同录,王艳霞,邓宏科.一种改进的三维边坡稳定性分析力法[J].岩土工程学报.2003,25(5):611-614.
    [89] Chen W F. Limit analysis and soil plasticity [M]. Elsevier Scientific Publishing Co., New York,1975.
    [90] Michalowsik R L. Three-dimensional analysis of locally loaded slopes. Geotechnique,1980,39:27-38.
    [91] Donald I, Chen Z Y. Slope stability analysis by the upper bound approach: fundamentals and methods.Can Geotech J.,1997,34:853-862.
    [92]王贵荣,韩飞.基于有限差分强度折减法的略阳电厂边坡稳定性分析[J].工程地质学报.2007,15(03):346-349.
    [93]冯磊,韩飞,梁栋.基于有限差分强度折减法的黄延高速公路边坡稳定性分析[J].华北水利水电学院学报.2009,30(03):86-88.
    [94]徐佩华,黄润秋,陈剑平等.锦屏一级水电站左岸Ⅳ#~Ⅵ#山梁稳定性分析[J].岩土力学.2009,30(04):1023-1028.
    [95]李建平,熊传治.岩石边坡安全系数的边界元解[J].岩石力学与工程学报.1990,9(03):238-243.
    [96]许瑾,郑书英.边界元法分析边坡动态稳定性[J].西北建筑工程学院学报(自然科学版).2000,17(04):72-75.
    [97]邓琴,郭明伟,李春光等.基于边界元法的边坡矢量和稳定分析[J].岩土力学.2010,31(06):1971-1976
    [98] CUNDALL, P.A., STRACK, O.D.L. A Discrete Numerical Model for Granular Assemblies [J].Geotechnique,1979,29(1):47-65.
    [99]刘振友,王来贵.基于UDEC的边坡稳定性分析[J].辽宁工程技术大学学报.2007,26(S2):113-115.
    [100]邢万波,周钟.锦屏一级水电站左岸坝肩边坡的3DEC变形和稳定性分析与认识[J].水电站设计.2010,26(01):8-14.
    [101]周健,王家全,曾远.土坡稳定分析的颗粒流模拟[J].岩土力学.2009,30(01):86-90.
    [102]苏爱军.滑坡稳定性评价原理与方法—条分法的改进[M].武汉:中国地质大学出版社,2008.
    [103] Tien H. Wu, Leland M. Kraft. Safety Analysis of Slopes [J]. Journal of the Soil Mechanics andFoundations Division, Vol.96, No.2, March/April1970, pp.609-630.
    [104] Matsuo M., Kuroda K. Probability approach to design of embankments [J]. Soils and Foundations,1974,14(2):1-17.
    [105] J. Morla Catalan, C. Allin Cornell. Earth Slope Reliability by a Level-Crossing Method [J]. Journal ofthe Geotechnical Engineering Division, Vol.102, No.6, June1976, pp.591-604.
    [106] Alonso, E E. Risk analysis of slopes and its application to slopes in Canadian sensitive clays [J].Geotechnique, V26, N3, September,1976, pp.453-472.
    [107] McMahon, BK. Probability of Failure and Expected Volume of Failure in High Rock Slopes [C]. In:Australia-New Zealand Conference on Geomechanics (2nd:1975: Brisbane, Old.). SecondAustralia-New Zealand Conference on Geomechanics. Barton, ACT: Institution of Engineers, Australia,1975:308-313.
    [108] Piteau, D. R., Martin, D. C. Slope stability analysis and design based on probability techniques atCassiar mine [J]. Bull. Can. Inst. Min. Metallurg.70, pp.139-150.
    [109] Marek, J. M., Savely, J. P. Probabilistic analysis of plane shear mode [C]. In: Proc.,19thUS. Symposiumon Rock Mechanics,1978, pp.40-44.
    [110] Baecher, G. B., Einstein, H. H. Slope stability models in pit optimization [C]. In: Proc.,16thAPCOMSymposium,1977, pp.501–512.
    [111] Morriss, P., Stoter, H. J. Open-cut design using probabilistic methods [C]. In: Proc.,5thISRM Congresson Rock Mechanics,1983, pp.107-113.
    [112] Kim, H. S., Major, G., Ross-Brown, D. Application of Monte Carlo techniques to slope stabilityanalyses. In: Proc.,19th US. Sump. Rock Mechanics,1978, pp.28-39.
    [113] Herget, G. Shear strength anisotropy in a bedded pyretic shale and siliceous dolomite [J]. Rock Mech.2,1970, pp.93-100.
    [114] V.U. Nguyen, R.N. Chowdhury. Probabilistic study of spoil pile stability in strip coal mines—twotechniques compared [J]. International Journal of Rock Mechanics and Mining Sciences&Geomechanics, Volume21, Issue6, December1984, pp.303-312.
    [115] R. N. Chowdhury, D. A-Grivas. Probabilistic Model of Progressive Failure of Slopes [J]. Journal of theGeotechnical Engineering Division, Vol.108, No.6, June1982, pp.803-819.
    [116] Erik H. Vanmarcke. Reliability of Earth Slopes [J]. Journal of the Geotechnical Engineering Division,Vol.103, No.11, November1977, pp.1247-1265.
    [117] Yuceman, E. Vanmarcke,3-D seismic reliability analysis of earth slopes [C], ICASP-4, PittagoraEditrice, Florence,1984, pp.197–208.
    [118] Dimitri A-Grivas, Akira Asaoka. Slope Safety Prediction under Static and Seismic Loads [J]. Journal ofthe Geotechnical Engineering Division, Vol.108, No.5, May1982, pp.713-729.
    [119] Glass D.E., Savely J.P., Call R.D., Determining seismic risk for economic optimum slope design [R].Proceedings,19th U.S. Symposium on Rock Mechanics, Lake Tahoe, Nev., pp.89-95.
    [120] Cambou B. Application of first order uncertainty analysis in the finite element method in linearelasticity [C]. Proc. Second Int. Conf. On Applications of Statistics and Probability in Soil and Struct.Eng., London England,1971, pp.117-122.
    [121]祝玉学.边坡可靠性分析[M].北京:冶金工业出版社,1993.
    [122]田军,邹银生.非饱和土边坡稳定的可靠性分析[J].公路.2003,03(11):148-150.
    [123]王建华,黄暖.降雨入渗条件下非饱和黄土边坡稳定的可靠度分析[J].水力发电.2006,32(10):38-40.
    [124]李萍.黄土边坡可靠性研究[D].长安大学,2006.
    [125]姜海波.水帘洞煤矿工业场地黄土高边坡稳定性及治理研究[D].长安大学,2007.
    [126]唐亚明.基于可靠度的黄土斜坡稳定性分析[J].地质通报.2008,27(8):1217-1222.
    [127]何淑军,张春山,吴树仁等.基于蒙特卡罗法的多级黄土滑坡可靠性分析[J].地质通报.2008,27(11):1822-1831.
    [128]李琦.黄土高边坡稳定可靠性分析[D].西北农林科技大学,2008.
    [129]赵强,倪万魁.用信息论方法对铜川市区斜坡稳定性评价预测[J].西安工程学院学报.1996,18(02):64-66.
    [130]陈春.灰色系统理论在堤防岸坡稳定性分析中的应用[D].广西大学,2004.
    [131]吴中如,潘卫平.分形几何理论在岩土边坡稳定性分析中的应用[J].水利学报.1996,(04):79-82.
    [132]钟登华,安娜,李明超.库岸滑坡体失稳三维动态模拟与分析研究[J].岩石力学与工程学报,2007,26(2):360-367.
    [133]徐佩华.基于人工神经网络方法的锦屏一级水电站枢纽区高边坡稳定性分区研究[D].吉林大学,2006.
    [134]谭文辉,蔡美峰,乔兰.边坡岩体系统演化的非线性动力学模拟研究[J].中国地质灾害与防治学报.2003,14(02):100-104.
    [135]雷祥义.黄土高原地质灾害与人类活动[M].北京:地质出版社,2000.
    [136]王德潜.洛川黄土潜水补给特征[J].水文地质工程地质,1982,(5):1-8.
    [137]阎太白,王德潜.洛川塬黄土潜水的补给机制及黄土含水特征[J].地质论评,1983,29(5):418-427.
    [138]阎太白.黄土潜水补给周期的探讨[J].水文地质工程地质,1986,(3):42-44.
    [139]王德潜.黄土含水介质特征与地下水类型[J].陕西地质,1985,3(1):11-22.
    [140]薛根良.黄土地下水的补给与赋存形式探讨[J].水文地质工程地质,1995,22(1):38-39.
    [141]杨小雄,林文亮,俞尧龙.黄土塬区潜水运移规律的探讨[J].水文地质工程地质,1982,(1):1-7.
    [142]李佩成,刘俊民,魏晓妹,等.黄土原灌区三水转化机理及调控研究[M].西安:陕西科学技术出版社,1999.
    [143]许领,李宏杰,吴多贤.黄土台缘滑坡地表水入渗问题分析[J].中国地质灾害与防治学报.2008,19(2):32-35.
    [144]雷祥义.陕西泾阳南塬黄土滑坡灾害与引水灌溉的关系[J].工程地质学报.1995,3(1):56-64.
    [145] Ma D, Zhao S, Li H.曾康译.由灌溉引起的阶地边缘黄土滑坡[J].四川水利.1998,19(4):63-64.
    [146]吴玮江,王武衡,冯学才等.干旱区农业灌溉引起的地质灾害及防治对策[J].中国地质灾害与防治学报.1999,10(4):61-66.
    [147]王志荣,吴玮江,周自强.甘肃黄土台塬区农业过量灌溉引起的滑坡灾害[J].中国地质灾害与防治学报.2004,15(3):43-47.
    [148]金艳丽,戴福初.灌溉诱发黄土滑坡机理研究[J].岩土工程学报.2007,29(10):1493-1499.
    [149]吴玮江.季节性冻结滞水促滑效应[J].冰川冻土,1997,19(4):359-365.
    [150]王念秦,姚勇.季节冻土区冻融期黄土滑坡基本特征与机理[J].防灾减灾工程学报.2008,28(2):163-166.
    [151]戴福初,陈守义,李焯芬.从土的应力应变特性探讨滑坡发生机理[J].岩土工程学报,2000,22(01):127-130.
    [152]中国地质调查局.中国地质调查局地质调查技术标准滑坡崩塌泥石流灾害详细调查规范[S].2007,12.
    [153]王恭先.甘肃省永靖县黄茨滑坡的滑动机理与临滑预报[J].灾害学,1997,12(3):23-27.
    [154]贾政强.渭北黄土台原灌区地下水数值模拟研究[D].西安:西北农林科技大学,2010.
    [155]王家鼎,张倬元.典型高速黄土滑坡群的系统工程地质研究[M].成都:四川科技技术出版社,1999.
    [156]中科院黄考队.黄土高原地区地下水资源合理利用[M].北京:中国科学出版社,1991.
    [157]曹剑峰,迟宝明,王文科等.专门水文地质学[M].北京:科学出版社,2006.
    [158] D. G. Fredlund, J. Krahn, and D. Pufahl. The Relationship between Limit Equilibrium Slope StabilityMethods [C]. In Proc.10thInt. Conf. Soils Mech. Found. Eng. Vol.3,1981, pp.409-416.
    [159]郑颖人,时卫民,孔位学.库水位下降时渗透力及地下水浸润线的计算[J].岩石力学与工程学报,2004,23(18):3203-3210.
    [160] R. K. H. Ching and D. G. Fredlund. Some Difficulties Associated with the Limit Equilibrium Method ofSlice [J]. Geotech. J.1983, Vol.20, no.4, pp.661-672.
    [161] N. R. Morgenstern, V. E. Price. A Numerical Method for Solving the Equation of General Slip Surfaces[J]. British Computer J.,1965, vol.9, pp.338-393.
    [162]郑颖人,陈祖煜,王恭先等.边坡与滑坡工程治理(第二版)[M].北京:人民交通出版社,2010.
    [163]罗华飞. MATLAB GUI设计学习手记[M].北京:北京航空航天大学出版社,2009.
    [164]谢中华. MATLAB统计分析与应用:40个案例分析[M].北京:北京航空航天大学出版社,2010.
    [165] Itasca Consulting Group Inc.PFC2D Version4.0Particle Flow Code in2Dimensions Online ManualTable of Contents[M].使用说明书
    [166]杨静.高粘粒含量吹填土加固过程中结构强度的模拟试验研究[D].长春:吉林大学建设工程学院,2008.
    [167]宋晶.分级真空预压法加固高粘性吹填土的模拟试验与三维颗粒流数值分析(博士学位论文)[D].长春:吉林大学,2011.
    [168]张刚.管涌现象细观机理的模型试验与颗粒流数值模拟研究(博士学位论文)[D].上海:同济大学,2007.
    [169]罗勇,龚晓南,连峰.三维离散颗粒单元模拟无黏性土的工程力学性质[J]岩土工程学报2008,40(2):292-297.
    [170]庄宁.裂隙岩体渗流应力祸合状态下裂纹扩展机制及其模型研究(博士学位论文)[D].上海:同济大学,2006.
    [171]周健,贾敏才等.土工细观模型试验与数值模拟[M].科学出版社,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700