地震波作用下饱和砂土动力特性试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
室内试验对地震作用的模拟通常采用Seed的简化分析法,该方法仅考虑S波垂直向上传播的剪应力作用,并可用单向动三轴或动单剪仪来进行模拟,基于此,在工程上已经得到广泛的应用。近年来,地震频发,在大城市周边发生的强震亦是屡见不鲜,此类地震俗称城市直下型地震,研究发现,该型地震往往震源较浅,若仍采用Seed简化法来模拟此类地震,已不再合理,而应考虑地震波斜入射,且同时应考虑P波的影响。对此,本文根据波动理论对地震波斜入射情况下场地某深度处的土单元应力响应进行了分析,进而对斜入射地震波作用下饱和松砂的动力特性进行了室内试验研究。
     根据弹性介质波动理论推导了一组平行地震波斜入射时弹性场地中任意单元体的应力状态,并由此得到了地震波作用下在土单元体中产生的动应力路径,通过对动应力路径的分析研究,发现:P波、S波单独斜入射时,应力路径均表现为倾斜的椭圆,垂直入射时,则表现为一条直线;两者同时入射时,仅当两者的入射频率f不相同时,动应力路径较为复杂,其余情况仍为斜椭圆;入射波的入射角、入射频率及单元体所处深度对动应力路径的形状有较大的影响。
     其次,本文重点对Kc固结条件下,地震波作用下饱和砂土的动力特性进行了试验研究,结果表明:地震波垂直入射与斜入射时饱和砂土的动力特性存在一定的差异,主要表现在动强度上,不管是P波入射还是SV波入射,随着入射角的增加,饱和砂土的动强度均呈现出先减小、后增大的发展趋势;P波垂直入射时,动应力路径为一条水平直线,动强度最大,SV波以入射角12°-15°入射时,动应力路径近似为一个圆,动强度最小,而SV波垂直入射时,动应力路径为一条垂直直线,动强度介于上述两者之间,表明若采用Seed简化法来模拟地震荷载,在某些情况下,结果可能不安全。
The simulation of seismic effects in indoor test frequently adopts the "simplified procedure for evaluating soil liquefaction potential" advanced by Seed. This simplified procedure only considers the shear stress due to the upward propagation of shear waves which can be simulated by one-way dynamic triaxial test or dynamic simple shear test. The result based on it has been widely used in project. Recently, more and more strong earthquakes have been occurred around the large cities. This type of earthquake is called earthquekes occurring directly beneath large cities. It is found that the source of this earthquake tends to be shallow. If the simplified procedure is still used to simulate the loading of earthquake, it would be unreasonable. Under this condition inclined seismic waves should be considered, and also including the effects of P wave. For this, this paper analyzes the stress response of the soil elements due to inclined seismic waves based on the wave theory. Further, experimental study on the dynamics of saturated sand subjected to the inclined seismic waves is performed.
     Based on the wave theory of elastic medium, the stress of the soil elements in the field subjected to the seismic wave has been derived, and the dynamic stress path obtained at the same time. It is found from analyzing the stress path that the shape of the stress path is a inclined oval due to inclined incident P wave or SV wave, and is a line subjected to the normal incidence of P wave or SV wave. When the incident frequencies of the two body wave is different if the incidence of them simultaneously, the stress path would be complex, but still be a inclined oval in other case. There is great influence of the incident angle、the incident frequency and the depth of the soil element on the shape of stress path.
     Secondly, the dynamics of saturated sand subjected to seismic waves is tested, the results show that there are some differences on the dynamic of the saturated sand when the normal incidence and oblique incidence of seismic waves, mainly in dynamic strength. Subjected to the vertical incidence of P wave, when the dynamic stress path is a horizontal line, the dynamic strength of sand is maximum. Subjected to the incidence of SV wave with incident angle 12°-15°, when the dynamic stress path is approximately a circle, the dynamic strength is minimum. Subjected to the vertically incident SV wave, when the dynamic stress path is a vertical straight line, the dynamic strength is between the two above, indicates that if the simplified procedure is still used to simulate the seismic loading o, in some cases, the result may be unsafe.
引文
[1]谢定义.土动力学[M],西安交通大学出版社,1998.
    [2]H.B.Seed, I.M.Idriss.Simplified procedure for evaluating soil liquefaction potential[J]. Journal of the Soil Mechanics and Foundation Division, ASCE,1971,97(9):1249-1273.
    [3]H.Nagase, K.Ishihara.Effects of load irregularity on the cyclic behavior of sand[J].Soil Dynamics and Earthquake Engineering,1987,6(4):239-249.
    [4]K.Ishihara, H.Nagase.Multi-directional irregular loading tests on sand[J].Soil Dynamics and Earthquake Engineering,1988,7(4):201-212.
    [5]H.B.Seed, K.L.Lee.Liquefaction of Saturated Sands During Cyclic Loading. J Soil Mech Found Div, ASCE,1966,92(SM6):105-134.
    [6]B.O.Hardin, V.P.Drnevich.Shear Modulus and Damping in Soils:Design Equations and Curves. J Soil Mech Found Div, ASCE,1972,98(SM7):667-692.
    [7]K.Ishihara, S.Yasuda.Sand liquefaction due to irregular excitation[J].Soils and Foundatinos, 1972,12(4):65-77.
    [8]K.Ishihara, J.Lysmer, S.Yasuda, H.Hirao.Prediction of liquefaction in sand deposits during earthquakes[J].Soils and Foundatinos,1976,16(1):1-15.
    [9]K.Ishihara.Simple method of analysis for liquefaction of sand deposits during earthquakes[J].Soils and Foundatinos,1977,17(3):1-17.
    [10]K.Ishihara,M.L.Silver,H.Kitagawa.Cyclic strengths of undisturbed sands obtained by large diameter sampling[J].Soils and Foundatinos,1978,18(4):61-76.
    [11]K.Ishihara,M.L.Silver,H.Kitagawa.Cyclic strengths of undisturbed sands obtained by a piston sampler[J].Soils and Foundatinos,1979,19(3):61-76.
    [12]K.lshihara,H.Takatsu.Effects of overconsolidation and Ko conditions on the liquefaction characteristics of sands[J].Soils and Foundatinos,1979,19(4):59-68.
    [13]K.Ishihara,F.Yamazaki.Cyclic simple shear tests on saturated sand in multi-directional loading[J].Soils and Foundatinos,1980,20(1):45-59.
    [14]K.Ishihara,K.Shimizu,Y.Yamada.Pore water pressures measured in sand deposits during an earthquake[J].Soils and Foundatinos,1981,21(4):85-100.
    [15]K.Ishihara.Soil behavior in earthquake geotechnics.Oxford Science Publications,1996.
    [16]R.W.Boulanger,R.B.Seed.Liquefactino of sand under bidirectional monotonic and cyclic loading[J].Journal of geotechnical engineering,December,1995:870-878.
    [17]F.Amini,K.M.Sama.Behavior of stratified sand-silt-gravel composites under seismic liquefaction conditions[J].Soil Dynamics and Earthquake Engineering,1999,18:445-455.
    [18]Yan-guo Zhou,Yun-min Chen.Influence of a seismic cyclic loading histoty on small strain shear modulus of saturated sands[J].Soil Dynamics and Earthquake Engineering,2005,25: 341-353.
    [19]Yan-guo Zhou,Yun-min Chen.Laboratory investigation on assessing liquefaction resistance of
    sandy soils by shear wave velocity[J].Journal of Geotechnical and Geoenvironmental Engineering. ASCE,2007,133(8):959-972.
    [20]S.Sawada,Y.Tsukamoto,K.Ishihara.Residual deformation characteristics of partially saturated sandy soils subjected to seismic excitation[J]. Soil Dynamics and Earthquake Engineering, 2006,26:175-182.
    [21]施明雄.多向振动下砂土动力特性试验研究[G].浙江大学.2008.
    [22]B.Zand,Wei Tu,et al.An experimental investigation on liquefaction potential and post-liquefaction shear strength of impounded fly ash[J].Feul 2009.88:1160-1166.
    [23]李小军.非线性场地地震反应分析方法的研究[D].哈尔滨:中国地震局工程力学研究所,1993.
    [24]廖山河,陈清军,徐植信.SH波斜入射时土层的非线性响应分析[J].同济大学学报,1994,22(4):517-522.
    [25]李山有,廖振鹏.地震体波斜入射情形下台阶地形引起的波形转换[J].地震工程与工程振动,2002,22(4):9-15.
    [26]李山有,马强,韦庆海.地震体波斜入射下的断层台阶地震反应分析[J].地震研究,2005,28(3):277-281.
    [27]E.Heymsfield Two-dimentional scattering of SH waves in a soil layer underlain with a sloping bedrock[J]. Soil Dynamics and Earthquake Engineering,2000,19(7):489-500.
    [28]尤红兵,赵凤新,荣棉水.地震波斜入射时水平层状场地的非线性地震反应[J].岩土工程学报,2009,31(2):234-240.
    [29]吴世明等.土动力学[M],中国建筑工业出版社.
    [30]陆明万,罗学富.弹性理论基础[M],清华大学出版社.
    [31]《建筑抗震设计规范》(GB50011-2001),中国建筑工业出版社.
    [32]汪素云,裴顺平等.利用ML振幅研究地壳横波Q值Ⅰ:不同构造区的特征[J].地球物理学报,2007,50(6):1740-1747.
    [33]R.M.Allen, H.Kanamori.The potential for earthquake early warning in southern California[J].Science,2003,300(2):786-789.
    [34]赵娜.剪切波速对饱和松散砂(粉)土结构性及抗液化强度影响的研究[G].天津大学,2006.
    [35]J.Yang,T.Sato.Interpretation of seismic vertical amplification observed at an array site[H].Bulletin of Seismological Society of America.2000,90(2):275-285.
    [36]W.L.Schroeder,R.L.Schuster.Laboratory simulation of seismic activity in saturated sands[M]. Vibration effects of earthquakes on soils and foundations. ASTM.1968.
    [37]赵宇.不同动应力路径下粉土动力特性试验研究[G].浙江大学,2007.
    [38]沈扬.考虑主应力方向变化的原状软粘土试验研究[D].浙江大学,2007.
    [39]A.Elgamal,Z.Yang,E.Parra. Computational modeling of cyclic mobility and post-liquefaction site response[J]. Soil Dynamics and Earthquake Engineering,2002,22(4):259-271.
    [40]徐守时.信号与系统理论、方法和应用.中国科学技术大学出版社,2003.
    [41]Y.P.Vaid,S.Sivathayalan.Static and cyclic liquefaction potential of Fraser Delta sand in simple
    shear and triaxial tests[J].Cannada Geotechnical Journal,1996,33:281-289.
    [42]Y.P.Vaid,Sivathayalan,Sivapathasundaram,S.Dave. Influence of specimen reconstituting method on the undrained response of sand[J].Geotechnical Testing Journal,1999, 22(3):187-195.
    [43]郭莹,栾茂田等.复杂应力条件下饱和松砂孔隙水压力增长特性的试验研究[J].地震工程与工程振动,2004,24(3):139-144.
    [44]栾茂田,许成顺等.复杂应力条件下饱和松砂单调与循环剪切特性的比较研究[J].地震工程与工程振动,2006,26(1):181-187.
    [45]王洪瑾,马奇国等.土在复杂应力状态下的动力特性研究[J].水利学报,1996,4:57-64.
    [46]F.Sam,H.David,H.Harry,S.Benzion. Liquefaction study of cemented sand[J].American Society of Civil Engineering,Journal of the Geotechnical Engineering Division,1980, 106(3):275-297.
    [47]K.Takeji,Y.Yasuo,E.Yasuyuki.Dynamic properties of soft clay for wide strain range[J]. Soils and Foundations,1982,22(4):1-18.
    [48]H.B.Seed,H.A.Anwar,P.G.Nicholson.Elimination of compliance effects in undrained testing[J].Proceedings of the International Conference on Soil Mechanics and Foundation Engineering,1989,1:111-114.
    [49]Y.P.Vaid,J.Thomas.Post-liquefaction behavior of sand[J].A.A.Balkema,1994,3:1305.
    [50]王洪瑾,沈瑞福,马奇国.双向振动下土的动强度[J].清华大学学报(自然科学版),1996,36(3):93-98.
    [51]M.Yoshimine,P.K.Robertson,C.E.Wride.Undrained shear strength of clean sands to trigger flow liquefaction[J].Canadian Geotechnical Journal,1999,36(5):891-906.
    [52]Y.P.Vaid,A.Eliadorani,S.Sivathayalan,M.Uthayakumar.Laboratory characterization of stress-strain behavior of soils by stress and/or strain path loading[J].Geotechnical Testing Journal,2001,24(2):200-208.
    [53]栾茂田、张振东等.K0固结条件下砂土的循环剪切特性试验研究[J].岩土力学,2008,29(9):2323-2328.
    [54]Y.Y.Wong.Effect of vibration on the performance of off-road vehicles[J]. SAE Pap 710024,1971.
    [55]宫全美,廖彩凤,周顺华等.地铁行车荷载作用下地基土动孔隙水压力实验研究[J].岩石力学与工程学报,2001,20(A01):1154-1157.
    [56]刘汉龙,周云东,高玉峰.砂土地震液化后大变形特性试验研究[J].岩土工程学报,2002,24(2):142-146.
    [57]刘汉龙,曾长女,周云东.饱和粉土液化后变形特性试验研究[J].岩土力学,2007,28(9):1866-1870.
    [58]徐斌,孔宪京,邹德高,娄树蓬.饱和砂砾料液化后应力与变形特性试验研究[J].岩土工程学报,2007,29(1):103-106.
    [59]张建民,王富强.考虑围压和密度的饱和砂土液化后单调加载本构方程[J].清华大学学报
    (自然科学版),2008,48(12):2044-2047.
    [60]M.T.Ylmaz, O.Pekcan,B.S.Bakr.Undrained cyclic shear and deformation behavior of silt-clay mixtures of Adapazar,Turkey[J]. Soil Dynamics and Earthquake Engineering,2004,24(7): 497-507.
    [61]K.lshihara, I.Towhata. Sand response to cyclic rotation of principal stress directions as induced by wave loads[J]. Soils and Foundations,1983,23(4):11-16.
    [62]K.Ishihara,I. Towhata.Effects of rotation of principal stress directions on cyclic response of sand[J]. Soils and Foundations,1984,24(3):85-100.
    [63]K.Ishihara, A.Yamazaki, K.Haga.Liquefaction of K0-consolidated sand under cyclic rotation of principal stress direction with lateral constraint[J]. Soils and Foundations,1985, 25(4):63-74.
    [64]I.Towhata, K.Ishihara.Shear work and pore water pressure in undrained shear[J]. Soils and Foundations,1985,25(3):73-84.
    [65]I.Towhata, K.Ishihara.Undrained strength of sand undergoing cyclic rotation of principal stress axes[J]. Soils and Foundations,1985,25(2):135-147.
    [66]A.Sayao, Y.P.Vaid.Critical Assessment of stress nonuniformities in hollow cylinder test specimens[J]. Soils and Foundations,1991,31(1):60-72.
    [67]A.Sayao, Y.P.Vaid.Effect of Intermediate Principal Stress on the Deformation Response of Sand[J]. Canadian Geotechnical Journal,1996,33(5):822-828.
    [68]Y.P.Vaid, A.Sayao, E.Hou, D.Negussey.Generalized stress-path-dependent soil behaviour with a new hollow cylinder torsional apparatus[J]. Canadian Geotechnical Journal,1990, 27(5):601-616.
    [69]Y.P.Vaid, A.Sayao.Proportional loading behaviour of sand under multiaxial stresses[J]. Soils and Foundations,1995,35(3):23-29.
    [70]D.Wijewickreme, Y.P.Vaid.Stress nonuniformities in hollow cylinder torsional specimens[J]. Geotechnical Testing Journal,1991,14(4):349-362.
    [71]M.Uthayakumar, Y.P.Vaid.Static liquefaction of sands under multiaxial loading[J]. Canadian Geotechnical Journal,1998,35(2):273-283.
    [72]S.Sivathayalan, Y.P.Vaid.Influence ofgeneralized initial state and principal stress rotation on the undrained response of sands[J]. Canadian Geotechnical Journal,2002,39(2):63-76.
    [73]F.Tatsuoka, K.Ochi, S.Fujii, M.Okamoto.Cyclic undrained triaxial and torsional shear strength of sands for different sample preparation methods[J]. Soils and Foundations,1986, 26(3):23-41.
    [74]曾国熙,龚晓南,盛进源.正常固结粘土K0固结剪切试验研究[J].浙江大学学报,1987,21(2):1-9.
    [75]H.B.Seed,P.P.Martin.Pore water pressure changes during soil Liquefaction[J].Journal of the Geotechnical Engineering division,1976,102(4):323-346.
    [76]沈瑞福,王洪瑾,周景星.动主应力轴连续旋转下砂土的动强度[J].水利学报,1996,1: 27-32.
    [77]郭莹,栾茂田,何杨,许成顺.主应力方向循环变化对饱和松砂不排水动力特性的研究[J].岩土工程学报,2005,27(4):403-409.
    [78]郭莹,栾茂田,许成顺,何杨.主应力方向变化对松砂不排水动强度特性的影响[J].岩土工程学报,2003,25(6):666-670.
    [79]齐剑锋,栾茂田,聂影,马太雷,张振东.循环应力下饱和粘土剪切变形特性与破坏标准的试验研究[J].第七届全国土动力学学术会议论文集,2006,北京.
    [80]袁晓铭,孙锐,孟上九.土体地震大变形分析中Seed有效循环次数方法的局限性[J].岩土工程学报,2004,26(2):207-211.
    [81]Xing J N, Liao Zhen-Peng. Statistical research on S-wave incident angle[J]. Earthquake Research in China,1994,8(1):121-131.
    [82]Takahiro, Sigaki. Estimation of earthquake motion incident angle at rock site[C]. Proceedings of 12th World Conference Earthquake Engineering, New Zealang,2000:956.
    [83]J.Kuwano,K.Ishihara.Analysis of permanent deformation of earth dams due to earthquakes[J]. Soils and Foundations,1988,28(1):41-55.
    [84]K.Arulanandan,X.S.Li,K.Sivathasan. Numeriucal simulation of liquefaction-induced deformations[J]. Journal of Geotechnical and Geoenvironmental Engineering,2000,657-666.
    [85]D.S.Liyanathirana,H.G.Poulus. A numerical model for dynamic soil liquefaction analysis[J]. Soil Dynamics and Earthquake Engineering,2002,22:1007-1015.
    [86]张建民,王建华.土动力学与土工抗震[A].第八届土力学及岩土工程学术会议论文集,北京:万国学术出版社,1999:44-55.
    [87]A.Elgamal,Z.Yang,E.Parra. Computational modeling of cyclic mobility and post-liquefaction site response[J]. Soil Dynamics and Earthquake Engineering,2002,22:259-271.
    [88]D.Yuan,T.Sato. Liquefaction analysis of saturated soils taking into account variation in porosity and permeability with large deformation[J]. Computers and Geotechnics,2003,30: 623-635.
    [89]D.Yuan,T.Sato. A practical method for large strain liquefaction analysis of saturated soils[J]. Soil Dynamics and Earthquake Engineering,2004,24:251-260.
    [90]G.Wang,K.Sassa. Post-failure mobility of saturated sands in undrained load-controlled ring shear tests.[J]. Canadian Geotechnical Journal,2002,39:821-837.
    [91]Z.L.Wang,Y.F.Dafalias,C.K.Shen. Bounding surface hypoplasticity model for sand[J]. Journal of Engineering Mechanics. ASCE,1988,116(5):983-1001.
    [92]Z.L.Wang. Bounding surface hypoplasticity model for granular soils and it applications[D].California, USA:University of California, Davis,1990.
    [93]Z.L.Wang,Y.Dafailias,C.K.Shen. Bounding surface hypoplasticity model for sand[J]. Journal ofEngineering Mechanics. ASCE,1990,116(5):983-1001.
    [94]Z.L.Wang,F.I.Makdisi. Implementing a bounding hypoplasticity model for sand into the FLAC program.[A]. Proceedings of 1st International FLAC Conference,Minneapolis:Balkema,1999:483-490.
    [95]丰土根,刘汉龙,高玉峰等.砂土多机构边界面塑性模型初探[J].岩土工程学报,2002,24(3):382-385.
    [96]丰土根.砂土多重剪切机构边界面塑性本构模型研究[D].南京:河海大学,2002.
    [97]Fang H-L.3D multi-mechanism model for cyclic mobility of saturated sands[J].岩土工程学报,24(3):376-381.
    [98]Finn. W D L. State-of-the-art of geotechnical earthquake engineering practice[J]. Soil Dynamics and Earthquake Engineering,2000,20:1-15.
    [99]蔡晓光.液化土层两种机制下侧向大变形分析[D].哈尔滨:中国地震局工程力学所,2004.
    [100]孟上九,袁晓铭.建筑物不均匀震陷简化分析方法[J].地震工程与工程振动,2003,23(2):102-107.
    [101]孟上九,袁晓铭.建筑物不均匀震陷影响因素研究[J].地震工程与工程振动,2004,24(1):111-116.
    [102]I.Towhata,R.P.Orense,H.Toyota. Mathematical principles in prediction of lateral ground displacement induced by seismic liquefaction[J]. Soils and Foundations,1999,39(2):1-19.
    [103]P.M.Byrne,S.S.Park. Seismic liquefaction:centrifuge and numerical modeling [A]. Third International Symposium on FLAC and FLAC3D Numerical Modeling in Geomechanics,Ontario,Canada:2003:
    [104]Y.F.Dafalias. Overview of constitutive modes used in VELACS[R]. Verifications of numerical procedures for the analysis of soil liquefaction problems, Arulanandan, Scott, 1994:1293-1303.
    [105]S.Iai,T.Kameoka,Y.Matsunaga. Numerical (Class A) prediction of model No.1[R]. Verifications of numerical procedures for the analysis of soil liquefaction problems, Arulanandan, Scott,1993:109-127.
    [106]S.Iai,T.Kameoka,Y.Matsunaga. Numerical (Class A) prediction of model No.2[R]. Verifications of numerical procedures for the analysis of soil liquefaction problems, Arulanandan, Scott,1993:369-375.
    [107]C.P.K.Gallage,I.Towhata,S.Nishimura. Laboratory investigation on rate-dependent properties of sand underloading low confining effective stress[J]. Soils and Foundations,2005,45(4): 43-60.
    [108]R.L.Kuhlemeyer,J.Lysme. Finite element method accuracy for wave propagation problems[J].Journal of Soil Mechanics and Foundations Division, ASCE,1973,99(5): 421-427.
    [109]Fast Lagrangian Analysis of Continua in 3 Dimensions[M]. Minnesota:Itasca Consulting Group, Inc.,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700