哈维氏弧菌运动相关基因功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
弧菌病(Vibriosis)是一种全球范围内发生的细菌性疾病。其中哈维氏弧菌(Vibrio harveyi)是一种水产养殖业中非常重要的致病菌,严重威胁到水产养殖动物的健康,给海水鱼类、虾类及其他养殖对象造成巨大经济损失。因此,有关哈维氏弧菌致病机理的研究在国内外受到高度重视。现有研究发现哈维氏弧菌致病机理与胞外产物、溶血素等均相关,但有关其运动性及运动在细菌感染早期的作用尚未见报道。鉴于运动在细菌致病早期的重要作用,本研究以哈维氏弧菌为研究对象,寻找运动相关基因,试图揭示运动相关基因的功能,初步了解运动性与致病性之间的相互联系,以期对哈维氏弧菌乃至其它弧菌致病机制和防治研究提供一定的理论依据。
     本研究将从Escherichia coli Sm10(pLOFKm)中携带的转座子mini-Tn10的自杀性质粒pLOFKm引入受体菌哈维氏弧菌TS-628菌株中,构建突变株库。我们从大约3000个转座突变株中筛选到3株运动缺陷型菌株。避开转座子内部酶切位点选用XbaI酶切突变株的基因组DNA,在连接酶的作用下使基因组DNA的酶切片段环化,以这些环化的片段为模板,根据转座子序列设计引物进行反向PCR,将反向PCR产物克隆到T载体测序,获得转座子侧翼未知基因的部分序列,根据获得的序列在基因库中寻找同源基因,结果发现这465bp的侧翼序列表现出与哈维氏弧菌ATCC BAA-1116菌株基因组3612978至3613443序列具有很高的同源性(96.9%),该序列在哈维氏弧菌ATCC BAA-1116菌株中为一个未知功能的蛋白,此外,该序列还与副溶血弧菌(V.parahaemolyticus)RIMD 2210633菌株基因组中的pgk (磷酸甘油酸激酶)基因具有第二高(91.8%)的同源性。突变株H2反向PCR产物片段长约950bp,其中356bp为获得的插入位点侧翼的未知基因序列,该序列经过同源性比较发现与哈维氏弧菌ATCC BAA-1116菌株基因组3203663至3204019序列的同源性最高(94.6%),与溶藻弧菌(V.alginolyticus)HY9901菌株鞭毛蛋白基因flaB具有第二高的同源性(92.4%)。
     最后鉴定了突变株在生长、趋化、早期黏附及生物膜形成等方面的生物学特性。结果发现,突变株H1生长参数明显不同于野生株。趋化性测定显示,3株突变株均都趋化性减弱。对野生型和3株突变型菌株早期粘附研究发现,野生型菌株粘附能力均强于3株突变株。对于生物膜形成研究说明野生型菌株形成生物膜的能力强于突变株,而在3株突变株中H2型菌株形成的生物膜的能力最弱。
     总之,通过本研究寻找到哈维氏弧菌2个运动相关基因的部分序列,对这两段序列进行同源性分析及基因功能研究,结果认为这两个片段的基因功能为运动相关基因。它们的功能分别与pgk(磷酸甘油酸激酶)基因和鞭毛蛋白基因flaB相类似。
Vibriosis is a kind of bacteriosis widely spreading on the earth.Vibrio harveyi is a vital pathogen in aquaculture,which is severely harmful to wild fish、custacea、shellfish and other animals of aquaculture.Therefore,the pathogenic mechanism of V.harveyi was paid much attention in recent years.The present research showed that the pathogenic mechanism of V.harveyi was related to ECP(Extracellular Product)、hemolysin and so on,while there has been not any report on motility and the role of motility on the early stage of infection of this bacterium.As the important role of motility in infection of bacterial,motile-related genes of V. harveyi was identified and function of these genes were characterized in the present study,in order to reveal the relationship between motility and pathogenicity.we wish it could provide us Rationale of Pathogenicity and Prevention of V.harveyi.The results of this study provided further understanding of the pathogenic mechanism of V.harveyi.
     The suicide plasmid pLOFKm,carring a transposon mini-Tn10,was transferred to the recipient V.harveyi to generate an insertional mutant library by cell conjugation between the donor Escherichia coli Sm10 (pLOFKm) and the recipient V.harveyi TS-628 by filter mating.More than tow thousand individual insertion transposon mutants were screened and three mutants exhibited defective in motility.465bp sequence of mutant H1 flanking transposon showed the highest identity (96.9%) to a hypothetical protein gene of V.harveyi ATCC BAA-1116 at genome position 3612978 to 3613443 and the second-highest identity (91.8%) to the pgk gene of V.parahaemolyticus RIMD 2210633.To the H2,356bp flanking sequence showed the highest identity (94.6%) to a hypothetical protein gene of V.harveyi ATCC BAA-1116 at genome position 3203663 to 3204019 and the second-highest identity (92.4%) to the flaB gene of V.alginolyticus HY9901.
     The biological characteristics of the mutants including growth、chemotactic、early stage of adhesion、biofilm formation were determined . The results displayed that the growth characteristics of H1 are abviously different from the wild type strain and the growth parameters of H2 and H3 were similar with those of the wild type strain.Chemotactic testing showed that all the three mutants were greatly impaired in chemotaxis.The study on the early stage of adhesion of the wild type strain and the three mutants reveal that the wild type strain exhibited the strongest adhesion ability and all the mutants exhibited weaker adhesion ability.The biofilm formation assay revealed that the wild type strain produced the greatest biofilm and the mutant H2 produced the minimal biofilm.
     Hence, the target gene in H1 and H2 were first identified to be the motile-related genes in V. harveyi in this study and their function is similar with the pgk gene and flaB gene respectively.
引文
[1] Conestrini G.Lamalatilia dominate delle anguille[J].Atti Institute Veneto Service,1983,7:809-814.
    [2]韩先朴,卢全章.鳗鲡弧菌病病原菌的分离与鉴定[J].微生物学报,1984,24(4):386-391.
    [3]希坎南.伯杰氏细菌鉴定手册[M].北京:科学出版社,1989:23-25.
    [4] Austin B,Austin D A.Bacterial fish pathogens:diseases in farmed and wild fish [M].2nd ed.Chichester, UK:Ellis Horwood Ltd,1993:265-314.
    [5] Vandenberghe J,Li Y,Verdonk L,et al.Vibrios associated with Penaeus chinensis(Crustacea: Decapoda) larvae in Chinese shrimp hatcheries[J].Aquaculture,1998,169:121-132.
    [6] Austin B,Austin D A.Bacterial Fish Pathogens[M].Diseases of Farmed and Wild Fish,3rd edn(revised). Springer Praxis,Godalming,1999.
    [7]肖慧,李军,王祥红,等.鲈鱼苗烂鳃烂尾病病原菌的研究[J].青岛海洋大学学报,1999,29(1):87-93.
    [8] Zhang X H,Austin B.Pathogenicity of Vibrio harveyi to salmonids[J].Journal of Fish Disease,2000,23: 93-102.
    [9]王保坤,余俊红,李筠,等.花鲈弧菌病原菌(哈维氏弧菌)的分离与鉴定[J].中国水产科学,2002,1:52-55.
    [10]马健民,王琦,马福恒,等.皱纹盘鲍脓毒败血症病原菌的发现及初步研究[J].水产学报,1996,20(4):332-336.
    [11]鄢庆枇,王军,苏永全,等.大黄鱼病原菌-溶藻弧菌的ELISA快速检测研究[J].海洋科学,2001,25(9): 47-49.
    [12]林克冰,周宸,刘家富,等.海水网箱养殖大黄鱼病原菌研究[J].海洋科学,1999,23(4):58-62.
    [13]吴后波,潘金培.弧菌属细菌及其所致海水养殖动物疾病[J].中国水产科学,2001,8(1):89-93.
    [14]Milton D L,O’Toole R,Horsted T P,et al.Flagellin is essential for the virulence of Vibrio anguillarum[J]. Journal of Bacteriology,1996,178(5):1310-1319.
    [15]薛清刚,王文兴.对虾疾病病理与诊治[M].青岛:青岛海洋大学出版社,1992:9-11.
    [16]吴友吕,刘士忠.三疣梭子蟹死因探讨[J].东海海洋,1995,13(2):37-41.
    [17]Rucker R R.Status of fish diseases and relation to production[C]//State of Washington. Report of the Seccond Governorπs Conference on Pacific salmon,1963:98-101.
    [18]Hacking M A,Budd J.Vibrio infection in tropical fish in a freshwater aquarium[J].Journal of Wildlife Diseases,1971,7(4):273-280.
    [19]许兵,纪伟尚,徐怀恕.中国对虾病原菌及致病机理的研究[J].海洋学报,1993,15(1):98-106.
    [20]Orndorff S A,Colwell R R.Distribution and identification of luminous bacteria from the Sargasso sea[J].Applied and Environmental Microbiology,1980,39:983-987.
    [21]Pass D A,Dybdahl R,Mannion M M.Investigations into the causes of mortality of the pearl oyster,Pinctada maxima (Jamson),in Western Australia[J].Aquaculture,1987,65:149-169.
    [22]陈月忠,钟硕良,周宸.成虾发光病病原体的分离鉴定及防治技术研究[J].中山大学学报:自然科学版,2000,39(增刊):218-223.
    [23]刘问,钱冬,杨国梁,等.南美白对虾虾苗淡化期间发光病病原研究[J].集美大学学报:自然科学版,2004,9(4):300-304.
    [24]Kraxberger Beatty T, McGarey D J ,Grier H J ,et al.Vibrio harveyi ,an opportunistic pathogen of common snook,Cent ropomus undecimalis (Bloch),held in captivity [J].Journal of Fish Diseases,1990,13:557-560.
    [25]Saeed M O.Association of Vibrio harveyi with mortalities in cultured marine fish in Kuwait[J]. Aquaculture,1995,136:21-29.
    [26]Ishimaru K,Muroga K.Taxonomical reexamination of two pathogenic Vibrio species isolated from milk fish and swimming crab[J].Fish Pathology,1997,32:59-64.
    [27]Alvarez J D,Austin B,Alvarez A. M,et al.Vibrio harveyi:a pathogen of penaeid shrimps and fish in Venezuela[J].Journal of Fish Diseases,1998,21:313-316.
    [28]Hispano C,Nebra Y,Blanch A R.Isolation of Vibrio harveyi from an ocular lesion in the short sunfish(Mola mola)[J].Fish Pathology,1997,17:104-107.
    [29]陈献稿,吴淑勤,石存斌,等.斜带石斑鱼病原菌(哈维氏弧菌)的分离与鉴定[J].中国水产科学,2004,11:313-317.
    [30]覃映雪,池信才,苏永全,等.网箱养殖青石斑鱼的溃疡病病原[J].水产学报,2004,28: 297-302.
    [31]金珊,王国良,赵青松,等.海水网箱养殖大黄鱼弧菌病的流行病学研究[J].水产科学, 2005,24(1):17-19.
    [32]范文辉,黄偼,王秀华,等.养殖大菱鲆溃疡症病原菌的分离鉴定及系统发育分析[J].微生物学报, 2005,45(5):665-670.
    [33]张晓华,钟英斌,陈吉祥,哈维氏弧菌的生物学特性、流行病学及检测技术[J],中国海洋大学学报,2007, 37(5):740-748.
    [34]Jiravanichpaisal P,Miyazaki T,Limsuwan C.Histopat hology,biochemistry,and pathogenicity of Vibrio harveyi infecting black tiger prawn Penaeus monodon[J].Journal of Aquatic Animal Health,1994,6:27-35.
    [35]Karunasagar I,Pai R,Malathi G R,et al.Mass mortality of Penaeusmonodon larvae due to antibiotic resistant Vibrio harveyi infection[J].Aquaculture,1994,128:203-209.
    [36]Pizzuto M,Hirst R G.Classification of isolates of Vibrio harveyi virulent to Penaeus monodon larvae by protein profile analysis and M13 DNA fingerprinting[J].Diseases of Aquatic Organisms,1995,32:151-155.
    [37]Robertson P A,Calderon J,Carrera L,et al.Experimental Vibrio harveyi infections in Penaeus vannamei larvae[J].Diseases of Aquatic Organisms,1998,32:151-155.
    [38]吴后波,潘金培.病原弧菌的致病机理[J].水生生物学报,2003,27(4):422-426.
    [39]Liu P C,Lee K K and Chen S N.Pathogenicity of different isolates of Vibrio harveyi in tiger prawn, Penaeus monodon[J].Letters in Applied Microbiol,1996,22:413-416.
    [40]Liu P C,Lee K K.Cysteine proteinase is a major exotoxin of pat hogenic luminous Vibrio harveyi in the tiger prawn,Penaeus monodon[J].Letters in Applied Microbiology,1999,28:428-430.
    [41]Soto-Rodriguez S A,Roque A,Lizarraga-Partida M L,et al.Virulence of luminous vibrios to Artemia franciscana nauplii[J].Diseases of Aquatic Organic,2003,53,231-240.
    [42]Fukasawa S,Nakamura K,Kamii A,et al.Purification and properties of a proteinase from a marine luminous bacterium,Vibrio harveyi strain FLA-11[J].Agric Biollogical Chemistry,1988a,52:435-441.
    [43]Fukasawa S,Nakamura K,Miyahira M,et al.Some properties of two proteinases from a luminous bacterium,Vibrio harveyi strain FLN-108[J].Agric Biollogical Chemistry,1988b,52:3009-3014.
    [44]Liu P C,Lee K K,Tu C C,et al. Purification and characterization of a cysteine protease produced by pathogenic luminous Vibrio harveyi[J].Current Microbiol,1997,35:32-39.
    [45]Lee C A.Pathogenicity islands and the evolution of bacterial pathogens[J].Infect Agnts Disease,1996,5:1-7.
    [46]Lee K K,Liu P C,Kou G H,et al.Investigation on the major exotoxin of Vibrio harveyi 770527 isolated from diseased Penaeus monodon[J].Report Fish Diseases Research,1997,18:33–42.
    [47]Harries L J,Owens L. Production of exotoxins by two luminous Vibrio harveyi strains known to be primary pathogens of Penaeus monodon larvae[J].Diseases Aquatic Organic,1999,38:11-22.
    [48]Montero A B and Austin B.Characterization of extracellular products from an isolate of Vibrio harveyi recovered from diseased post-larval Penaeus vannamei(Bonne)[J].Journal of Fish Diseases,1999,22: 377-386.
    [49]Zhang X H,Meaden P G,Austin B.Duplication of hemolysin genes in a virulent isolate of Vibrio harveyi[J].Applied and Environmental Microbiolgy,2001,67:3161–3167.
    [50]Prasad S,Morris P C,Hansen R,et al.A novel bacteriocin-like substance (BLIS) from a pathogenic strain of Vibrio harveyi[J].Microbiology,2005,151:3051-3058.
    [51]Ruangpan L,Danayadol Y,Direkbusarakom S,et al.Lethal toxicity of Vibrio harveyi to cultivated Penaeus monodon induced by a bacteriophage[J].Diseases Aquatic Organic,1999,35:195-201.
    [52]Oakey H J and Owens L.A new bacteriophage,VHML,isolated from a toxin-producing strain of Vibrio harveyi in tropical Australia[J].Journal of Applied Microbiology,2000,89:702-709.
    [53]Oakey H J,Cullen B R and Owens L.The complete nucleotide sequence of the Vibrio harveyi bacteriophage VHML[J].Journal of Appllied Microbiol,2002,93:1089–1098.
    [54]Munro J,Oakey J,Bromage E,et al.Experimental bacteriophage-mediated virulence in strains of Vibrio harveyi[J].Diseases Aquatic Organic,2003,54:187-194.
    [55]Austin B,Pride A C and Rhodie G A.Association of a bacteriophage with virulence in Vibrio harveyi[J]. Journal Of Fish Diseases,2003,26:55–58.
    [56]Pasharawipas T,Thaikua S,Sriurairatana S,et al.Partial characterization of a novel bacteriophage of Vibrio harveyi isolated from shrimp culture ponds in Thailand[J].Virus Research,2005,114:63–69.
    [57]Khemayan K,Pasharawipas T,Puiprom O,et al.Unstable lysogeny and pseudolysogeny in Vibrio harveyi siphovirus-like phage1[J].Appllied Environmental Microbiology,2006,72:1355-1363.
    [58]Montgomery M T and Kirchman D L.Role of chitinbinding proteins in the specific attachment of the marine bacterium Vibrio harveyi to chitin[J].Appllied Environmental Microbiology,1993,59:373-379.
    [59]Montgomery M T and Kirchman D L.Induction of chitin-binding proteins during the specific attachment of the marine bacterium Vibrio harveyi to chitin[J].Applied Environmental Microbiology,1994,60: 4284-4288.
    [60]Owens L,Austin D A and Austin B.Effect of siderophore production in Vibrio harveyi isolates[J].Diseases Aquatic Organic,1996,27:157-160.
    [61]Pizzutto M and Hirst R G.Classification of isolates of Vibrio harveyi virulent to Penaeus monodon larvae by protein profile analysis and M13 DNA fingerprinting[J].Diseases of Aquatic Organic,1995,21:61-68.
    [62]Hernandez G and Olmos J.Molecular identification of pathogenic and nonpathogenic strains of Vibrio harveyi using PCR and RAPD[J].Applied Microbiological Biotechnology,2004,63:722-727.
    [63]Manson M D,Tedesco P,Berg H C,et al.A protonmotive force drives bacterial flagella [J].Proceendings Of National Academy Science USA,1977,74(7):3060-3064.
    [64]Imae Y,Atsumi T.Na+-driven bacterial flagellar morors[J].Bioenerg Biomembr,1989,21(6):705-716.
    [65]Magariyama Y,S Sugiyama,K Muramoto,et al.Very fast flagellar rotation [J].Nature,1994, 371:752.
    [66]Harshey R M.Bees are not the only ones:swarming in Gram-negativebacteria[J].Molecular Microbiology, 1994,13:389-394.
    [67]Meadows,The atachment of bacteria to solid surfaces[J].Archives.Microbiology,1971,75:374-381.
    [68]Ormonde P,P Horstedt,R O’Toole,et al.Role of motility in adherence to and invasion of a fish cell line by Vibrio anguillarum[J].Journal of Bacteriology,2000,182:2326–2328.
    [69]刘荫武.细菌的鞭毛结构及其运动机制[J].微生物学通报,1991,18(5):311-314.
    [70]Renate L,Wenyuan S.Chemotaxis-guided movements in bacteria[J].Critical Review in Oral Biological Medicine,2004,15(4):207-220.
    [71]Josenhans C,Suerbaum S.The role of motility as a virulence factor in bacteria[J].International Journal of Medical Microbiology,2002,291:605–614.
    [72]Suzanne M J F,Shiwani K A, Rajana Van,et al. FlhA,a component of the flagellum assembly apparatus of Paeudomonas aeruginosa,plays a role in internalization by corneal epithelial cells[J].Infection And Immununity,2001,69(8):4931-4937.
    [73]Tomich M,Herfst C A,Golden J W,et al.Role of flagella in host cell invasion by Burkholderia cepacia[J].Infection and Immununity,2002,70(4):1799-1806.
    [74]Nakazawa T.Growth cycle of Helicobacter pylori in gastric mucous layer[J].Keio Journal of Medicine 51(Suppl 2),2002:15-19.
    [75]Hugdahl M B,Beery J T,Doyle M P.Chemotactic behavior of Campylobacter jejuni[J].Infection and Immunity,1988,56:1560–1566.
    [76]Morooka T,et al.Motility as an intestinal colonization factor for Campylobacter jejuni[J].Journal of General Microbiology,1985,131:1930-1980.
    [77]Freter R,et al.Role of chemotaxis in the association of motile bacterial with intestial mucosa:Invitro studies[J].Infection and Immunity,1981,34:241-249.
    [78]Patricia O,Per H,Ronan O’T,et al.Role of Motility in Adherence to and Invasion of a Fish Cell Line by Vibrio anguillarum[J].Journal of Bacteriology,2000,182 (8):2326–2328.
    [79]Jong-H L,Jong B R,Kyung-J P,et al.Role of Flagellum and Motility in Pathogenesis of Vibrio vulnificus[J].Infection And Immunity,2004,72(8):4905–4910.
    [80]Gardel C L,Mekalanos J J.Alterations in Vibrio cholerae motility phenotypes correlate with changes in virulence factor expression[J].Infection and Immunity,1996,64(6):2246-2255.
    [81]Liang Weili,Alberto Pascual-Montano,Anisia J S,et al.The cyclic AMP receptor protein modulates quorum sensing,motility and multiple genes that affect intestinal colonization in Vibrio cholerae[J].Microbiology, 2007,153:2964-2975.
    [82]Berg P,Singer M F.The recombinant DNA controversy:twenty years later[J].Proceedings National Academy Science USA,1995,92:9011-9013.
    [83]Kim Y,Harker A R.Cloning and characterization of the regulatory genes phlR1 and phlR2 involved in phenol,metabolism from Alcaligenes eutrophus JMP134[J].Molecules and Cells,1997,7:620-629.
    [84]Vermeij P,Wietek C,Kahnert A,et al.Genetic organization of sulphur- controlled aryl desulphonation in Pseudomonas putida S-313[J].Molecular Microbiology,1999,32:913-926.
    [85]Mc Namara P J,Milligan-Monroe K C,Khalili S,Proctor R A.Identification,cloning and initial characterization of rot,a locus encoding a regulator of virulence factor expression in Staphylococcus aureus[J].Bacteriology,2000,182:3197-3203.
    [86]De P K,Desjardin V,Mandrand-Berthelot M A,et al.Isolation and characterization of the nikR gene encoding a nickel-responsive regulator in Escherichia coli[J].Journal of Bacteriology,1999,181:670-674.
    [87]Ronald Chalmers,Sven Sewitz,et al.Complete Nucleotide Sequence of Tn10[J].Joural of Bacteriology, 2000,p.2970–2972.
    [88]David B.Transpososome Dynamics and Regulation in Tn10 Transposition[J].Critical Reviews in Biochemistry and Molecular Biology,2006(41):407–424.
    [89]Bender J and Kleckner N.Genetic evidence that Tn10 transposes by a nonreplicative mechanism[J]. Cell, 1986,45:801–815.
    [90]Kennedy A K,Guhathakurta A,Kleckner N,et al.Tn10 transposition via a DNA hairpin intermediate [J].Cell,1998,95:125-134.
    [91]Kennedy A K,Haniford D B and Mizuuchi K.Single activesite catalysis of the successive phosphoryl transfer steps by DNA transposases:insights from phosphorothioate stereoselectivity[J].Cell,2000,101: 295-305.
    [92]Halling S M and Kleckner N A.symmetrical six-base-pair targetsite sequence determines Tn10 insertion specificity [J].Cell,1982,28:155-163.
    [93]Banks R D,Blake C C,Evans P R,et al.Sequence,structure and activity of phosphoglycerate kinase:a possible hinge-bending enzyme[J].Nature,1979:773-777.
    [94]Jeffreys A J,Wilson V,Neumann R,et al.Amplification of human minisatellites by the polymerase chain reaction:towards DNA fingerpringting of singles cells[J].Nucleic Acids Research,1998,16:10953.
    [95]Rich J J,Willis D K.A single oligonucleotide can be used to rapidly isolate DNA sequences flanking a transposon Tn5 insertion by the polymerase chain reaction[J].Nucleic Acids Research,1990,18:66-73.
    [96]Martin V J,Mohn W W.An alternative PCR(IPCR) method to amplify DNA sequences flanking Tn5 transposon insertions[J].Journal Of Microbiol Methods,1999,35:163.
    [97]Niall G Vine,Winston D Leukes,Horst Kaiser.In vitro growth characteristics of five candidate aquaculture probiotics and two fish pat hogens grown in fish intestinal mucus[J]. FEMD Microbiology Letters,2004, 231:145-152.
    [98]Zaval'skii L Y,Marchenko A I,Borovik R V.The study of bacterial chemotaxis to naphthalene[J]. Microbiology,1972(3):363-368.
    [99]林丽华,余加林,林雅茵等.大蒜素对铜绿假单胞菌生物膜早期黏附及胞外多糖的影响[J].中国微生态学杂志,2009,21(1):9-12.
    [100]Pratt L A,Kotler R.Genetic analysis of Escherichia coli biofilm formation:Roles of flagella,motility, chemotaxis and type I pili[J].Molecular Microbiology,1998,30(2):285–293.
    [101]李燕,牟伯中.细菌趋化性研究进展[J].应用与环境生物学报,2006,12(1):135-139.
    [102]Atsumi T,M ccarter L,Imae Y.Polar and lateral flagellar motors of marine Vibrio are driven by different ion-motive forces[J].Nature,1992,355:182-184.
    [103]邹文政,纪荣兴,义家波,等.河流弧菌对牙鲆表皮粘液的趋化作用[J].水产学报,2009,33(2):318-324.
    [104]单志英,徐海津,施兴启,等.铜绿假单胞菌蹭行运动相关基因的研究[J].微生物学报,2004,44(3): 319-323.
    [105]Mattick J S.Type IV pili and twitching motility[J].Annual Review Microbiol,2002, 56:289-314.
    [106]Lee A,O’Rourke J L,Barrington P J,et a1.Mucus colonization as a determinant of pathogenicity in intestinal infection by Campylobacter jejuni:a mouse cecal model [J].Infect IiIllnun,1986,51(2):536-546.
    [107]Beachey E H.Bacterial adherence:adhesion-receptor interactions mediating the attachment of bacteria tomucosal surfaces[J].Journal of Infect Disease,1981,143(3):325-345.
    [108]Kogure K,Ikemoto E,Morisaki H.Attachment of brioate,inolyticus to glass surfaces is dependent on swimming speed[J].Journal of Bacteriol,1998,180(4):932-937.
    [109]Belas M R,and Colwell R R.Adsorption kinetics of laterally and polarly flagellated Vibrio[J].Journal of Bacteriology,1982,151:1568-1580.
    [110]Olga A,Soutourina A,Philippe N.Regulation cascade of flagellar expression in Gram-negative bacteria [J].FEMS Microbiology Reviews,2003,27:505-523.
    [111]Kazuhiro Kogure,Eiko Ikemoto and Hisao Morisaki.Attachment of Vibrio alginolyticus to Glass Surfaces Is Dependent on Swimming Speed[J].Journal of Bacteriology,Feb.1998,p:932-937.
    [112]赵敏慧,邹文政,鄢庆枇.河流弧菌对石斑鱼体表黏液的黏附作用[J].中国水产科学,2008,15(2).
    [113]Costerton J W,Stewart P S,Greenberg E P.Bacterial Biofilms:A common cause of persistent infections [J]. Science,1999,284:1318-1322.
    [114]Josenhans C,Suerbaum S.The role of motility as a virulence factor in bacteria[J]. International Journal of Medical Microbiology,2002,291:605-614.
    [115]Davey M E,O’toole G A.Microbial biofilms:from ecology to molecular genetics.Microbiology and Molecular Biology Reviews,2000,64(4):847-867.
    [116]Rashid M H,Kornerg A.Inorganic polyphosphate is needed or swimming,swarming,and twitching motilities of Pseudomonas aeruginosa[J].PANS,2000,97:4885-4890.
    [117]Ryderc,Byrdn,Wozniak D J.Role of polysaccharides in Pseudomonas aeruginosa biofilm development[J]. Currop in Microbiol,2007,10(6):644-648.
    [118]Soutourina O A,Bertin P N.Regulation cascade of flagellar expression in Gram-negative bacteria[J]. FEMS Microbiol Review,2003,27:505-523.
    [119]Fernandez L A,Berenguer J.Secretion and assembly of regular surface structures in Gram-negative bacteria[J].FEMS Microbiol Rev,2000,24:21-44.
    [120]Claire P C,Ge rard P,Thanh T L,et a1.Developmental pathway for biofilm form ation in curli-producing Escherichiacoli strains,role of flagella,curli and colanic acid[J].Environmental Microbiology,2000,2(4): 450-464.
    [121]Rosalina G,Ali A R,Susana M,et a1.Lateral flagella of Aeromonas species are essential for epithelial cell adherence and biofilm formation[J].Molecular Microbiol,2002,43:383-397.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700