甲基睾丸酮在罗非鱼体内的消解规律及其检测方法的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究采用建立的罗非鱼各组织、鱼苗体内甲基睾丸酮残留的检测方法,对大规模养殖环境条件下,使用甲基睾丸酮后在罗非鱼鱼苗和成鱼体内的残留消除规律进行了系统研究,旨在为行政主管部门制定监督管理措施及罗非鱼药残监督溯源提供理论依据。
     首先通过比较筛选国内外相关研究,建立了适合于罗非鱼各器官组织及其鱼苗中甲基睾丸酮残留测定的高效液相色谱法。样品经乙醚超声波提取、石油醚净化(血浆、胆汁中辅以固相萃取柱萃取),然后以ODS-C18柱,77%甲醇溶液洗脱分离,紫外检测器检测、外标法定量。该前处理方法能使目标物在色谱图上有合适的保留时间、峰型好、目标峰与杂质峰完全分离,该法甲基睾丸酮浓度在0.040μg/mL~10.0μg/mL范围内线性关系良好(R2=1.0000),样品检出限分别为:背肌、腹肌8μg/kg,鱼皮、肝脏27μg/kg,性腺80μg/kg,血浆、胆汁80μg/L,鱼苗20μg/kg。方法的回收率不低于80.6%,血浆、背肌、腹肌、鱼苗、胆汁、肝脏、鱼皮、性腺的回收率分别为91.4%、88.0%、87.4%、88.9%、87.6%、83.6%、80.9%、80.6%。相对标准偏差不高于5.53%,鱼苗、肝脏、血浆、背肌,胆汁、性腺、腹肌、鱼皮分别为2.51%、3.59%、3.68%、3.96%、4.51%、4.49%、4.91%、5.53%。适用于罗非鱼组织中甲基睾丸酮的检测,同时为开展甲基睾丸酮在罗非鱼体内残留消解规律的研究奠定了基础。
     接着运用建立好的高效液相色谱法检测鱼苗体内的甲基睾丸酮的方法,研究了养殖场大规模养殖下,甲基睾丸酮用于尼罗罗非鱼苗雄性化后在苗种体内的消解规律。分别采用含200mg/kg、50mg/kg、20mg/kg甲基睾丸酮的饲料持续喂养尼罗罗非鱼苗30d来进行雄性化,随后鱼苗转移到池塘来进行甲基睾丸酮的消解实验,应用高效液相色谱法检测不同时间鱼苗体内甲基睾丸酮的残留量,并用SPSS Statistics 17.0统计软件结合EXCEL 2003进行数据处理和分析,来研究甲基睾丸酮的消解规律。结果表明,两次投喂间甲基睾丸酮在罗非鱼体内是缓慢减少的且出现多峰现象,但是在罗非鱼雄性化期间甲基睾丸酮在罗非鱼体内具有一致性。此外,停药后甲基睾丸酮的消解基本符合指数递减,虽然甲基睾丸酮雄性化效果确实很好,但是甲基睾丸酮后期消解较为缓慢,且甲基睾丸酮浓度越大,在罗非鱼鱼苗体内残留时间也越长。若养殖户私下使用过量甲基睾丸酮来用于罗非鱼的雄性化,或者在鱼苗雄性化之后使用甲基睾丸酮的话,很难在上市之前完全代谢掉,那么消费者食用后就很可能对身体造成一定的危害。因此强烈建议国家有关部门尽快研究出雄性化替代方法,如物理途径温度等来进行罗非鱼的雄性化,从根本上一方面保障养殖户的利益,一方面杜绝使用甲基睾丸酮。
     鉴于近年来罗非鱼成鱼中屡屡检出甲基睾丸酮药物残留,本文在研究甲基睾丸酮在罗非鱼苗体内的消解规律的基础上,进一步研究了甲基睾丸酮用于罗非鱼成鱼促生长后在鱼体内的消解规律。在现实养殖环境中,采用含甲基睾丸酮200mg/kg的饲料持续投喂罗非鱼成鱼3d,每天定时投喂4次,每次喂药饲料量约为罗非鱼生物量的3%~5%,3d后停止喂药,实验鱼转移到养殖池塘。用先前建立的高效液相色谱法检测用药后不同时间背肌、腹肌、鱼皮、肝脏、性腺、血浆、胆汁中药物浓度,并用DAS 2.1.1药物代谢分析软件结合EXCEL 2003进行数据处理和分析,来研究甲基睾丸酮在各组织中的消解规律。结果发现背肌、腹肌、鱼皮、胆汁、血浆、肝脏、性腺中的甲基睾丸酮残留量趋势为指数递减,其中血浆中甲基睾丸酮为幂指数递减。甲基睾丸酮在各组织中均有分布,组织中甲基睾丸酮浓度分布从高到低依次为:胆汁、肝脏、性腺、血浆、鱼皮、腹肌、背肌,暗示着甲基睾丸酮在鱼体体内的代谢为肝胆代谢。在该条件下各组织中甲基睾丸酮残留量在停药后1164h(49d)时才无检出,其中血浆在804h(34d)时无检出。说明药物代谢需要较长时间,若养殖户私下在成鱼阶段使用甲基睾丸酮,若离上市时间较短,那就很难保证在上市之前能完全代谢完。为了消费者的安全,养殖成鱼阶段应杜绝使用甲基睾丸酮,相关部门应严厉打击惩罚成鱼阶段使用甲基睾丸酮的行为,同时也应该加强对饲料配方的优化来达到促罗非鱼生长的目的,让养殖户从根本上愿意彻底放弃使用甲基睾丸酮。
17α-methyltestosterone (MT), a synthetic androgen drugs, has served as a specific medicine on fry culture and gender control in aquaculture. It was found that there were MT residues in tilapia at the market, which would harm the human body as this androgen has great potential hazard on human health. Studies were conducted on the dissipation of MT in Nile tilapia Oreochromis niloticus (L.) fry that received dietary of MT to induce sex reversal and adult Nile tilapia Oreochromis niloticus (L.) that received dietary of MT to promote the growth under aquaculture model, aimed for providing theoretical support for security control of fishery drugs in aquaculture and monitoring of drug residues in tilapia tracing, which was based on the optimized high-performance liquid chromatography method for determination of MT residues in tilapia tissues and tilapia fry.
     First, by comparing the domestic and foreign studies, a simple high-performance liquid chromatography method for determination of MT residues in tilapia tissues and tilapia fry have been optimized. Samples extracted by ether ultrasonic extraction, purified by petroleum ether (plasma, bile supplemented by SPE extraction), separated by using a ODS-C18 analytical column with methanol water (the ratio was 77%) and UV detector, determined by the external standard method, which had a suitable retention time, good peak shape, target peak and impurity peaks can completely separated, the method got good linear relationship in the range of 0.040μg/mL~10.0μg/mL MT concentration (R2 = 1.0000). The limit of detection for samples were: 8μg/kg for dorsal muscle and abdominal muscle, 27μg/kg for fishskin and liver, 80μg/kg for gonad, 80μg/L for plasma, bile, 20μg/kg for fish fry. The recoveries obtained from these samples were above 80.6%, with the relative standard deviation were below 5.53%. This method was appropriate for MT determination, at the same time laid a foundation for doing the research on the dissipation law of methyl -testosterone residues in tilapia.
     Based on the method of determination MT residues in fry, studies were conducted on the dissipation of MT in Nile tilapia Oreochromis niloticus (L.) fry that received dietary of MT to induce sex reversal under aquaculture model. Sexually undifferentiated Nile tilapia fry (8mm~10mm, 9mg~13mg) were fed on a diet containing unlabeled MT (200mg/kg, 50mg/kg, 20mg/kg) for 30d to effect masculinization in the concrete tank, daily feeding was regularly, water was changed once a week, shed was used natural to control the temperature. After 30d, the fry were transferred to a pond with normal feed, MT in fry were dissipation in the natural environment. The fry were sampled in different time and frequency in the latter days, then MT residues in fry were measured by high performance liquid chromatography (HPLC), SPSS Statistics 17.0 combines EXCEL 2003 statistical software were applied to the data processing and analysis in order to get the dissipation rule of MT after tilapia sex reversal. The results showed that MT residues in tilapia fry almost maintained consistently during the sex reversal period, although overall trend of the dissipation was still downward while multi-peak phenomenon occurred in the dissipation of MT between two feedings. Besides, though masculinization rate of MT was ideal, following the withdrawal, the dissipation of MT fitted with exponential decline and the dissipation was slowly in the latter. the higher the concentration of MT that fed to tilapia for sex reversal, the longer time MT residues maintained in tilapia fry.If the farmers use excessive MT for sex reversal of tilapia privately, there would be some MT residues in marketing tilapia that can’t eliminated completely before marketing, then it will take some harm to consumers. Strongly recommends that national authorities develope alternative methord for masculinization as soon as possible, which will fundamentally protect the interests of farmers, while eliminate MT use.
     Recently, MT determination of tilapia often turns up positive results. Studies were conducted on the dissipation of MT in adult Nile tilapia Oreochromis niloticus (L.) that received dietary of MT to promote fish growth under aquaculture model, tilapia weighed approximately 250g were fed on a diet containing unlabeled MT (200mg/kg) for 3d for promote fish growth in the concrete tank, After 3d, the tilapia were transferred to a pond with normal feed, MT in tilapia were dissipation in the natural environment. The tilapia were sampled in the latter days, then MT residues in tilapia tissues were measured by high performance liquid chromatography previously established,DAS 2.1.1 drug metabolism analysis software combines EXCEL 2003 statistical software were applied to the data processing and analysis in order to get the dissipation rule of MT in tilapia tissues. The results showed that the dissipation of MT in dorsal muscle, abdominal muscle, fishskin, bile, plasma, liver, gonad all fitted with exponential decline, of which the dissipation of MT in plasma fitted with index decrease. MT were distributed in various tissues, tissue-MT concentration was down in the order: bile, liver, gonads, plasma, skin, abdominal muscle, dorsal muscle, which suggested that metabolism of MT in fish was hepatobiliary metabolism. Under these conditions, MT residues in tissue is no longer detected following withdrawal 1164h in 49d, in which MT residues in plasma was no longer detected following withdrawal 804h in 34d. Suggested that drug metabolism was slowly, using MT promote fish growth in adults stage, there would be some MT residues in marketing tilapia that can’t eliminated completely before marketing. For consumer safety, MT use must be forbidden in adult fish stage, relevant departments should severely punish farmers that using MT in adults stage privately, also should enhance feed formula optimization for growth of tilapia purpose, so that farmers are willing to completely abandon the use of MT.
引文
[1] Lumbreras R.G., Hornillos R.I.. Optimization and validation of conventional and micellar LC methods for the analysis of methyltestosterone in sugar-coated pills [J]. Journal of Pharmaceutical and Biomedical Analysis, 2003, 31: 201~208.
    [2] Dumas A.S., Bizec B.L., Pape M.A., et al. Biosynthesis of 6α-hydroxymethyltestosterone using bovine hepatocyte cultures [J]. Journal of Steroid Biochemistry and Molecular Biology, 2000, 74 (1-2): 57~62.
    [3] Stanley S.M., Smith L., Rodgers J.P., et al. Biotransformation of 17-alkylsteroids in the equine: gas chromatographic-mass spectral identification of ten intermediate metabolites of methyltestosterone [J]. Journal of Chromatography B, 1997, 690: 55~64.
    [4] 11th-work-plan of Aquaculture Collaborative Research Support Program. United States Agency for International Development (USAID) Grant No. LAG-G-00-96-90015-00. 2003, 9, 56页.
    [5]雄激素类药和同化激素类药[EB/OL].医学全在线, http://www.med126.com/edu/200712/18683.shtml
    [6] Hulak M., Psenicka M., Coward K., et al. Effects of gonadal steroids on sexually dimorphic characters in Brienomyrus niger (Gunther, 1866) (Mormyridae, Teleostei): Solvining a paradox [D]. Ph.D. dissertation, The City University of New York, New York , 2006.
    [7] Thorpe K.L., Hutchinson T.H., Hetheridge M.J., et al. Assessing the biological potency of binary mixtures of environmental estrogens using vitellogenin induction in juvenile rainbow trout(Oncorhynchus mykiss) [J]. Environmental Science and Technology, 2001, 35(12): 2476~2481.
    [8] Beardmore J.A., Mair G.C., Lewis R.L.. Monosex male production in finfish as exemplified by tilapia: a pplications, problems, and prospects [J]. Aquaculture, 2001, 19(7): 283~301.
    [9] Santandreu I.A., Diaz N.F.. Effect of 17α-methyltestosterone on growth and nitrogen excretion in masusalmon (Oncorhynchus masou Brevoort) [J]. Aquaculture, 1994, 124: 321~333.
    [10] Drug approval research on 17α-methyltestosterone, plan of work for grant #2003-38500-12995
    [11]杨永铨,张中英,林克宏,等.莫桑比克罗非鱼性别生理遗传控制的初步研究[J].遗传学报, 1979, 6(3) :305~310.
    [12]张中英,杨永铨,林克宏.鱼类性别的人工控制研究介绍[J].动物学杂志, 1983, 5: 55~57.
    [13]李家乐,李思发,韩风进.甲基睾丸酮诱导吉富品系尼罗非鲫雄性的研究[J].水产学报, 1997, 21 (增刊): 107~110.
    [14]林浩然,林鼎.用雄性激素诱导罗非鱼雌鱼雄性化的试验[J].动物学杂志, 1979, 1: 1~3 .
    [15] Barry T.P., Marwah A., Marwah P.. Stability of 17α-methyltestosterone in fish feed [J]. Aquaculture, 2007, 271: 523~529.
    [16] Gale W.L., Fitzpatrick M.S., Lucero M., et al. Masculinization of Nile tilapia (Oreochromis niloticus) by immersion in androgens [J]. Aquaculture, 1999, 178: 349~357.
    [17] Wassermann G.J., Afonso L.O.. Sex reversal in Nile tilapia(Oreochromis niloticus Linnaeus) by androgen immersion [J]. Aquaculture, 2003, 34: 65~71.
    [18] Sánchez W.M.. Masculinization of Nile tilapia Oreochromis niloticus: II.Efficacy of the masculinizing agent 17a-methyltestosterone in different environments. Ph.D. dissertation, Oregon State University, Corvallis, Oregon, 2001.
    [19] Boudreau M., Courtenay S.C., MacLatchy D.L., et al. Morphological abnormalities during early-life development of the estuarine mummichog, Fundulus heteroclitus, as an indicator of androgenic and anti-androgenic endocrine disruption [J]. Aquatic Toxicology, 2005, 71: 357~369.
    [20] G¨unter V.. Exposure of the eggs to 17α-methyltestosterone reduced hatching success and growth and elicited teratogenic effects in postembryonic life stages of crayfish [J]. Aquatic Toxicology, 2007, 85: 291~296.
    [21] Chikae M., Ikeda R., Hasan Q., et al. Effects of tamoxifen, 17α-ethynylestradiol, ?utamide, and methyltestosterone on plasma vitellogenin levels of male and female Japanese medaka (Oryzias latipes) [J]. Environmental Toxicology and Pharmacology, 2004, 17: 29~33.
    [22] Mori T., Matsumoto H., Yokota H.. Androgen-induced vitellogenin gene expression in primary culture of rainbow trout hepatocytes [J]. Journal of Steroid Biochemistry and Molecular Biology, 1998, 67, 133~141.
    [23] Andersen L., Kazeto R.G., John M.. Trant Short-term exposure to low concentrations of the synthetic androgen methyltestosterone affects vitellogenin and steroid levels in adult male zebrafish (Danio rerio) [J]. Aquatic Toxicology, 2006, 76: 343~352.
    [24] ?rn S., Holbech H., Madsen T.H., et al. Gonad development and vitellogenin production in zebrafish (Danio rerio) exposed to ethinylestradiol and methylte -stosterone [J]. Aquatic Toxicology, 2003, 65: 397~411.
    [25] Sharpe R.L., MacLatchy D.L., Courtenay S.C., et al. Effects of a model androgen (methyltestosterone) and a model anti-androgen (cyproterone acetate) on reproductive endocrine endpoints in a short-term adult mummichog (Fundulus heteroclitus) bioassay [J]. Aquatic Toxicology, 2004, 67: 203~215.
    [26] Lazier C.B., Langley S., Ramsey N.B., et al. Androgen Inhibition of Vitellogenin Gene Expression in Tilapia (Oreochromis niloticus) [J]. General and Comparative Endocrinology, 1996, 104(3): 321~329.
    [27] Ankley G.T., Jensen K.M., Kahl M.D., et al. Description and evaluation of a short-term reproductive test with the fathead minnow (Pimephales promelas) [J]. Environmental Toxicology and Chemistry, 2001, 20: 1276~1290.
    [28] Lofts B.. Effects of methyltestosterone on the testes of a hypophy- sectomized cyprinodont fish Fundulus heterolifus, General and Comparative Endocrinology, 1966, 6: 74~88.
    [29] Sperry T.S., Peter T.. Characterization of Two Nuclear Androgen Receptors in Atlantic Croaker: Comparison of Their Biochemical Properties and Binding Specificities [J]. Endocrinology, 1999, 140(4): 1602~1611.
    [30] Mora G., Elizaa M., Song J., et al. 17α-Methyltestosterone is a competitive inhibitor of aromatase activity in Jar choriocarcinoma cells and macrophage-like THP-1 cells in culture. The Journal of Steroid Biochemistry and Molecular Biology, 2001, 79(1-5): 239~246.
    [31]李广丽,刘晓春,林浩然. 17α-甲基睾酮对赤点石斑鱼性逆转的影响[J].水产学报. 2006, 30(2): 145~150.
    [32] Nagabhushanam, R., Diwan A.D.. Neuroendocrine control of reproduction in the female crab [J]. Barytelphusa cunicularis, 1974, 13: 59~67.
    [33] Lofts B.. Effects of methyltestosterone on the testes of a hypophysectomized cyprinodont fish Fundulus heterolifus [J]. General and Comparative Endocrinology, 1966, 6: 74~88.
    [34] Billard R., Fostier A., Weil C., et al. Endocrine control of spemmtogenesis in teleost fish [J]. Canadian Journal of Fisheries and Aquatic Sciences, 1982, 39: 65~79.
    [35] Callard L.P., Callard G.V., Lance V., et al. Testicular regulation in nonmammalian vertebrates [J]. Biology of Reproduction, 1978, 18: 16~43.
    [36]方永强,李正森. 17a-甲基睾酮刺激鲻鱼精子发生机制的初步研究[J].海洋与湖沼, 1989, 20(1): 10~14.
    [37] Alfaro A.J.. Effect of 17α-methyltestosterone and 17α-hydroxyprogesterone on the quality of white shrimp Litopenaeus vannamei spermatophores [J]. Journal of the world aquaculture society, 1996, 27(4): 487~492.
    [38] Heywood R., Chesterman H., Ball S.A., et al. Toxicity of methyltestosterone in the beagle dog [J]. Toxicology, 1977, 7: 357~365.
    [39] Taylor W., Snowball S., Lesna M.. The effects of long-term administration of methyltestosterone on the development of liver lesions in BALB/c mice [J]. Journal of Pathology, 1984, 143: 211~218.
    [40] Tennant B.C., Balazs T., Baldwin B.H., et al. Assessment of hepatic function in rabbits with steroid-induced liver injury [J]. Fundamental and Applied Toxicology, 1981, 1: 329~333.
    [41] Recant L., Lacey P.. Fanconi’s anemia and hepatic cirrhosis: clinicopathologic conference [J]. The American Journal of Chinese Medicine, 1965, 39: 464~476.
    [42] Johnson F.L., Feagler J., Lerner K., et al. Association of androgenic-anabolic steroid therapy with development of hepatocellular carcinoma [J]. Lancet, 1972, 2: 1273~ 1276.
    [43] Lucey M.R.. Severe cholestasis associated with methyltestosterone: A case report [J]. American Journal of Gastroenterology, 1987, 82: 461~462.
    [44] Foss G. L., Simpson S. L.. Oral methyltestosterone and jaundice [J]. British Journal of Industrial Medicine, 1959, 1: 259~261.
    [45] Bernstein M.S., Hunter R.L., Yachnin S.. Hepatoma and peliosis hepatitis developing in a patient with Fanconi’s anaemia [J]. New England Journal of Medicine, 1971, 284: 1135~1136.
    [46] Jost A.. Studies about the sexual differentiation of the rabbit embryo. 2. effect of synthetic androgens on genital histogenesis [J]. Archives d'Anatomie Microscopique et de Morphologie Experimentale, 1947, 36: 242~315.
    [47] Neumann F., Junkmann K.. A new method for determination of virilizing properties of steroids on the fetus [J]. Endocrinology, 1963, 73: 33~37.
    [48] Shane B.S., Dunn H.O., Kenny R.M., et al. Methyltestosterone-induced female pseudohermaphroditism in dogs [J]. Biology of Reproduction, 1969, 1: 41~48.
    [49] Van W.G., Hamilton J. B.. The experimental production of pseudohermaphroditism in the monkey [J]. In Essays in Biology, 1943, 583~607.
    [501] Wells L.J., Van W.G.. Androgen-induced female pseudohermaphroditism in the monkey (Macaca mulatta): anatomy of the reproductive organs [J]. Embryology, 1954,35: 93~106.
    [51] Golubeva M.I., Shashkina L.F., Neugodova O.P.. Assessment of the effect of sex steroids on the sexual behavior of the rat at late periods of observation [J]. Farmakol Toksikol, 1983, 46(2): 85~88.
    [52] Kawashima K., Nakura S., Nagao S., et al. Virilizing activities of various steroids in female rat fetuses [J]. Endocrinologia japonica, 1977, 24: 77~81.
    [53] Jost A.. Actions urlacroissancedes embronosde divers androgens injectes ala rat egestante [J]. Annales d'Endocrinologie, 1956, 17: 118~121.
    [54] Ajisawa C., Ikadai H., Imamichi T.. Effect of methyltestosterone injection during fetal period on the absence of the epididymis and ductus deferens in the TW inbred rat [J]. Teratology, 1985, 32: 34B.
    [55] Methyltestosterone testred Prescribing Information. [EB/OL]. 2007, 3. www.drugs.com/pro/testred.html
    [56] Yamazaki F.. Effects of methyltestosterone on the skin and the gonad of salmonids [J]. General and Comparative Endocrinology, Progress in Comparative Endocrinology, 1972, 3: 741~750.
    [57] Fagerlund H.M., Helen M.D.. Depletion of radioactivity from yearling coho salmon (Oncorhynchus kisutch) after extended ingestion of anabolically effective doses of 17α-methyltestosterone-1, 2-3H [J]. Aquaculture, 1979, 18(4): 303~315.
    [58] Johnstone R., Macintosh D.J., Wright R.S.. Elimination of orally administrated 17a-methyltestosterone by Oreochromis mossambicus (Tilapia) and Salmo gairdneri (rainbow trout) juveniles [J]. Aquaculture, 1983, 35: 249~257.
    [59] Goudie C.A., Shelton W.L., Parker N.C.. Tissue distribution and elimination of radiolabelled methyltestosterone fed to sexually undifferentiated blue tilapia [J]. Aquaculture, 1986, 58(3~4): 215~226.
    [60] Rinchard J., Dabrowski K., Abiado M.A., et al. Uptake and depletion of plasma 17α-methyltestosterone during induction of masculinization in muskellunge, Esox masquinongy: Effect on plasma steroids and sex reversal [J]. Steroids, 1999, 64(8): 518~525.
    [61] Vick A.M., Hayton W.L.. Methyltestosterone pharmacolinetics and oral bioavailability in rainbow trout (Oncorhynchus mykiss) [J]. Aquatic Toxicology, 2001, 52(3-4): 177~188.
    [62] Chikae M., Ikeda R., Hasan Q., et al. Effects of tamoxifen, 17α-ethynylestradiol, flutamide, and methyltestosterone on plasma vitellogenin levels of male and female Japanese medaka (Oryzias latipes) [J]. Environmental Toxicology and Pharmacology,2004, 17(1): 29~33.
    [63] Lee S.T., Kime D.E., Chao T.M., et al. In virto metabolism of testosterone by gonads of grouper (Epinephelus tauvina) before and after sex inversion with 17a-methyltestosterone [J]. General and Comparative Endocrinology, 1995, 99: 41~49.
    [64] Kitano T., Takamune K., Nagahama Y., et al. Aromatase inhibitor and 17a-methyltestosterone cause sex-reversal from genetical females to phenotypic males and suppression of P450 aromatase gene expression in Japanese flounder(Paralichthys olivaceus) [J]. Molecular Reproduction and Development, 2000, 56: 1~5.
    [65] Kincl F.A., Kramer C.R., Koulish S.. Sex reversal in wrasses 1. Uptake of testosterone by the gonads and central nervous system and its aromatization in the CNS of Thalassoma duperrey (Teleostei: Labridae) [J]. Endocrinologia experimentalis, 1987, 21: 115~123.
    [66]生命科学导论[EB/OL].东南大学生物科学与医学工程系的考研专业课, http://www.lmbe.seu.edu.cn/biology/bess/biology/chapt14/14-3-4.htm
    [67] Cardoso C.R., Marques M.A., Caminha R.C., et al. Validation of the determination of oxymetholone in human plasma analysis using gas chromatography–mass spectrometry Application to pharmacokinetic studies [J]. Journal of Chromatography B, 2002, 775: 1~8.
    [68] Scha¨nzer W., Horning S., Opfermann G., et al. Gas Chromatography/Mass Spectrometry Identification of Long-term Excreted Metabolites of the Anabolic Steroid 4-Chloro-, 1, 2-dehydro-17α-methyltestosterone in Humans [J]. Journal of Steroid Biochemistry and Molecular Biology, 1996, 57(5):363~376.
    [69] Shinohara Y., Isurugi K., Hashimoto T., et al. Stable isotope dilution analysis of human urinary metabolites of 17a-methyltestosterone [J]. Journal of Chromatography B, 2000, 741: 271~278.
    [70] Rendic S., Nolteernsting E., Scha¨nzer W., et al. Metabolism of anabolic steroids by recombinant human cytochrome P450 enzymes, Gas chromatographic-mass spectrometric determination of metabolites [J]. Journal of Chromatography B, 1999, 735: 73~83.
    [71] Stolker A.A., Ginkel L.A., Stephany R.W., et al. Supercritical fluid extraction of methyltestosterone, nortestosterone and testosterone at low ppb levels from fortified bovine urine [J]. Journal of Chromatography B, 1999, 726: 121~131.
    [72]聂建荣,朱孟丽,朱铭立,等. HPLC-MS/MS快速检测水产品中甲基睾丸酮的研究[J].广东农业科学, 2008, (6):107~109.
    [73] Chu P.S., Lopez M., Serfling S., et al. Determination of 17α-methyltestosterone in muscle tissues of tilapia, rainbow trout, and salmon using liquid chromatography -tandem mass spectrometry [J]. Journal of Agricultural and Food Chemistry, 2006, 54: 3193~3198.
    [74] GB/T 22260-2008饲料中甲基睾丸酮的测定高效液相色谱串联质谱法[S]. 2008.
    [75] Regal P., Nebot C., Vázquez B.I., et al.. Determination of the hormonal growth promoter 17a-methyltestosterone in food-producing animals: Bovine hair analysis by HPLC–MS/MS [J]. Meat Science, 2010, 84: 196~201.
    [76] Goudie C.A.. Extraction of a synthetic androgen from fish muscle and quantitation by high performance liquid chromatography [J]. Steroids, 1984, 44: 241~252.
    [77] Cravedi J.P., Delous G.. Use of an immobilized enzyme reactor for the analysis of residues of 17α-methyltestosterone in trout by high-performance liquid chromatography [J]. Journal of Chromatography, 1991, 564: 461~467.
    [78]罗晓燕,林玉娜,刘莉治,等. SPE-HPLC同时测定水产品中己烯雌酚、甲基睾酮的研究[J].现代预防医学, 2005, 32(4): 287~289.
    [79]付晓婷,林洪,江洁.水产品中甲基睾酮HPLC检测方法的研究[C]. 2004年度全国水产品加工与综合利用学术研讨会论文集, 2004, 108~116.
    [80] SC/T 3029-2006水产品中甲基睾丸酮残留量的测定液相色谱法[S]. 2006.
    [81] Jiang J., Lin H., Fu X.T., et al. Preliminary validation of high performance liquid chromatography method for detection of methyltestosterone residue in carp muscle [J]. Journal of Ocean University of China, 2005, 4(3): 248~251.
    [82] Marwah A., Marwah P., Lardy H.. Development and validation of a high performance liquid chromatography assay for 17α-methyltestosterone in fish feed [J]. Journal of Chromatography B, 2005, 824: 107~115.
    [83]林晓辉,张雪原,陈涟,等. RP-HPLC测定甲睾酮片中甲睾酮的含量[J].广东药学, 2005, 15(6):15~16.
    [84]姚莉蓓,冉兰,刘梅妍. HPLC测定甲睾酮喷雾剂中的甲睾酮[J].华西药学杂志, 2008, 23 (2): 235~236.
    [85] DB33/T 745-2009浙江省地方标准饲料中甲基睾丸酮的测定高效液相色谱法[S], 2009.
    [86] Jansen, E.H., Berg R.H., Zomer G., et al. Combination of high-performance liquid chromatography and chemiluminescent immunochemical detectionof hormonal anabolics and their metabolites [J]. Analytica Chimica Acta, 1985, 170: 21~27.
    [87] Jansen E.H., Laan C.A., Berg R.H., et al. A solid phase chemiluminescence immunoassay for 17α-methyltestosterone [J]. Analytica Chimica Acta, 1985, 170:29~33.
    [88] Jansen, E.H., Berg R.H., Zomer G., et al. A chemiluminescent immunoassay for 17α-methyltestosterone [J]. Food Additives and Contaminants, 1985, 2: 47~53.
    [89]. Jansen E.H., Berg R.H., Miedema R.B., et al. Studies on the metabolism of anabolic androgens in cattle using HPLC with chemiluminescence immunochemical detection [C]. Bioluminescence and Chemiluminescence New Perspectives, Proceedings of the IV International Bioluminescence and Chemiluminescence Symposium, Freiburg, 1986.
    [90] Peteghem C.V., Look L.V., Guesqui`ere A.D.. Chemiluminescence immunoassay for the detection and quantification of methylestosterone residues in muscle tissue [J]. Journal of Chromatography B: Biomedical Sciences, 1989, 489 (1): 219~223.
    [91] Daeseleire E., Guesqui`ere A.D., Peteghem C.V.. Combined high performance liquid chromatography and radioimmunoassay for the screening of 19-nortestosterone and methyltestosterone residues in meat samples [J]. Journal of Chromatography: Biomedical Applications, 1991, 564 (2): 445~449.
    [92] Conneely G., Aherne M., Huihui L. et al. Electrochemical immunosensors for the detection of 19-nortestosterone and methyltestosterone in bovine urine [J]. Sensors and Actuators B, 2007, 121: 103~112.
    [93]黄晓东,林子俺,谢增鸿.甲基睾酮的毛细管电泳法测定[J].闽江学院学报(自然科学版), 2006, 27(2): 91~94.
    [94] Degand G., Schmitz P., Rogister G.M. Enzyme immunoassay screening procedure for the synthetic anabolic estrogens and androgens diethylstilbestrol, nortestosterone, methyltestosterone and trenbolone in bovine urine [J]. Journal of Chromatography, 1989, 489: 235~243.
    [95] Beardmore J.A., Mair G.C., Lewis R.I.. Monosex maleproduction in finfish as exemplified by tilapia: applications, problems, and prospects [J]. Aquaculture, 2001, 197: 283~301.
    [96]卢迈新,黄樟翰.罗非鱼遗传育种研究[J].上海水产大学学报, 2005, 14(2): 186~191.
    [97] Fistzsimons K.. Future trends of tilapia aquaculture in the America [J]. Tilapia Aquaculture in the Americas, 2000, (2): 252 ~264.
    [98]陈胜军,李来好,杨贤庆等.我国罗非鱼产业现状分析及提高罗非鱼出口竞争力的措施[J].南方水产, 2007, 3(11): 75~80.
    [99]广东养殖淡水鱼验出禁药港府表关注[EB/OL]. 2006, http://www.abc-residue.com/ scn/information_2006_09_02.htm
    [100]兽药信息网.国家禁用渔药说明[EB/OL]. [2008, 7, 2]. http://www. shouyaowang.cn/new_view.asp?id=9061.
    [101] Goudie C.A., Shelton W.L., Parker N.C.. Tissue distribution and elimination of radiolabelled methyltestosterone fed to adult blue tilapia [J]. Aquaculture, 1986, 58: 227~240.
    [102]龙媛媛,王丁众,李克安,等.类固醇兴奋剂分析方法的研究进展[J].色谱, 2008, 26(4): 417~423.
    [103] EFSA. Opinion of the scientific panel on contaminants in the food chain on a request from the European Commission related to hormone residues in bovine meat and meat products [J]. The EFSA Journal, 2007, 510: 1~62.
    [104]刘兆文.鸡组织中磺胺药残留HPLC检测方法的研究[D].扬州大学硕士学位论文,扬州, 2008, 20.
    [105]李万章.色谱分析中生物样品的前处理方法[J].药物分析杂志, 1996, 16(1): 55~59.
    [106]刘铁铮,王冉,柳伟荣.鸡蛋中7种磺胺药物的多残留检测方法[J].江苏农业学报, 2005, 21(4): 306~311.
    [107]吴颖,李琼,费玠. HPLC法侧定化妆品中己烯雌酚、甲基睾丸酮含量的不确定评定[C].第七届中国化妆品学术研讨会论文集.杭州,中国香精香料化妆品工业协会, 2008年, 134~139.
    [108] FAO. Fisheries and Aquaculture Information and Statistics Service [FAO FIES]. 2008.
    [109] Baroiller J.F., Cotta H.. Environment and sex determination in farmed fish [J]. Comparative biochemistry and physiology, Part C, 2001, 130: 399~409.
    [110]卓孝磊,邹记兴,崔科,等.外源性甲基睾丸酮对雌性和间性黄鳝性腺发育的影响[J].水生生物学报, 2008, 32(6): 861~867
    [111] Baroiller J.F., Cotta H., Bezault E., et al. Tilapia sex determination: Where temperature and genetics meet [J]. Comparative Biochemistry and Physiology, Part A, 2009, 153(1): 30~38.
    [112] Cravedi J.P., Delous G., Rao D.. Disposition and elimination routes of 17a-methyltestosterone in rainbow trout (Salmo gairdneri) [J]. Canadian Journal of Fisheries and Aquatic Sciences, 1989, 46: 159~165.
    [113] Cravedi J.P., Delous G., Debrauwer L., et al. Biotransformation and branchial excretion of 17a-methyltestosterone in trout [J]. Drug Metabolism and Disposition, 1993, 21: 377~385.
    [114] Curtis L.R., Diren F.T., Hurley M.D., et al. Disposition and elimination of17a-methyltestosterone in Nile tilapia (Oreochromis niloticus) [J]. Aquaculture, 1991, 99: 193~201
    [115]国家禁用渔药说明[EB/OL]. http://www.shouyaowang.cn/new_view.asp?id=9061
    [116]王慧.噁喹酸在养殖牙鲆体内的残留消除规律研究[D].中国海洋大学硕士学位论文,青岛, 2006.
    [117]张桥.卫生毒理学基础[M]. 3版.北京:人民卫生出版社. 2000, 33-35.
    [118]湛嘉,李佐卿,康继韬,等.影响水产动物药代动力学的因素[J].中国兽药杂志, 2003, 37(12): 38~41.
    [119]罗非鱼[EB/OL]. http://baike.baidu.com/view/90434.htm
    [120] Bartholomew W.G., David R.T. Human food safety and environmental assessment of the use of 17a-Methyltestosterone to produce male tilapia in the United States [J]. Journal of the World Aquaculture Society, 2000, 31(3): 337~358
    [121] Gullu K., Guzel S., Ekici K., et al. Residue analysis and effects of 17a-methyltestosterone on body composition of Rainbow Trout, Oncorhynchus mykiss [J]. Italian Journal of Food Science, 2007, 3(19): 357~362
    [122] Flaherty E.J. Toxicants and drugs: kinetics and dynamics [M]. John Wiley and Sons, New York, USA, 1981.
    [123]广东水产品药物残留抽检违禁药养虾苗现象严重[EB/OL].中国食品产业网, 2006. http://www.foodqs.com/news/gnspzs01/200691142040.htm
    [124]姚静.吡喹酮对鲫毒性试验及其药物动力学和残留研究[D].四川农业大学硕士学位论文,四川, 2007, 6~12.
    [125]王广基.药物代谢动力学[M].化学工业出版社,北京, 2006.
    [126]李安良,吴艳芬主译. Leon Shargel, Susanna Wu-Pong, Andrew B.C.Yu.著.应用生物药剂学与药物动力学[M].第五版,化学工业出版社, 2006.
    [127]世界卫生组织.水产养殖产品的食品安全指南[M].人民卫生出版社, 2000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700