压力对共培养上皮细胞下的气道平滑肌细胞影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
气道是连接咽和肺之间的呼气和吸气的通道,主要由气道上皮细胞、成纤维细胞、平滑肌细胞、肥大细胞等组成。气道的有节律性的收缩,可以保证呼吸作用的正常进行。当哮喘发生时,会使气道壁频繁痉挛,呼吸困难。哮喘的反复发作会引起气道壁的结构发生巨大变化:气道平滑肌增殖和变厚、细胞外基质沉淀等,导致气流阻塞以及非特异性的气道高反应性[1-2]。
     哮喘病现在仍然是一个亟待解决的世界性难题,目前我们对哮喘病的发病机理还存在着争议,还需要我们做更多的基础性研究来更深层次的了解哮喘病。在本课题研究中,我们基于哮喘病患者的气道平滑肌增厚和收缩能力下降这些症状,模拟身体内的力学环境,研究正常的气道平滑肌细胞和上皮细胞在受到外来压力刺激的时候,是否这些正常的平滑肌细胞的生物学特性会发生改变。
     上皮细胞位于气道的最外层,在它的下面是平滑肌细胞。当上皮细胞受到刺激后,可以分泌一些细胞因子。这些细胞因子扩散到平滑肌细胞上面以后,会引起平滑肌细胞的某些生物学特性的改变。我们的主要工作就是设计一个细胞共培养模型,把上皮细胞和平滑肌细胞培养在一起,然后对这个系统施加压力,最后检测平滑肌细胞的生物学特性是否改变。主要研究工作和结果如下:
     ①大鼠气道平滑肌细胞(SMC)、上皮细胞(RTE)的原代培养和鉴定
     利用组织贴块法对大鼠气道平滑肌细胞进行原代培养,利用胰蛋白酶消化法对上皮细胞进行原代培养。经过摸索,组织贴块法能够获得纯度很高的平滑肌细胞。在无菌环境下解剖大鼠,将获得的气管剪成小块,平铺在细胞培养瓶中,用DMEM/F12培养基培养六天左右,可见有细胞爬出来,呈现平滑肌细胞特有的外观。同样,利用气管灌注法,0.05%的胰蛋白酶能够消化得到很多上皮细胞,经过一些纯化处理以后,即可以得到纯度较高的上皮细胞。等到两种细胞长满细胞培养瓶底部80%左右时,即可以用0.25%的胰蛋白酶进行消化传代。
     将两种细胞进行鉴定。首先,在形态学上,两种细胞的符合各自的标准形态。然后对平滑肌细胞特异的α-肌动蛋白进行免疫荧光染色,得出结论所获得的确实是平滑肌细胞。再根据上皮细胞特征性地表达角蛋白,利用细胞免疫组化(SABC)法,可以判定成功获得上皮细胞。
     ②受力情况下与上皮细胞共培养的气道平滑肌的增殖
     本课题中,利用MTT法,对四种不同培养情况下的平滑肌细胞进行增殖测定,最后绘制出不同培养条件下的气道平滑肌细胞(ASMCs)的生长曲线。结果显示:与上皮细胞共培养,并且受到压力刺激的情况下,平滑肌细胞增殖速度要比其他培养条件要更快一些。并且通过对比分析,说明在压力条件下,上皮细胞会分泌一些细胞因子,这些因子与平滑肌细胞结合,促进平滑肌细胞的增殖。
     ③受力情况下与上皮细胞共培养的气道平滑肌的刚度
     本课题中,利用原子力显微镜(AFM),对四种不同培养情况下的平滑肌细胞的杨氏模量(即刚度)进行测定,通过比较,得到下面结果:和其他几种培养条件相比,与上皮细胞共培养,并且受到压力刺激的情况下,平滑肌细胞的刚度要明显变大。这可以说明,通过共培养系统模拟气道,对其施加压力,平滑肌细胞的刚度会变大,这也许和哮喘患者的气道潜在收缩能力变强。
     所有本课题研究的结果表明,在施加压力条件下,平滑肌细胞和上皮细胞的共培养很好的模拟了哮喘患者的气道环境,出现了平滑肌细胞增殖、刚度变大的现象。这样,在以后的研究中,科研人员可以利用这个共培养模型,通过分析这个过程中的培养液中的细胞因子,来证明在受到压力刺激情况下,上皮细胞究竟是通过哪种细胞因子来影响平滑肌细胞的生物特性。
Airway is the channel of aspiration and inspiration connecting throat and lung, and is mainly consisted of Airway epithelial cells, Fibroblast, Smooth muscle cells, Mast cells and so on. The normal respiration could be guaranteed by the rhythmic contraction of airway. Whereas, asthma can lead to the frequent convulsion of the airway wall and result in the scant of breath. What’s worse, the repeat episodes of asthma will cause the great structural change of the airway wall, such as the proliferation and thickening of the airway smooth muscle, precipitation of the extracellular matrix etc., which will lead to the Airflow obstruction as well as the Non-specific Airway hyperresponsiveness.
     At present, asthma is still the worldwide difficulty which urgently needs to be solved. However, we haven’t reached an agreement about the pathogenesis of asthma yet, so there are more basic researches to be done in order to deepen our understanding of asthma. Based on the asthma patients’symptoms like thickening of the airway smooth muscle and weakening of the contraction ability, the current study simulate the mechanical environment of body to investigate whether the biological features of normal airway smooth muscle cells and epithelial cells will be changed if they are exposed to external pressure stimulus.
     Epithelial cells are in the outermost layer of airway, under which are the smooth muscle cells. Epithelial cells can secrete some cytokines when they receive certain stimulation. Then these cytokines will make the smooth muscle cells change their biological features when they spread over the smooth muscle cells. In the current study, we first design a cell co-culture model and culture the epithelial cells and smooth muscle cells together; then we exert pressure to the system. Finally, the biological features of smooth muscle cells are examined to see if they are changed. The key researches and findings are as follows.
     ①The primary culture and identification of epithelium cells and Smooth muscle cells of rat airway.
     We employ the method of tissue explant to culture smooth muscle cell of rat air duct, and then use the trypsin to digest the epithelium cells. After exploration of cell culture, tissue explant method can extract highly pure smooth muscle cells. In the sterile environments, we anatomise the rat to get the air duct, and then cut it into pieces. Next, these small parts of air duct are tiled in the cell culture bottle and cultured by DMEM/F12 culture medium for 6 days or so. Finally, we can get the target cells demonstrating the particular appearance of smooth muscle cell. With the help of tracheal perfusion, 0.05% trypsin can also digest more epithelium cells. After certain purification, we can get highly pure epithelium cells. When these two kinds of cells cover 80% of cell flask, we can employ 0.25% trpsin for digestion and cell passage.
     Then the two kinds of cells are identified. Firstly, in morphology, the two kinds of cells cater to the standard norm of each type respectively. Secondly, the specificα-actin of smooth muscle cells is tested by immuno-fluorescence staining, and we conclude that the kind of cell indeed is smooth muscle cells. Next, based on the epithelium cells’characteristic expression of Keratin as well as adopting cell immuno-histochemistry, it proves that we get the the epithelium cells successfully.
     ②Proliferation of the Airway smooth muscle cell co-cultured with epithelial cell under physical forces.
     In this research, through MTT, we detect the proliferation of smooth muscle cell under 4 different culture circumstances, and draw the curve of growth for airway smooth muscle cell. The results indicate that comparing with other culture conditions, smooth muscle cells grow faster under the stimulation of pressure force and co-culture with epithelial cell. Through comparative analysis, it demonstrates that under physical forces epithelial cells will secrete certain cytokines, which can combine with smooth muscle cells and promote the proliferation of smooth muscle cells.
     ③Stiffness of the Airway smooth muscle cell co-cultured with epithelial cells under physical forces.
     In the research,using Atomic force microscopy(AFM), we detect the young’s modulus, that is the stiffness, of smooth muscle cells under four different cell culture environments. Through comparing, we draw conclusions as follows: comparing with other culture conditions, the co-culture with epithelial cell and pressure force increase the stiffness of smooth muscle cells significantly. It shows that through the virtual airway of co-culture system, the stiffness of smooth muscle cells were increased under the pressure force, it may match with the increase of asthma patients' potential contraction ability of airway.
     The results from this study all indicate that the co-culture of smooth muscle cells and epithelial cells can perfectly simulate the asthma patients’airway environment when they are exerted to pressure. And in this case, the smooth muscle cells are proliferated and stiffness becomes stronger. Thus, researchers can make use of this co-culture model in the further study. Specifically, through analyzing the cytokines in the culture solution, researchers can demonstrate which kind of cytokines is adopted by epithelial cells to affect the biological features of smooth muscle cells under pressure stimulus.
引文
[1]顾剑玲.支气管哮喘发病机制研究现状[J].海南医学,2004,15(3):58-59.
    [2]陈晓红,孙仁山.医学生物学研究生常用实验技术方法[M].成都:四川大学出版社,2009.
    [3] Daniel J,et al.Mechanical Stress Triggers Selective Release of Fibrotic Mediators from Bronchial Epithelium [J].Am.J.Respir.Cell Mol.Biol,2003,28:142-149.
    [4] Gray TE, Guzman K, Davis CW, Abdullah LH, and Nettesheim P. Mucociliary differentiation of serially passaged normal human tracheobronchial epithelial cells[J]. Am J Respir Cell Mol Biol 14: 104–112, 1996.
    [5]李志英.支气管哮喘的气道炎症研究现状[J].医学综述,2007,13(4):290-291.
    [6]许淑云,徐永健,张珍祥.支气管哮喘气道重构发病机制的研究进展[J].国外医学呼吸系统分册,2002,22(5):255-257.
    [7]刘春涛,梁宗安,王曾礼.支气管哮喘时的气道重构[J].中华结核和呼吸杂志,1999,22(8):484-486.
    [8]姜晓峰,梁红艳.哮喘发病机制研究的现状与展望[J].中华检验医学杂志,2004,27(1):7-10.
    [9]高伟良,邱晨.气道平滑肌细胞在哮喘气道重构时的增殖机制[J].国外医学呼吸系统分册,2005,25(4):281-284.
    [10] M. A. Swartz, D. J. Tschumperlin, R. D. Kamm, and J. M. Drazen.Mechanical stress is communicated between different cell types to elicit matrix remodeling[J]. NAS.2001,98(11) ,6180–6185.
    [11] DANIEL J. TSCHUMPERLIN, JONATHAN D. SHIVELY, MELODY A. SWARTZ,ERIC S. SILVERMAN,2KATHLEEN J. HALEY,GERHARD RAAB, AND JEFFREY M. DRAZEN.Mechanotransduction in the Lung Bronchial epithelial compression regulates MAP kinase signaling and HB-EGF-like growth factor expression[J]. Am J Physiol Lung Cell Mol Physiol 282: L904–L911, 2002.
    [12] Daniel J. Tschumperlin, Jonathan D. Shively, Tadashi Kikuchi, and Jeffrey M. Drazen. Mechanical Stress Triggers Selective Release of Fibrotic Mediators from Bronchial Epithelium[J]. Am. J. Respir. Cell Mol. Biol. 2003, 28: 142–149.
    [13] GEOFFREY N. MAKSYM, BEN FABRY, JAMES P. BUTLER, DANIEL NAVAJAS,DANIEL J. TSCHUMPERLIN, JOHANNE D. LAPORTE, AND JEFFREY J. FREDBERG. Mechanical properties of cultured human airway smooth muscle cells from 0.05 to 0.4 Hz[J]. J Appl Physiol. ,2000,89: 1619–1632.
    [14] Daniel J. Tschumperlin, Guohao Dai, Ivan V. Maly, Tadashi Kikuchi,Lily H. Laiho, Anna K. McVittie, Kathleen J. Haley, Craig M. Lilly,Peter T. C. So, Douglas A. Lauffenburger, Roger D. Kamm& Jeffrey M. Drazen. Mechanotransduction through growth-factor shedding into the extracellular space[J] . NATURE.2004, 429 :83–86.
    [15] DANIEL J. TSCHUMPERLIN and JEFFREY M. DRAZEN.Mechanical Stimuli to Airway Remodeling[J]. Am J Respir Crit Care Med Vol 164. pp S90–S94, 2001.
    [16] Eric K. Chu, John S. Foley, Jason Cheng, Anita S. Patel, Jeffrey M. Drazen, and Daniel J. Tschumperlin.Bronchial Epithelial Compression Regulates Epidermal Growth Factor Receptor Family Ligand Expression in an Autocrine Manner[J]. American Journal of Respiratory Cell and Molecular Biology. 2005,32 (5) 373–380.
    [17] Zhang L, Rice AB, Adler K, Sannes P, Martin L, Gladwell W, Koo JS,Gray TE, Bonner JC. Vanadium stimulates human bronchial epithelial cells to produce heparin-binding epidermal growth factor-like growth factor: a mitogen for lung fibroblasts[J]. Am J Respir Cell Mol Biol 2001;24:123–131.
    [18] Black JL, Roth M, Lee J, et al. Mechanisms of Airway Remodeling: Airway Smooth Muscle[J]. Am J Respir Crit Care Med,2001,164(10 Pt 2):63-66.
    [19]陈双红,姜宗来*,张炎,等.与平滑肌细胞联合培养的内皮细胞的抗凝血因子、粘附分子[J].解剖学报,2000,31(4):347-350
    [20] Lester Y.Leung,et al.A new microrheometric approach reveals individual and cooperative roles for TGF-β1 and IL-1βin fibroblast-mediated stiffening of collagen gels [J].The FASEB Journal,2007,21:2064-2073.
    [21] Alice A.Tomei,et al.Effects of dynamic compression on lentiviral transduction in an in vitro airway wall model [J].Am J Physiol Lung Cell Mol Physiol,2008,294:L79-L86.
    [22] Srinivas Papaiahgari,et al.EGFR-Activated Signaling and Actin Remodeling Regulate Cyclic Stretch–Induced NRF2-ARE Activation [J].Am J Respir Cell Mol Biol,2007,36: 304-312.
    [23] Eric K.Chu,et al.Bronchial Epithelial Compression Regulates Epidermal Growth Factor Receptor Family Ligand Expression in an Autocrine Manner [J].AMERICAN JOURNAL OF RESPIRATORY CELL AND MOLECULAR BIOLOGY,2005,32:373-380.
    [24] Nikola Kojic′, et al . Computational Modeling of Extracellular Mechanotransduction [J].Biophysical Journal,2006,90:4261-4270.
    [25] Daniel J. Tschumperlin, Guohao Dai, Ivan V. Maly, Tadashi Kikuchi,Lily H. Laiho, Anna K. McVittie, Kathleen J. Haley, Craig M. Lilly,Peter T. C. So, Douglas A. Lauffenburger, Roger D. Kamm& Jeffrey M. Drazen. Mechanotransduction through growth-factor shedding intothe extracellular space[J]. NATURE, 2004, 429
    [26]陈兴无,徐军.气道上皮损伤对上皮下成纤维细胞转分化的影响及其在支气管哮喘气道高反应发生中的地位[J].中华结核和呼吸杂志,2005,28(10):698-703.
    [27]邵莉,许以平.气道上皮细胞与哮喘变应性炎症[J].上海免疫学杂志,1998,18(1):58-59.
    [28] Daniel J.EGFR Autocrine Signaling in a Compliant Interstitial Spate[J].Cell Cycle,2004, 38:996-997.
    [29] Eric K.Chu,et al.Induction of the Plasminogen Activator System by Mechanical Stimulation of Human Bronchial Epithelial Cells [J].Am J Respir Cell Mol Biol,2006,35:628-638.
    [30]秦晓群,孙秀泓.气道上皮细胞与局部微环境的相互作用[J].国外医学·生理、病理科学与临床分册,1999,19(5):332-335.
    [31] Hashimoto S, Matsumoto K, Gon Y, Maruoka S, Kujime K, HayashiS, Takeshita I, and Horie T. p38 MAP kinase regulates TNF alpha-, IL-1alpha- and PAF-induced RANTES and GM-CSF production by human bronchial epithelial cells[J]. Clin Exp Allergy 30: 48–55, 2000.
    [32] Holgate ST, Lackie P, Wilson S, Roche W, and Davies D. Bronchial epithelium as a key regulator of airway allergen sensitization and remodeling in asthma[J]. Am J Respir Crit Care Med 162: S113–S117, 2000.
    [33] Howat WJ, Holgate ST, and Lackie PM. TGF-_ isoform release and activation during in vitro bronchial epithelial wound repair[J]. Am J Physiol Lung Cell Mol Physiol 282: L115–L123, 2002.
    [34] Laoukili J, Perret E, Willems T, Minty A, Parthoens E, Houcine O, Coste A, Jorissen M, Marano F, Caput D, and Tournier F. IL-13 alters mucociliary differentiation and ciliary beating of human respiratory epithelial cells[J]. J Clin Invest 108: 1817–1824, 2001.
    [35] Lordan JL, Bucchieri F, Richter A, Konstantinidis A, Holloway JW, Thornber M, Puddicombe SM, Buchanan D, Wilson SJ, Djukanovic R, Holgate ST, and Davies DE. Cooperative effects of Th2 cytokines and allergen on normal and asthmatic bronchial epithelial cells[J]. J Immunol 169: 407–414, 2002.
    [36] Zhang S, Smartt H, Holgate ST, and Roche WR. Growth factors secreted by bronchial epithelial cells control myofibroblast proliferation: an in vitro co-culture model of airway remodeling in asthma[J]. Lab Invest 79: 395–405, 1999.
    [37] Chen W and Hunninghake GW. Effects of ragweed and Th-2 cytokines on the secretion of IL-8 in human airway epithelial cells[J]. Exp Lung Res 26: 229–239, 2000.
    [38] Booth BW, Adler KB, Bonner JC, Tournier F, and Martin LD. Interleukin-13 induces proliferation of human airway epithelial cells in vitro via a mechanism mediated by transforming growth factor-alpha[J]. Am J Respir Cell Mol Biol 25: 739–743, 2001.
    [39] Wang, H.Q., et al., Coculture with endothelial cells enhances vascular smooth muscle cell adhesion and spreading via activation of beta1-integrin and phosphatidylinositol 3-kinase/Akt[J]. Eur J Cell Biol, 2007. 86(1): p. 51-62.
    [40]陈爱欢and钟南山,半胱氨酰白三烯受体拮抗剂对气道结构细胞内皮素1表达的影响[J].中华结核和呼吸杂志, 2000. 23.
    [41]王英,张睢扬, and钱桂生,气道平滑肌细胞Ryanodines受体亚型mRNA的表达及其在哮喘中的变化[J].中华结核和呼吸杂志, 2004. 20.
    [42]王英,张睢扬, and钱桂生, Inositol 1,4,5-triphophate受体亚型在大鼠气道平滑肌细胞中的表达及其在慢性哮喘中的变化[J].第三军医大学学报.
    [43]王英,钱桂生, and张睢扬, RyR反义寡核苷酸对气道平滑肌细胞增殖及细胞内钙离子浓度的影响[J].中国应用生理学杂志, 2004.
    [44]于学军,何作云,王晓燕,等.血管内皮-平滑肌细胞双层联合培养模型的改进[J].第三军医大学学报,2004,26(6):554-556.
    [45] Choe, M.M., P.H. Sporn, and M.A. Swartz, An in vitro airway wall model of remodeling[J]. Am J Physiol Lung Cell Mol Physiol, 2003. 285(2): p. L427-33.
    [46]薛军辉,张作明,郭群.内皮细胞和平滑肌细胞在微孔聚碳酸酯膜上共培养模型方法[J].第四军医大学学报,2002,23(5):390-393.
    [47] ZHAO Kang-feng1 , WANGQi , PU Xiao-ping, YANG Xiu-wei , and ZHU Yu-zhen. Preparation of BCEC-Astrocyte Co-culturing Membrane Plate Insert. [J].Journal of Chinese Pharmaceutical Sciences,2004,13(4):276-281.
    [48]姜宗来,从兴忠,覃开荣等.用于血管内皮细胞与平滑肌细胞联合培养的力学测试系统的建立[J].医学生物力学,vol 18.
    [49]白燕,熊瑛.气道平滑肌支气管哮喘气道重塑研究进展[J].中华哮喘杂志(电子版),2009,3(4):307-310.
    [50]殷晓峰,冯玉麟,刘春涛.大鼠支气管哮喘模型气道重构的研究[J].四川医学,2002,23(5):497-498.
    [51]骆仙芳,蔡宛如,王会仍.气道平滑肌的增殖和分泌[J].国际呼吸杂志,2006,26(5):351-357.
    [52]曾冬根,李洁,潘永平.气道重建与支气管哮喘[J].江西医学院学报,2005,45(3):183-184.
    [53]朱艳芬,宋泽庆.小鼠支气管哮喘模型的研究现状[J].中华哮喘杂志(电子版),2009,3(4):311-314.
    [54]卓致远,黄茂,崔学范,等.组织贴块法培养小鼠气道平滑肌细胞[J].中国组织化学与细胞化学杂志,2007,16(2):247-250.
    [55]廖伟,钱桂生,雷撼,等.人气道上皮细胞的体外原代培养研究[J].解放军医学杂志,2007,32(6):565-567.
    [56] Kuo-Chen Cheng,et al.Ventilation with Negative Airway Pressure Induces a Cytokine Response in Isolated Mouse Lung [J].Anesth Analg,2002,94:1577-1582.
    [57]叶人诵,沈惠风.气道上皮与支气管哮喘的相关进展[J].实用预防医学,2008,15(2):614-616.
    [58] Arima M, Plitt J, Stellato C, Bickel C, Motojima S, Makino S, Fukuda T, and Schleimer RP. Expression of interleukin-16 by human epithelial cells. Inhibition by dexamethasone[J]. Am J Respir Cell Mol Biol 21:684–692, 1999.
    [59] Bernacki SH, Nelson AL, Abdullah L, Sheehan JK, Harris A, William Davis C, and Randell SH. Mucin gene expression during differentiation of human airway epithelia in vitro. Muc4 and muc5b are strongly induced[J]. Am J Respir Cell Mol Biol 20: 595–604, 1999.
    [60] Li L, Xia Y, Nguyen A, Lai YH, Feng L, Mosmann TR, and Lo D. Effects of Th2 cytokines on chemokine expression in the lung: IL-13 potently induces eotaxin expression by airway epithelial cells[J]. Immunol 162: 2477–2487, 1999.
    [61] Ressler B, Lee RT, Randell SH, Drazen JM, and Kamm RD. Molecular responses of rat tracheal epithelial cells to transmembrane pressure[J]. Am J Physiol Lung Cell Mol Physiol 278: L1264–L1272, 2000.
    [62] [62] Richter A, Puddicombe SM, Lordan JL, Bucchieri F, Wilson SJ, Djukanovic R, Dent G, Holgate ST, and Davies DE. The contribution of interleukin (IL)-4 and IL-13 to the epithelial-mesenchymal trophic unit in asthma[J]. Am J Respir Cell Mol Biol 25: 385–391, 2001.
    [63] Zhu Z, Homer RJ, Wang Z, Chen Q, Geba GP, Wang J, Zhang Y, and Elias JA. Pulmonary expression of interleukin-13 causes inflammation, mucus hypersecretion, subepithelial fibrosis, physiologic abnormalities, and eotaxin production[J]. Clin Invest 103: 779–788, 1999.
    [64]戴晓天,熊玮,杨和平,等.维甲酸对大鼠气道上皮细胞增殖影响实验研究[J].重庆医学,2006,35(19):1759-1761.
    [65]邓三明,汪健,连耀国,等.四种气管上皮细胞分离培养方法的比较研究[J].医学研究生学报,2005,18(10):870-874.
    [66]鲍春荣,丁芳宝,黄盛东,等.人食管上皮细胞培养、冻存及复苏方法的实验研究[J].上海医学,2006,29(6):339-341.
    [67]张瑜,韩彪,陈昶,等.大鼠气管上皮细胞培养:3种方法的比较[J].中国组织工程研究与临床康复,2009,13(5):825-828.
    [68]章晓红,王曾礼.合成型气道平滑肌细胞与支气管哮喘[J].国外医学呼吸系统分册,2002,22(4):187-189.
    [69] Workineh Shibeshi,et al.Isolation and culture of primary equine tracheal epithelial cells[J].In Vitro Cell.Dev.Biol.-Animal,2008,44:179-184.
    [70] V.E.Fernandez,V.McCaskill,N.D.Atkins,and A.Wanner.Variability of Airway Responses in Mice [J].Lung,1999,177:355-366
    [71] Hirst SJ, Hallsworth MP, Peng Q, and Lee TH. Selective induction of eotaxin release by interleukin-13 or interleukin-4 in human airway smooth muscle cells is synergistic with interleukin-1beta and is mediated by the interleukin-4 receptor alpha-chain[J]. Am J Respir Crit Care Med 165:1161–1171, 2002
    [72] Adler KB, Fischer BM, Wright DT, Cohn LA, Becker S.Interactions between respiratory epithelial cells and cytokines: relationship to lung inflammation[J]. Ann N Y Acad Sci. 1994 May 28;725:128-45
    [73]殷晓峰,冯玉麟,刘春涛.大鼠哮喘模型中转化生长因子-β1对气道重构调节作用的研究[J].中国呼吸与危重监护杂志,2002,1(3):157-159.
    [74]郑宏宇,张嘉琳,赵汉青,等.白细胞介素-4对大鼠气道平滑肌细胞的促增生作用[J].基础医学与临床,2002,22(2):159-166.
    [75] Hoshino M, Nakamura Y, and Sim JJ. Expression of growth factors and remodelling of the airway wall in bronchial asthma[J]. Thorax 53: 21–27, 1998.
    [76] Stephen T. Holgate, John Holloway, Susan Wilson, Fabio Bucchieri, Sarah Puddicombe and Donna E. Davies. Epithelial–Mesenchymal Communication in the Pathogenesis of Chronic Asthma[J]. The Proceedings of the American Thoracic Society 1:93-98, 2004
    [77] Kumar RK, Herbert C, Foster PS. Expression of growth factors by airway epithelial cells in a model of chronic asthma: regulation and relationship to subepithelial fibrosis[J]. Clin Exp Allergy 2004;34:567–575.
    [78] Stamenovic D, Suki B, Fabry B, Wang N, Fredberg JJ. Rheology of airway smooth muscle cells is associated with cytoskeletal contractile stress[J]. J Appl Physiol 2004;96:1600–1605.
    [79] Dimitrije Stamenovi′c? . Cytoskeletal mechanics in airway smooth muscle cells[J].Respiratory Physiology & Neurobiology,2008,163:25-32.
    [80] Fredberg JJ, et al. Airway smooth muscle, tidal stretches, and dynamically determined contractile states. Am J Respir Crit Care Med 1997;156:1752–1759.
    [81] Lau AW, Hoffman BD, Davies A, Crocker JC, Lubensky TC. Microrheology, stress fluctuations, and active behavior of living cells[J]. Phys Rev Lett 2003;91:198101.
    [82] Vogel V, Sheetz M. Local force and geometry sensing regulate cell functions[J]. Nature RevMol Cell Biol 2006;7:265–275.
    [83] Xavier Trepat, Linhong Deng, Steven S. An, Daniel Navajas, Daniel J. Tschumperlin, William T. Gerthoffer, James P. Butler, and Jeffrey J. Fredberg. Universal physical responses to stretch in the living cell[J]. Nature. 2007 May 31; 447(7144): 592–595.
    [84] Alcaraz J, et al. Microrheology of human lung epithelial cells measured by atomic force microscopy[J]. Biophys J 2003;84:2071–2079.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700