髓系白血病骨髓有核细胞中Wnt5a启动子区域甲基化状态及其与白血病发生关系的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     Wnt蛋白家族包括多个成员且序列和信号传导方式高度保守,在调控胚胎发育中起重要作用,Wnt5a是其家族成员之一,该基因在各类肿瘤中的作用是近年关注的热点之一。与Wnt5a相关的研究涉及多种肿瘤,并且在不同肿瘤中的表现不一。髓系白血病在中国的发病率持续升高,且国内外罕见Wnt5a与髓系白血病关系的报道,我们前期研究已证明Wnt5a具有抑制白血病细胞株增殖的作用,其表达缺失可能与白血病发生有关,但明确的作用机制尚未深入研究。本研究拟观察髓系白血病病人治疗缓解前后骨髓有核细胞Wnt5a启动子甲基化水平的变化和去甲基化药物对白血病细胞Wnt5a启动子甲基化水平的影响,进一步探讨它表达下调或沉默的机理以及与髓系白血病发生的关系,从而为白血病提供新的肿瘤诊断标志物和基因治疗靶点。
     方法:
     1.MSP法检测30例急性髓细胞白血病初诊病例和31例急性髓细胞白血病缓解病例骨髓有核细胞Wnt5a启动子甲基化水平。
     2.MSP法检测17例慢性粒细胞白血病慢性期病例标本和3例急变期病例标本Wnt5a启动子甲基化水平。
     3.淋巴细胞分离液和细胞培养技术分离培养髓系白血病原代细胞和骨髓基质细胞,并应用RT-PCR方法检测2例培养的白血病原代细胞和骨髓基质细胞中Wnt5a的表达。
     4.MSP法检测白血病原代细胞和骨髓基质细胞中Wnt5a启动子甲基化情况。
     5.MTT法检测不同作用时间点和不同浓度去甲基化试剂Adc处理条件下的各组U937细胞的增殖情况,并确定后期实验的最适药物用量和作用时间。
     6.去甲基化试剂Adc处理U937白血病细胞株,检测不同药物浓度作用下Wnt5a的表达水平和Wnt5a基因启动子甲基化的水平的差异。
     7.流式细胞术检测去甲基化试剂Adc处理U937细胞2d后细胞周期的变化情况。
     结果:
     1. Wnt5a启动子甲基化情况:30例急性髓细胞白血病初诊病例中22例出现甲基化现象,启动子甲基化率为73.3%(22/30);31例急性髓细胞白血病缓解病例中3例出现甲基化现象,甲基化率为9.7%(3/31)
     2.17例慢性粒细胞白血病慢性期病例标本和3例急变期病例标本中,Wnt5a启动子都未见甲基化。
     3.分离获得悬浮生长的白血病原代细胞和贴壁生长的骨髓基质细胞中,骨髓基质细胞Wnt5a表达阳性,而白血病原代细胞中未检测到Wnt5a表达。
     4.骨髓基质细胞中Wnt5a启动子没有发生甲基化,而在白血病原代细胞中分别表现为部分甲基化和完全甲基化两种情况。
     5.不同浓度去甲基化试剂Adc处理U937细胞不同时间,最终确定适用于U937细胞的Adc作用时间为48h,浓度范围为3μmol/L~10μmol/L。
     6.Adc处理后U937细胞Wnt5a启动子甲基化水平下调,mRNA表达恢复,且在一定浓度范围内,Wnt5a的表达量与Adc药物浓度有关。
     7.与对照组细胞相比,Adc处理后U937细胞G2期增高,表明Adc处理后,细胞周期被阻滞在G2期。
     结论:
     1.Wnt5a启动子甲基化现象在急性髓细胞白血病初诊病例中阳性率为73.3%,明显高于缓解病例阳性率9.7%,证实了我们前期研究发现白血病标本中普遍存在Wnt5a表达缺失是因其启动子异常甲基化所致。
     2.治疗缓解后Wnt5a启动子甲基化状态明显下降,表明我们前期研究发现治疗缓解病例Wnt5a表达恢复的原因是经治疗去除了其启动子的甲基化状态。研究结果提示Wnt5a启动子的异常甲基化可能与白血病细胞的恶性增殖有关,Wnt5a表达水平变化和启动子甲基化状态可能成为判断病情发展和预后的实验室诊断新指标。
     3.慢性期和急变期的慢粒病人骨髓有核细胞Wnt5a启动子均未见甲基化现象。前期研究中Wnt5a在慢粒病人和K562细胞中不表达或低表达,在mRNA水平上与在急性髓系白血病中极为类似;但启动子甲基化研究提示Wnt5a在慢粒病人中表达下调原因不同于急性髓细胞白血病,可能受其他机制调节,有待进一步研究。
     4.白血病病人的骨髓基质细胞中Wnt5a高表达,且启动子未见甲基化,而白血病肿瘤细胞Wnt5a低表达且启动子发生明显甲基化,说明白血病病人骨髓中的基质细胞可能未发生异常,Wnt5a启动子甲基化可能特异的出现在白血病细胞等恶性细胞中,是急性髓细胞白血病中Wnt5a低表达的主要原因。
     5.去甲基化试剂Adc作用后,白血病细胞U937增殖能力减低,提示Wnt5a的表达可能抑制白血病细胞增殖。
     6.Adc处理后,Wnt5a表达恢复,U937细胞G2期增高,提示Wnt5a可能将细胞周期阻滞在G2期,细胞不能进行有丝分裂,从而抑制了细胞的增殖,但去甲基化试剂不能完全改变U937细胞Wnt5a启动子异常甲基化情况,说明仍有其他机制维持白血病细胞的异常甲基化,其具体机制仍需进一步研究。
     以上研究提示,Wnt5a启动子甲基化水平在急性髓细胞白血病病例中普遍升高,而在治疗缓解病例中降低,印证了前期研究,说明急性髓细胞白血病中Wnt5a启动子甲基化是导致Wnt5a表达缺失的分子机制,而在慢性粒细胞白血病各病程中Wnt5a的表达缺失不由类似的调控因素控制。本组实验与前期研究共同证明Wnt5a在白血病病例中发挥抑癌基因的作用,其表达缺失是白血病发生的机制之一,并受到表观遗传学方法的调节,其中存在“Wnt5a启动子异常甲基化-Wnt5a表达下调-白血病发生”的逻辑联系。
Objective
     Wnt family contains several members and shows a highly regulated pattern of expression and plays distinct roles during development and tissue homoeostasis. Wnt5a, a member of the Wnt family, has been recently found to be correlated with tumorigenesis. The effects of Wnt-5a in kinds of tumors are significantly different. The incidence of AML maintains a pretty high level in China. There are infrequent reports about the relationship between Wnt5a and AML at home and abroad. Our earlier studies of the gene demostrate that the low expression of Wnt5a is universal in leukemia, and the expression of Wnt5a was recovered in the patient with leukemia-CR. Wnt5a may play a role of anti-oncogene in leukemia, and the loss expression of Wnt5a is one of the mechanisms of leukemia genesis. However, the mechanisms of expression silence are not clear. This study was aimed to detect the methylation status of Wnt5a promoter in the acute myeloblastic leukemia patients'and CR patients'bone marrow, and take research on the relationship between aberrant methylation status of Wnt5a gene promoter and mechanism of myeloblastic leukemia, in order to find a new tumor marker and a potential therapeutic target for AML.
     Methods
     1. The methylation status of Wnt5a promoter was analyzed by methylation-specific PCR(MSP) and verified in both 30 AML patients and 31 AML-CR patients.
     2. The methylation status of Wnt5a promoter was analyzed by MSP and verified in 17 CML patients in chronic phase and 3 CML patients in blast crisis.
     3. The expression of Wnt5a gene was detected with RT-PCR in primary AML cells and marrow stromal cells.
     4. The methylation status of Wnt5a promoter in primary AML cells and marrow stromal cells was analyzed by MSP.
     5. MTT assays were performed to detect the endogenous Wnt5a effect on the proliferation of U937 and the proper treatment time and dosage.
     6. RT-PCR was performed to detect the expression of Wnt5a while MSP was performed to detect the status of methylation of Wnt5a gene promoter before and after treating with Adc.
     7. Flow cytometry was performed to assay the cell cycle of U937 cells after being exposed to Adc for 2d.
     Results
     1. Methylation of Wnt5a gene promoter were found in bone marrow of samples from 30 AML patients at 73.3% by the methylation-specific PCR; methylation of Wnt5a gene promoter were found in 31 AML-CR patients at 9.7% by the methylation-specific PCR.
     2. Methylation of Wnt5a gene promoter were not found in bone marrow of samples from either 17 CML-CP patients or 3 CML-BC patients.
     3. The bone marrow stromal cells and primary AML cells were isolated by gradient centrifugation and purified by anchoring culture. Wnt5a mRNA were expressed in stromal cells but not in AML cells analysed by RT-PCR.
     4. Methylation of Wnt5a gene promoter were not found in bone marrow stromal cells, and methylation status were partly found in AML cells.
     5. The modest concentration to treat U937 cells with Adc were 3μmol/L~5μmol/L for 48 or 72 hours separately and the abilities of proliferation were measured by MTT test.
     6. The Adc up-regulates the expression of Wnt5a mRNA and demathylated status of Wnt5a gene promoter after treating with modest range. And there was a linear relationship between expression levels and Adc concentration over a certain range.
     7. The number of U937 cells exposed to Adc at G2 phase was higher than the control.
     Conclusion:
     1. MSP analysis showed that CpG islands of Wnt5a promoter is hypermethylated in AML patients in acute phase(73.3%), which is rather higher than that in AML-CR patients(9.7%). Our previous study showed loss of Wnt5a expression may be related to the tumorigenesis of leukemia. This study is identical to this view at epigenetics level. It shows that hypermethylation of CpG islands of Wnt5a promoter induces the decline of Wnt5a expression and results in AML.
     2. The positive frequency of methylation of Wnt5a promoter is lower after clinical treatment. It implied that aberrant DNA methylation of Wnt5a promoter may be related to the malign hyperplasia of leukemia cells in bone marrow. This could be used as a clinical index for appraising the therapeutic efficacy and prognosis.
     3. The aberrant DNA methylation of Wnt5a promoter were not found in either 17 CML-CP patients or 3 CML-BC patients. We have found that the Wnt5a mRNA expression decreased in CML patients and K562 cells, which is similar to that in AML. However, the contrary results in methylation study suggest a different regulating mechanism which calls for further research.
     4. We initially established the methods of bone marrow stromal cell and primary leukemia cell culture. Wnt5a was found high expression in mRNA level but unmethylation in epigenetics in bone marrow stromal cells of AML patients. It suggests the aberrant DNA methylation of Wnt5a promoter specifically associated with the tumor cells.
     5. After being exposed to demethylation reagent Adc, the demethylation of Wnt5a promoter were found in leukemia cell lines U937, and the expression of Wnt5a was increased. Compared with the control, the growth of leukemia cell line U937 exposed to demethylation reagent was significantly inhibited, and the number of cells in G2 phase rised. It is implicated that Acd can block cell cycle of U937 cells in G2 phase and inhibit cell proliferation.
     Our studies demostrate that:the positive frequency of the methylation of Wnt5a promoter increased in AML acute phase and decreased in AML-CR phase.
     The molecular mechanisms of Wnt5a gene silencing in AML is the aberrant DNA methylation of Wnt5a promoter. This rule is not applicable to CML. It is proved that Wnt5a plays a anti-oncogene role in leukemia and the loss of expression of Wnt5a was(is) one of the mechanisms of leukemia genesis in our experiments and previous studies. There is a relation among the aberrant methylation of Wnt5a promoter, the low expression of mRNA and the pathogenesis of acute myeloid leukemia.
引文
[1]Miller JR, Moon RT, Signal transduction through β-catenin and specification of cell fate during embryogenesis[J].Genes Dev,1996,10(20):2527-2539.
    [2]Nelson WJ, Nusse R, Convergence of Wnt, beta-catenin, and cadherin pathways. Science,2004,303(5663):1483-1487.
    [3]R.T. Moon, J.D. Brown, M. Torres, et al. WNTs modulate cell fate and behavior during vertebrate development[J].Trends Genet.1997,13:157-162.
    [4]S Dissanayake, D Rosenthal, K Hewitt, S Yang, et,al. Wnt5a Regulates Melanoma Antigen Recognized By T-Cells-1 (Mart-1), a Predominant Antigen in Melanoma Cells[J]. Clinical Immunology,2006,153(4):90.
    [5]Rhee CS, SenM, Lu D, et al. Wnt and frizzled receptors as potential targets for immunotherapy in head and neck squamous cell carcinomas[J]. Oncogene,2002,21 (43):6598-6605.
    [6]Bui TD, Tortora G, Ciardiello F, et al. Expression of Wnt5a is downregulated by extracellular matrix andmutated c-Ha-ras in the human mammary epithelial cell lineMCF210A[J]. Biochem Biophys Res Commun,1997,239 (3):911-917.
    [7]Howng SL, Wu CH, Cheng TS, et al. Differential expression of Wnt genes, beta-catenin and E-cadherin in human brain tumor[J]. Cancer Lett,2002,183 (1) 95-101.
    [8]Huang CL, Liu D, Nakano J, et al. Wnt5a expression is associated with the tumor proliferation and the stromal vascular endothelial growth factor an expression in non-small-cell lung cancer[J]. J Clin Oncol,2005,23 (34):8765-8773.
    [9]Saitoh T, Mine T, KatohM. Frequent up regulation of Wnt5a-mRNA in primary gastric cancer [J]. Int J Mol Med,2002,9(5):515-519.
    [10]LIU Xiao-hong, ZHOU Hang-bo, MA Heng-hui, et al.Expression of Wnt5a,β-catenin and E-cadherin in hepatocellular carcinoma and its clinical significance[J]. Clin Exp Pathol.2007 Aug; 23 (4):400-403.
    [11]onsson M, Andersson T. Repression of Wnt-5a impairs DDR1 phosphorylation and modifies adhesion and migration of mammary cells[J]. J Cell Sci,2001,114(11): 2043-2053.
    [12]Tulac S, Nayak NR, Kao LC, et al. Identification, characterization, and regulation of the canonical Wnt signaling pathway in human endometrium [J]. J Clin Endocrinol Metab,2003,88(8):3860-3866.
    [13]H Liang, Q Chen, AH Coles, SJ Anderson, et al. Wnt5a inhibits B cell proliferation and functions as a tumor suppressor in hematopoietic tissue[J]. Cancer Cell,2003,4(5):349-360.
    [14]J. Roman-Gomez, A. Jimenez-Velasco, L. Cordeu, et al. Wnt5a, a putative tumour suppressor of lymphoid malignancies, is inactivated by aberrant methylation in acute lymphoblastic leukaemia[J].European Journal of Cancer,2007,43:2736-2746
    [15]Sino-US Leukemia Cooperative Group of Shanghai. Clinical study of 572 adult acute leukemia patients in Shanghai according to WHO classification[J]. Zhonghua Xue Ye Xue Za Zhi,2007,28(7):444-8.
    [16]Moe Wakui, Kazutaka Kuriyama, Yasushi Miyazaki, et al. Diagnosis of acute myeloid leukemia according to the WHO classification in the Japan Adult Leukemia Study Group AML-97 protocol[J]. International Journal of Hematology,2008,87(2): 144-151
    [17]A. Wodarz, R. Nusse, Mechanisms of Wnt signaling in development[J].Annu. Rev. Cell Dev. Biol.1998,14:59-88.
    [18]G. Leone, F. D' Alo, G. Zardo, M.T. Voso, C. Nervi, Epigenetic treatment of myelodysplastic syndromes and acute myeloid leukemias, Curr. Med. Chem.15 (2008) 1274-1287.
    [19]Chim CS, Fung TK, Wong KF, et al. InfrequentWnt inhibitory factor-1 (WIf-1) methylation in chronic lymphocytic leukemia [J]. Leuk Res,2006,30 (9):1135-1139.
    [20]Nusse R. Wnt signaling in disease and in development. Cell research,2005,15(1): 28-32
    [21]Herman JG, Baylin SB. Gene silencing in cancer in association with promoter hypermethylation. N Engl J Med,2003,349:2042-2054.
    [22]邓刚,司维柯,潘静,赵宸,李权.Wnt5a基因在淋巴系恶性肿瘤中的表达分析.第三军医大学学报,2008,30(19):1832-1835.
    [23]Ahluwalia A, Yan P, Hurteau JA, et al. DNA methylation and ovarian cancer. Analysis of CpG island hypermethylation in human ovarian cancer using differential methylation hybridization. Gynecol Oncol,2001,82:261-268.
    [24]Yan PS, Shi HD, Rahmatpanah F, et al. Differential distribution of DNA methylation within the RASSF1A CpG island in breast cancer. Cancer Res,2003,63:6178-6186.
    [25]Schmiemann V, Bocking A, Kazimirek M, et al. Methylation assay for the diagnosis of lung cancer on bronchial aspirates:a cohort study. Clin Cancer Res,2005,11: 7728-7734.
    [26]de Klein A, van Kessel AG, Grosveld G, et al. A cellular oncogene is translocated to the Philadelphia chromosome in chronic myelocytic leukaemia[J]. Nature,1982,300 (25):765-767.
    [27]Nieborowska-SkorskaM, Hoser G, Kossev P, et al. Complementary functions of the antiapoptotic protein A1 and serine/threonine kinas pim-1 in the BCR/ABL-mediated leukemogenesis[J]. Blood,2002,99 (9):4531-4539.
    [28]Ying J, Andrew D, Lukasz P, et al. Aberrant DNA methylation is a dominant mechanism in MDS progression to AML. Blood.2009 February 5; 113(6): 1315-1325.
    [29]Rogers SL, Zhao Y, Jiang X, et al. Expression of the leukemic prognostic marker CD7 is linked to epigenetic modifications in chronic myeloid leukemia[J]. Mol Cancer.2010 Feb 22;9:41.
    [30]Roman-Gomez J, Jimenez-Velasco A, Agirre X, et al. Repetitive DNA hypomethylation in the advanced phase of chronic myeloid leukemia[J]. Leuk Res. 2008 Mar;32(3):487-90. Epub 2007 Sep 4.
    [31]Qian J, Wang YL, Lin J, et al. Aberrant methylation of the death-associated protein kinase 1 (DAPK1) CpG island in chronic myeloid leukemia[J]. Eur J Haematol.2009 Feb;82(2):119-23.
    [32]San Jose-Eneriz E, Agirre X, Jimenez-Velasco A, et al. Epigenetic down-regulation of BIM expression is associated with reduced optimal responses to imatinib treatment in chronic myeloid leukaemia[J]. Eur J Cancer.2009 Jul;45(10):1877-89.
    [33]Jamieson CH, Ailles LE, Dylla SJ, et al. Granulocyte-macrophage progenitors as candidate leukemic stem cells in blast-crisis CML[J]. N Engl J Med,2004; 351: 657-667
    [34]Zhao C, Blum J, Chen A, et al. Loss of beta-catenin impairs the renewal of normal and CML stem cell in vivo. Cancer cell,2007; 12:528-541
    [35]S Dissanayake, D Rosenthal, K Hewitt, S Yang, et,al. Wnt5a Regulates Melanoma Antigen Recognized By T-Cells-1 (Mart-1), a Predominant Antigen in Melanoma Cells[J]. Clinical Immunology,2006,153(4):90.
    [36]李招权,司维柯,潘静,等.Wnt5a基因在血液病及白血病细胞株中的表达[J].中国实验血液学杂志,2007,15(5):927-930.
    [37]袁媛,李招权,司维柯,等.Wnt5a mRNA与髓细胞白血病发生的关系[J].第三军医大学学报,2007,29(21):2056-2059.
    [38]袁媛,司维柯,李招权,等.外源性Wnt5a mRNA诱导K562细胞分化表型的实验研究[J].中国实验血液学杂志,2007,15(5):946-949.
    [39]Minguell JJ, Erices A, Conget P. Mesenchymal stem cells 1 Exp Biol Med,2001, 226(6):507.
    [40]Epperly MW, Cao S, Zhang X, et al. Increased longevity of hematopoiesis in continuous bone marrow cultures derived from NOS1(nNOS, mtNOS) homozygous recombinant negative mice correlates with radioresistance of hematopoietic and marrow stromal cells. Exp Hematol,2007,35(1):137
    [41]Longxiang Shen, Shuanhu Zhou, Julie Glowacki. Effects of Age and Gender on WNT Gene Expression in Human Bone Marrow Stromal Cells. J. Cell. Biochem.2009,106: 337-343.
    [42]JIN-A KIM, YOUNG-JU KANG, GYEONGSIN PARK, et al. Identification of a Stroma-Mediated Wnt/b-Catenin Signal Promoting Self-Renewal of Hematopoietic Stem Cells in the Stem Cell Niche. STEM CELLS,2009;27:1109-1119.
    [43]梁雪,陈幸华,张曦,等。不同来源骨髓基质细胞微环境对Jurka t细胞生物学特性的影响[J].第三军医大学学报,2008,30(23):2229-2232.
    [1]Holliday R. The inheritance of epigenetic defects. Science,1987,238:163-170.
    [2]董玉玮,侯进慧,朱必才等.表观遗传学的相关概念和研究进展[J].生命的化学,2005,22(1):1-3.
    [3]Egger G, Liang G, Aparicio A, et al. Epigenetics in human disease and prospects for epigenetic therapy. Nature,2004,429:446-457.
    [4]Reik W, Dean W. DNA methylation and mammalian epigenetics. Electrophoresis, 2001,22 (14):2838~2843.
    [5]Ferguson-Smith A, Lin S P, Tsai C E, Youngson N, TevendaleM. Genomic imprinting-insights from studies in mice. Semin Cell Dev Biol,2003,14 (1):43~49.
    [6]Haaf T. Methylation dynamics in the early mammalian embryo:implications of genome reprogramming defects for development. Curr Top Microbiol Immunol,2006, 310:13-22.
    [7]Ushijima T.Detection and interpretation of altered methylation patterns in cancer cells.Nat Rev Cancer,2005,5(3):223.
    [8]Ehrlich M, Gama A, Huang H, et al. Amount and distribution of 5-methylcytosine in human DNA from different types of tissues of cells. Nucleic Acids Res,1982,10: 2709-2721.
    [9]Esteller M. DNA methylation and cancer therapy:new developments and expectations. Curr Opin Oncol,2005,17:55-60.
    [10]Feinberg AP, Tycko B. The history of cancer epigenetics. Nat Rev Cancer,2004,4: 143-153.
    [11]Herman JG, Baylin SB. Gene silencing in cancer in association with promoter hypermethylation. N Engl J Med,2003,349:2042-2054.
    [12]Ying J, Andrew D, Lukasz P, et al. Aberrant DNA methylation is a dominant mechanism in MDS progression to AML. Blood.2009 February 5; 113(6): 1315-1325.
    [13]Bao N, Lye KW, Barton MK. MicroRNA binding sites in Arabidopsis class III HD-ZIP mRNAs are required for methylation of the template chromosome. Dev Cell, 2004,7:653-662.
    [14]Ronemus M, Martienssen R. RNA interference:methylation mystery. Nature,2005, 433:472-473.
    [15]Cui H, Horon IL, Ohlsson R, et al. Loss of imprinting in normal tissue of colorectal cancer patients with microsatellite instability. Nat Med,1998,4:1276-1280.
    [16]Huang TH, Perry MR, Laux DE. Methylation profiling of CpG islands in human breast cancer cells. Hum Mol Genet,1999,8:459-470.
    [17]Ahluwalia A, Yan P, Hurteau JA, et al. DNA methylation and ovarian cancer. Ⅰ. Analysis of CpG island hypermethylation in human ovarian cancer using differential methylation hybridization. Gynecol Oncol,2001,82:261-268.
    [18]Yan PS, Shi HD, Rahmatpanah F, et al. Differential distribution of DNA methylation within the RASSF1A CpG island in breast cancer. Cancer Res,2003,63:6178-6186.
    [19]Zitt M, Zitt M, Miiller HM. DNA methylation in colorectal cancer-impact on screening and therapy monitoring modalities? Dis Markers,2007,23:51-71.
    [20]Schmiemann V, Bocking A, Kazimirek M, et al. Methylation assay for the diagnosis of lung cancer on bronchial aspirates:a cohort study. Clin Cancer Res,2005,11: 7728-7734.
    [21]Claus R, Almstedt M, L u bbert M. Epigenetic treatment of hematopoietic malignancies:in vivo targets of demethylating agents. Semin Oncol,2005,32:511-520.
    [22]Cameron EE, Bachman KE, Myohanen S, et al. Synergy of demethylation and histone deacetylase inhibition in the re-expression of gene silenced in cancer. Nat Genet, 1999,21:103-107.
    [23]Wijermans PW, Liibbert M, Verhoef G, et al. An epigenetic approach to the treatment of advanced MDS, the experience with the DNA demethylating agent 5-aza-2"-deoxycytidine (decitabine) in 177 patients. Ann Hematol,2005,84:9-17.
    [24]Kantarjian HM, O"Brien S, Cortes J, et al. Results of decitabine (5-aza-2"deoxycytidine) therapy in 130 patients with chronic myelogenous leukemia. Cancer,2003,98:522-528.
    [25]Stresemann C, Brueckner B, Musch T, et al. Functional diversity of DNA methyltransferase inhibitors in human cancer cell lines. Cancer Res,2006,66: 2794-2800.
    [26]Cheng JC, Weisenberger DJ, Genzales FA, et al. Continuous zebularine treatment effectively sustains demethylation in human bladder cancer cells. Mol Cell Biol,2004, 24:1270-1278.
    [27]Yang XJ, Ogryzko VV, Nishikawa J, et al. A p300/CBP-associated factor that competes with the adenoviral oncoprotein E1A. Nature,1996,382:319-324.
    [28]Tae YK, Yung JB, Keith DR. Histone Deacetylase Inhibitors for Cancer Therapy. Epigenetics,2006,1:14-23.
    [29]Loprevite M, Tiseo M, Grossi F, et al. In vitro study of CI-994, a histone deacetylase inhibitor, in non-small cell lung cancer cell lines. Oncol Res,2005,15:39-48.
    [30]Shi Y, Lan F, Matson C, et al. Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell,2004,119:941-953.
    [31]Yu T, Jia F, Hediye EB, et al. Histone demethylation by a family of JmjC domain-containing proteins. Nature,2006,439:811-816。
    [32]Verdone L, Asricola E, Caserta M, et al. Histone acetylation in gene regulation. Brief Funct Genomic Proteomic,2006,5:209-221.
    [33]Yang XJ, Seto E. HATs and HDACs:from structure, function and regulation to novel strategies for therapy and prevention. Oncogene,2007,26:5310-5318.
    [34]Takahashi H, Murai Y, Tsuneyama K, et al. Overexpression of phosphorylated histone H3 is an indicator of poor prognosis in gastric adenocarcinoma patients. Appl Immunohistochem Mol Morphol,2006,14:296-302.
    [35]Seligson DB, Horvath S, Shi T, et al. Global histone modification patterns predict risk of prostate cancer recurrence. Nature,2005,435:1262-1266.
    [36]Marks PA, Jiang XJ. Histone deacetylase inhibitors in programmed cell death and cancer therapy. Cell Cycle,2005,4:549-551.
    [37]Somech R, Izraeli S, Simon AJ. Histone deacetylase inhibitors—a new tool to treat cancer. Cancer Treat Rev,2004,30:461-472.
    [38]Fujii S, Luo R Z, Yuan J, et al. Reactivation of the silenced and imprinted alleles of ARHI is associated with increased histone H3 acetylation and decreased histone H3 lysine 9 methylation. Hum Mol Genet,2003,12:1791-1800.
    [39]Shaker S, Bernstein M, Momparler LF, et al. Preclinical evaluation of antineoplastic activity of inhibitors of DNA methylation (5-aza-2"-deoxycytidine) and histone deacetylation (trichostatin A, depsipeptide) in combination against myeloid leukemic cells. Leuk Res,2003,27:437-444.
    [40]Dykxhoorn DM, Chowdhury D, Lieberman J. RNA interference and cancer: endogenous pathways and therapeutic approaches. Adv Exp Med Biol,2008,615: 299-329.
    [41]Lu J, et al. MicroRNA expression profiles classify human cancers. Nature,2005,435: 834-838.
    [42]Calin GA, Ferracin M, Cimmino A, et al. A MicroRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. N. Engl. J. Med,2005, 353:1793-1801.
    [43]Valastyan S, Reinhardt F, Benaich N, et al. A pleiotropically acting microRNA, miR-31, inhibits breast cancer metastasis.Cell,2009,137(6):1032-46.
    [44]Aagaard L, Rossi JJ. RNAi therapeutics:principles, prospects and challenges. Adv Drug Deliv Rev.2007,59:75-86.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700