功能性生物可降解聚碳酸酯的设计合成
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物可降解脂肪族聚碳酸酯是生物医用材料的一个重要组成部分。它是一类表面溶蚀材料,可经水解、酶解或细菌降解为中性的二元醇(酚)和二氧化碳。生物可降解聚碳酸酯具有良好的生物相容性和物理机械性能,而且种类繁多,通过改变主链化学结构和引入侧链功能基团可以使高分子材料具有广泛的物理,化学和生物学性质,以满足不同需要。论文第一章对生物可降解脂肪族聚碳酸酯的种类、结构、合成方法及应用作了简要概述。
     论文第二章讲述了基于酸敏感聚碳酸酯的两亲性聚合物自组装形成具有pH响应性的生物可降解胶束。通过两步合成法成功制备得到两种新型的环状脂肪族碳酸酯单体,即2,4,6-三甲氧基苯甲缩醛季戊四醇碳酸酯(TMBPEC, 2a)和对甲氧基苯甲缩醛季戊四醇碳酸酯(MBPEC, 2b)。以甲氧基PEG为引发剂,双(双三甲基硅基)胺锌为催化剂,在CH2Cl2中50℃下通过开环聚合2a和2b,分别合成得到分子量分布较窄(PDI:1.03-1.04)的共聚物PEG-PTMBPEC(3a)和PEG-PMBPEC(3b)。DLS和TEM测试表明该两亲性共聚物自组装形成150 nm左右的胶束。胶束3a疏水链段侧链缩醛的水解速率显示出优异的pH响应性,胶束在pH7.4下比较稳定,但在pH4.0和5.0条件下,水解半衰期分别为1小时和6.5小时。胶束3a能以较高的包封率装载紫杉醇(65 %)和多柔比星(60 %)抗癌药物(载药量分别为:13.0和11.7 wt%),并在体外释放实验中呈现出明显的pH响应性。
     论文第三章讲述了基于酸敏感的两亲性共聚物PEG-PTMBPEC自组装形成具有pH响应性的生物可降解囊泡作为亲水和疏水抗癌药物载体,并比较了囊泡和胶束的药物包裹和释放行为。DLS和TEM测试结果表明聚合物PEG1.9k-PTMBPEC6.0k形成的囊泡平均粒径为100-200 nm。PEG1.9k-PTMBPEC6.0k囊泡和PEG5k-PTMBPEC5.8k胶束缩醛的水解速率接近,都呈现出明显的pH响应性。聚合物囊泡能同时包封疏水药物紫杉醇和亲水药物多柔比星盐酸盐(包封率分别为:61.4-65.2%和30.0-37.7%),而聚合物胶束只能单独装载疏水药物。在体外释放实验中,囊泡对亲水和疏水药物的释放显示出优异的pH响应性。在相同条件下,囊泡释放疏水药物紫杉醇的速率明显快于胶束。
     论文第四章讲述了基于(甲基)丙烯酸酯环状碳酸酯单体,结合开环聚合和Michael加成反应,合成了不同性能的功能性生物可降解材料。通过四步合成法成功制备得到(甲基)丙烯酸酯环状碳酸酯单体,总产率约为40%。(甲基)丙烯酸酯环状碳酸酯单体和己内酯或丙交酯的开环共聚以异丙醇为引发剂、辛酸亚锡为催化剂、在甲苯110℃下进行。结果表明合成的共聚物的分子量和功能基团的含量都可方便得到控制。聚合物侧链丙烯酸酯双键和巯基类分子(如:巯基乙醇、巯基丙酸、半胱胺、半胱氨酸和RGDC多肽等)可在温和反应条件下通过Michael加成进行修饰改性。其中,巯基乙醇、半胱胺和半胱氨酸的功能化程度接近100%。初步细胞实验发现用RGD修饰改性的聚合物膜表面具有较好的细胞粘附性。
Biodegradable aliphatic polycarbonates are one of the most important biomedical materials. Aliphatic polycarbonates are usually degraded via surface erosion mechanism to neutral diols and carbon dioxide. Biodegradable polycarbonates have good biocompatibility and physico-mechanical properties. The physical, chemical and biological properties of polycarbonates may further be tuned by changing their main chain strutures and incorporating functional pendent groups. The first chapter of this thesis gives a general introduction to biodegradable aliphatic polycarbonates including their structures, syntheses and applications.
     The second chapter describes rapidly pH-responsive biodegradable micelles based on block copolymers of a novel acid-labile polycarbonate hydrophobe and poly(ethylene glycol) (PEG). Two new cyclic aliphatic carbonate monomers, mono-2,4,6-trimethoxybenzylidene-pentaerythritol carbonate (TMBPEC, 2a) and mono-4-methoxybenzylidene-pentaerythritol carbonate (MBPEC, 2b) were designed and successfully synthesized via a two-step procedure. The ring-opening polymerization of 2a or 2b in the presence of methoxy PEG in dichloromethane at 50°C using zinc bis[bis(trimethylsilyl)amide] as a catalyst yielded the corresponding block copolymers PEG-PTMBPEC (3a) or PEG-PMBPEC (3b) with low polydispersities (PDI 1.03-1.04). These block copolymers readily formed micelles in water with sizes of about 150 nm as determined by dynamic light scattering (DLS). The hydrolysis of the acetals of the polycarbonate showed that the acetals of micelles 3a while stable at pH7.4 are prone to rapid hydrolysis at mildly acidic pH of 4.0 and 5.0, with a half life of 1 and 6.5 hrs, respectively. Both paclitaxel and doxorubicin could be efficiently encapsulated into micelles 3a achieving high drug loading content (13.0 wt.% and 11.7 wt.%, respectively). The in vitro release studies showed clearly a pH dependent release behavior.
     The third chapter reports pH-sensitive degradable polymersomes based on PEG-PTMBPEC copolymer for triggered released of hydrophilic and hydrophobic anti-cancer drugs. DLS showed that polymersomes of PEG1.9k-PTMBPEC6k had average sizes of 100~200 nm. The acetals of polymersomes, similar to those of PEG5k-PTMBPEC5.8k micelles, though stable at pH7.4 were prone to fast hydrolysis at mildly acidic pH of 4.0 and 5.0, with half lives of 0.5 and 3 d, respectively. Drug encapsulation studies revealed that polymersomes were able to simultaneously load paclitaxel (61.4-65.2%) and doxorubicin hydrochloride (30.0-37.7%), whereas micelles loaded PTX only. The in vitro release studies demonstrated that release of PTX and DOX HCl from polymersomes was highly pH-dependent. Furthermore, much higher release rates were observed for PTX release from the polymersomes compared to that from the micelles under otherwise the same conditions.
     The fourth chapter describes versatile synthesis of functional biodegradable polymers from novel cyclic carbonate monomers, acryloyl carbonate (AC) and methacryloyl carbonate (MAC), by combining ring-opening polymerization (ROP) and Michael addition chemistry. AC and MAC monomers were synthesized in four straightforward steps with good overall yields (ca. 40%). AC and MAC were able to copolymerize withε-caprolactone (ε-CL) and D,L-lactide (LA) in toluene at 110°C using stannous octoate as a catalyst, yielding biodegradable copolymers with controlled acryloyl functional groups and molecular weights. The acryloyl groups were amenable to the Michael addition conjugate reaction with varying thiol-containing molecules such as 2-mercaptoethanol, 3-mercaptopropanoic acid, cysteamine, cysteine, and arginine-glycine-aspartic acid-cysteine (RGDC) peptide under mild conditions. Notably, 100% functionalization was achieved with 2-mercaptoethanol, cysteamine and cysteine. Initial cell culture studies demonstrated enhanced cell adhesion and growth on films containing functional RGDC peptides as compared to those of the parent copolymer as well as tissue culture plastic.
引文
[1] I. Gursel, F. Korkusuz, F. Turesin, N.G. Alaeddinoglu, V. Hasirci, In vivo application of biodegradable controlled antibiotic release systems for the treatment of implant-related osteomyelitis. Biomaterials 22(1) (2001) 73-80.
    [2] J. Jagur-Grodzinski, Biomedical applications of polymers 2001-2002. e-Polymers (2003) 38.
    [3] N.A. Peppas, J.H. Ward, Biomimetic materials and micropatterned structures using iniferters. Adv. Drug Deliv. Rev. 56(11) (2004) 1587-1597.
    [4] J.A. Leigh, Use of PMMA in expansion dental implants. J Biomed Mater Res 9(4) (1975) 233-242.
    [5] B. Pourdeyhimi, H.H.t. Robinson, P. Schwartz, H.D. Wagner, Fracture toughness of Kevlar 29/poly(methyl methacrylate) composite materials for surgical implantations. Ann Biomed Eng 14(3) (1986) 277-294.
    [6] Biomaterials science: An introduction to materials in medicine, Academic Press, Inc.; Academic Press Ltd., 1996, p. xi+484p.
    [7] M. Navarro, C. Aparicio, M. Charles-Harris, M.P. Ginebra, E. Engel, J.A. Planell, Ordered Polymeric Nanostructures at Surfaces, Vol. 200, Springer-Verlag Berlin, Berlin, 2006, pp. 209-231.
    [8] H.L. Jiang, K.J. Zhu, Synthesis, characterization and in vitro degradation of a new family of alternate poly(ester-anhydrides) based on aliphatic and aromatic diacids. Biomaterials 22(3) (2001) 211-218.
    [9] D.W. Hutmacher, Scaffolds in tissue engineering bone and cartilage. Biomaterials 21(24) (2000) 2529-2543.
    [10] K.J.L. Burg, S. Porter, J.F. Kellam, Biomaterial developments for bone tissue engineering. Biomaterials 21(23) (2000) 2347-2359.
    [11] L.E. Freed, G. Vunjak-Novakovic, R.J. Biron, D.B. Eagles, D.C. Lesnoy, S.K. Barlow, R. Langer, Biodegradable Polymer Scaffolds for Tissue Engineering. Nat Biotech 12(7) (1994) 689-693.
    [12] K.E. Uhrich, S.M. Cannizzaro, R.S. Langer, K.M. Shakesheff, Polymeric systems for controlled drug release. Chemical Reviews 99(11) (1999) 3181-3198.
    [13] R. Langer, Biomaterials in drug delivery and tissue engineering: One laboratory's experience. Accounts of Chemical Research 33(2) (2000) 94-101.
    [14] R. Duncan, The dawning era of polymer therapeutics. Nature Reviews DrugDiscovery 2(5) (2003) 347-360.
    [15] L.S. Nair, C.T. Laurencin, Biodegradable polymers as biomaterials. Progress in Polymer Science 32 (2007) 762-798.
    [16] R.A. Gross, B. Kalra, Biodegradable polymers for the environment. Science 297(5582) (2002) 803-807.
    [17] R.W. Lenz, Biodegradable Polymers. Advances in Polymer Science 107 (1993) 1-40.
    [18] C. Jerome, P. Lecomte, Recent advances in the synthesis of aliphatic polyesters by ring-opening polymerization. Advanced Drug Delivery Reviews 60(9) (2008) 1056-1076.
    [19] R. Chandra, R. Rustgi, Biodegradable polymers. Progress in Polymer Science 23(7) (1998) 1273-1335.
    [20] M. Okada, Chemical syntheses of biodegradable polymers. Progress in Polymer Science 27(1) (2002) 87-133.
    [21] A.C. Albertsson, I.K. Varma, Recent developments in ring opening polymerization of lactones for biomedical applications. Biomacromolecules 4(6) (2003) 1466-1486.
    [22] O. Dechy-Cabaret, B. Martin-Vaca, D. Bourissou, Controlled ring-opening polymerization of lactide and glycolide. Chemical Reviews 104(12) (2004) 6147-6176.
    [23] G. Rokicki, Aliphatic cyclic carbonates and spiroorthocarbonates as monomers. Prog. Polym. Sci. 25(2) (2000) 259-342.
    [24] T. Wan, Y. Liu, J.Q. Yu, S. Chen, F. Li, X.Z. Zhang, S.X. Cheng, R.X. Zhuo, Synthesis and characterization of star oligo/poly(2,2-dimethyltrimethylene carbonate)s containing cholic acid moieties. Journal of Polymer Science Part a-Polymer Chemistry 44(23) (2006) 6688-6696.
    [25] F. He, H.L. Jia, G. Liu, Y.P. Wang, J. Feng, R.X. Zhuo, Enzymatic synthesis and characterization of novel biodegradable copolymers of 5-benzyloxy-trimethylene carbonate with 1,4-dioxan-2-one. Biomacromolecules 7(8) (2006) 2269-2273.
    [26] F.H. Meng, Z.Y. Zhong, J. Feijen, Stimuli-Responsive Polymersomes for Programmed Drug Delivery. Biomacromolecules 10(2) (2009) 197-209.
    [27] H. Yasuda, M.-S. Aludin, N. Kitamura, M. Tanabe, H. Sirahama, Syntheses and Physical Properties of Novel Optically Active Poly(ester-carbonate)s by Copolymerization of Substituted Trimethylene Carbonate withε-Caprolactone and Their Biodegradation Behavior. Macromolecules 32(19) (1999) 6047-6057.
    [28] M. Acemoglu, F. Nimmerfall, S. Bantle, G.H. Stoll, Poly(ethylene carbonate)s, part I: Syntheses and structural effects on biodegradation. Journal of Controlled Release 49(2-3) (1997) 263-276.
    [29] G.H. Stoll, F. Nimmerfall, M. Acemoglu, D. Bodmer, S. Bantle, I. Muller, A. Mahl, M. Kolopp, K. Tullberg, Poly(ethylene carbonate)s, part II: degradation mechanisms and parenteral delivery of bioactive agents. Journal of Controlled Release 76(3) (2001) 209-225.
    [30] K.J. Zhu, R.W. Hendren, K. Jensen, C.G. Pitt, Synthesis, properties, and biodegradation of poly(1,3-trimethylene carbonate). Macromolecules 24(8) (1991) 1736-1740.
    [31] Y. Takahashi, R. Kojima, Crystal Structure of Poly(trimethylene carbonate). Macromolecules 36(14) (2003) 5139-5143.
    [32] W.H. Carothers, G.L. Dorough, F.J.v. Natta, STUDIES OF POLYMERIZATION AND RING FORMATION. X. THE REVERSIBLE POLYMERIZATION OF SIX-MEMBERED CYCLIC ESTERS. Journal of the American Chemical Society 54(2) (1932) 761-772.
    [33] A.P. Pego, A.A. Poot, D.W. Grijpma, J. Feijen, Copolymers of trimethylene carbonate and epsilon-caprolactone for porous nerve guides: Synthesis and properties. Journal of Biomaterials Science-Polymer Edition 12(1) (2001) 35-53.
    [34] A.P. Pego, A.A. Poot, D.W. Grijpma, J. Feijen, In vitro degradation of trimethylene carbonate based (Co)polymers. Macromolecular Bioscience 2(9) (2002) 411-419.
    [35] A.P. Pego, D.W. Grijpma, J. Feijen, Enhanced mechanical properties of1,3-trimethylene carbonate polymers and networks. Polymer 44(21) (2003) 6495-6504.
    [36] A.P. Pego, A.A. Poot, D.W. Grijpma, J. Feijen, Physical properties of high molecular weight 1,3-trimethylene carbonate and D,L-lactide copolymers. Journal of Materials Science-Materials in Medicine 14(9) (2003) 767-773.
    [37] A.P. Pego, M.J.A. Van Luyn, L.A. Brouwer, P.B. van Wachem, A.A. Poot, D.W. Grijpma, J. Feijen, In vivo behavior of poly(1,3-trimethylene carbonate) and copolymers of 1,3-trimethylene carbonate with D,L-lactide or epsilon-caprolactone: Degradation and tissue response. Journal of Biomedical Materials Research Part A 67A(3) (2003) 1044-1054.
    [38] W. Habraken, Z. Zhang, J.G.C. Wolke, D.W. Grijpma, A.G. Mikos, J. Feijen, J.A. Jansen, Introduction of enzymatically degradable poly(trimethylene carbonate) microspheres into an injectable calcium phosphate cement. Biomaterials 29(16) (2008) 2464-2476.
    [39] L. Buttafoco, N.P. Boks, P. Engbers-Buijtenhuijs, D.W. Grijpma, A.A. Poot, P.J. Dijkstra, I. Vermes, J. Feijen, Porous hybrid structures based on P(DLLA-co-TMC) and collagen for tissue engineering of small-diameter blood vessels. Journal of Biomedical Materials Research Part B-Applied Biomaterials 79B(2) (2006) 425-434.
    [40] Y. Song, H.H. Weekamp, M. Kamphuis, Z. Zhang, I. Vermes, A.A. Poot, D.W. Grijpma, J. Feijen, Porous tubular scaffolds based on flexible and elastic TMC (Co) polymers. Tissue Engineering 13(7) (2007) 332.
    [41] G. Rokicki, T. Kowalczyk, M. Glinski, Synthesis of six-membered cyclic carbonate monomers by disproportionation of 1,3-bis(alkoxycarbonyloxy)propanes and their polymerization. Polymer Journal 32(5) (2000) 381-390.
    [42] T. Ariga, T. Takata, T. Endo, Cationic Ring-Opening Polymerization of Cyclic Carbonates with Alkyl Halides To Yield Polycarbonate without the Ether Unit by Suppression of Elimination of Carbon Dioxide1. Macromolecules 30(4) (1997) 737-744.
    [43] P. Lowenhielm, D. Nystrom, M. Johansson, A. Hult, Aliphatic polycarbonate resins for radiation curable powder coatings. Prog. Org. Coat. 54(4) (2005) 269-275.
    [44] A. Issaris, D. Vanderzande, P. Adriaensens, J. Gelan, Polymerization Mechanism of 1-[(Butylsulfi(o)nyl)methyl]-4-(halomethyl)benzene: The Effect of Polarizer and Leaving Group. Macromolecules 31(14) (1998) 4426-4431.
    [45] J. Matsuo, K. Aoki, F. Sanda, T. Endo, Substituent Effect on the Anionic Equilibrium Polymerization of Six-Membered Cyclic Carbonates. Macromolecules 31(14) (1998) 4432-4438.
    [46] J. Matsuo, F. Sanda, T. Endo, A novel observation in anionic ring-opening polymerization behavior of cyclic carbonates having aromatic substituents. Macromol. Chem. Phys. 199(11) (1998) 2489-2494.
    [47] X.L. Hu, S. Liu, X.S. Chen, G.J. Mo, Z.G. Xie, X.B. Jing, Biodegradable amphiphilic block copolymers bearing protected hydroxyl groups: Synthesis and characterization. Biomacromolecules 9(2) (2008) 553-560.
    [48] E.J. Vandenberg, D. Tian, A new, crystalline high melting bis(hydroxymethyl) polycarbonate and its acetone ketal for biomaterial applications. Macromolecules 32(11) (1999) 3613-3619.
    [49] D.E. Noga, T.A. Petrie, A. Kumar, M. Weck, A.J. Garcia, D.M. Collard, Synthesis and modification of functional poly(lactide) copolymers: Toward biofunctional materials. Biomacromolecules 9(7) (2008) 2056-2062.
    [50] R.F. Storey, B.D. Mullen, K.M. Melchert, Synthesis of novel hydrophilic poly(ester-carbonates) containing pendent carboxylic acid groups. Journal of Macromolecular Science-Pure and Applied Chemistry 38(9) (2001) 897-917.
    [51] K.D. Weilandt, H. Keul, H. Hocker, Synthesis and ring-opening polymerization of 2-acetoxymethyl-2-alkyltrimethylene carbonates and of 2-methoxycarbonyl-2 -methyltrimethylene carbonate; A comparison with the polymerization of 2,2-dimethyltrimethylene carbonate. Macromol. Chem. Phys. 197(11) (1996) 3851-3868.
    [52] T.F. Al-Azemi, K.S. Bisht, Novel Functional Polycarbonate by Lipase-Catalyzed Ring-Opening Polymerization of 5-Methyl-5-benzyloxycarbonyl-1,3-dioxan-2-one. Macromolecules 32(20) (1999) 6536-6540.
    [53] X.L. Hu, X.S. Chen, Z.G. Xie, S. Liu, X.B. Jing, Synthesis and characterization of amphiphilic block copolymers with allyl side-groups. Journal of Polymer Science Part a-Polymer Chemistry 45(23) (2007) 5518-5528.
    [54] H. Tomita, F. Sanda, T. Endo, Self-Polyaddition of Six-Membered Cyclic Carbonate Having Fmoc-Protected Amino Group: Novel Synthetic Method of Polyhydroxyurethane. Macromolecules 34(22) (2001) 7601-7607.
    [55] M. Kalbe, H. Keul, H. Hocker, Synthesis and Polymerization of 2-Cyano-2-methyltrimethylene Carbonate. Macromol. Chem. Phys. 196(10) (1995) 3305-3321.
    [56] D. Tian, P. Dubois, C. Grandfils, R. Jerome, Ring-opening polymerization of 1,4,8-trioxaspiro[4.6]-9-undecanone: A new route to aliphatic polyesters bearing functional pendent groups. Macromolecules 30(3) (1997) 406-409.
    [57] X.L. Wang, R.X. Zhuo, L.J. Liu, F. He, G. Liu, Synthesis and characterization of novel aliphatic polycarbonates. Journal of Polymer Science Part a-Polymer Chemistry 40(1) (2002) 70-75.
    [58] M. Leemhuis, C.F. van Nostrum, J.A.W. Kruijtzer, Z.Y. Zhong, M.R. ten Breteler, P.J. Dijkstra, J. Feijen, W.E. Hennink, Functionalized poly(alpha-hydroxy acid)s via ring-opening polymerization: Toward hydrophilic polyesters with pendant hydroxyl groups. Macromolecules 39(10) (2006) 3500-3508.
    [59] Z.G. Xie, C.H. Lu, X.S. Chen, L. Chen, Y. Wang, X.L. Hu, Q. Shi, X.B. Jing, Synthesis and characterization of novel poly(ester carbonate)s based on pentaerythritol. Journal of Polymer Science Part a-Polymer Chemistry 45(9) (2007) 1737-1745.
    [60] Y. Kimura, K. Shirotani, H. Yamane, T. Kitao, Ring-opening polymerization of 3(S)-[(benzyloxycarbonyl)methyl]-1,4-dioxane-2,5-dione: a new route to a poly(.alpha.-hydroxy acid) with pendant carboxyl groups. Macromolecules 21(11)(1988) 3338-3340.
    [61] D. Wang, X.D. Feng, Synthesis of Poly(glycolic acid-alt-l-aspartic acid) from a Morpholine-2,5-dione Derivative. Macromolecules 30(19) (1997) 5688-5692.
    [62] R.S. Lee, J.M. Yang, T.F. Lin, Novel, biodegradable, functional poly(ester-carbonate)s by copolymerization of trans-4-hydroxy-L-proline with cyclic carbonate bearing a pendent carboxylic group. Journal of Polymer Science Part a-Polymer Chemistry 42(10) (2004) 2303-2312.
    [63] W.W. Gerhardt, D.E. Noga, K.I. Hardcastle, A.J. Garcia, D.M. Collard, M. Weck, Functional lactide monomers: Methodology and polymerization. Biomacromolecules 7(6) (2006) 1735-1742.
    [64] D.A. Barrera, E. Zylstra, P.T. Lansbury, R. Langer, Synthesis and RGD peptide modification of a new biodegradable copolymer: poly(lactic acid-co-lysine). Journal of the American Chemical Society 115(23) (1993) 11010-11011.
    [65] Y. Zhou, R.X. Zhuo, Z.L. Liu, Synthesis and characterization of novel aliphatic poly(carbonate-ester)s with functional pendent groups. Macromolecular Rapid Communications 26(16) (2005) 1309-1314.
    [66] B.D. Mullen, C.N. Tang, R.F. Storey, New aliphatic poly(ester-carbonates) based on 5-methyl-5-allyloxycarbonyl-1,3-dioxan-2-one. Journal of Polymer Science Part a-Polymer Chemistry 41(13) (2003) 1978-1991.
    [67] X.L. Wang, R.X. Zhuo, L.J. Liu, F. He, G. Liu, Synthesis and characterization of novel aliphatic polycarbonates. Journal of Polymer Science Part A: Polymer Chemistry 40(1) (2002) 70-75.
    [68] Z.L. Liu, Y. Zhou, R.X. Zhuo, Synthesis and properties of functional aliphatic polycarbonates. Journal of Polymer Science Part A: Polymer Chemistry 41(24) (2003) 4001-4006.
    [69] J.B. Wolinsky, W.C. Ray, Y.L. Colson, M.W. Grinstaff, Poly(carbonate ester)s based on units of 6-hydroxyhexanoic acid and glycerol. Macromolecules 40 (2007) 7065-7068.
    [70] F. Sanda, J. Kamatani, T. Endo, Synthesis and Anionic Ring-OpeningPolymerization Behavior of Amino Acid-Derived Cyclic Carbonates. Macromolecules 34(6) (2001) 1564-1569.
    [71] X.L. Hu, X.S. Chen, S. Liu, Q. Shi, X.B. Jing, Novel aliphatic poly(ester-carhonate) with pendant allyl ester groups and its folic acid functionalization. Journal of Polymer Science Part a-Polymer Chemistry 46(5) (2008) 1852-1861.
    [72] Y.D. Han, Q. Shi, J.L. Hu, Q. Du, X.S. Chen, X.B. Jing, Grafting BSA onto poly[(L-lactide)-co-carbonate] microspheres by click chemistry. Macromol. Biosci. 8(7) (2008) 638-644.
    [73] Q. Shi, X.S. Chen, T.C. Lu, X.B. Jing, The immobilization of proteins on biodegradable polymer fibers via click chemistry. Biomaterials 29(8) (2008) 1118-1126.
    [74] D.M. Peng, K.L. Huang, Y.F. Liu, S.Q. Liu, H. Wu, H. Xiao, Preparation of carbon dioxide/propylene oxide/epsilon-caprolactone copolymers and their drug release behaviors. Polymer Bulletin 59(1) (2007) 117-125.
    [75] T.Y. Ke, R.X. Zhuo, Z.R. Lu, H.Q. Feng, Phosphorylating polycondensation using phosgene as a chain extender. European Polymer Journal 33(10-12) 1583-1586.
    [76] P. Satish, K. Joachim, Tyrosine-derived polycarbonates: Backbone-modified ldquopseudordquo-poly(amino acids) designed for biomedical applications. Biopolymers 32(4) (1992) 411-417.
    [77] A.H. Kimberly, J.D. Cox, K. Joachim, Comparison of the effect of ethylene oxide and &γ-irradiation on selected tyrosine-derived polycarbonates and poly(L-lactic acid). J. Appl. Polym. Sci. 63(11) (1997) 1499-1510.
    [78] V. Pokharkar, S. Sivaram, Poly(alkylene carbonate)s by the carbonate interchange reaction of aliphatic diols with dimethyl carbonate: synthesis and characterization. Polymer 36(25) (1995) 4851-4854.
    [79] M. Acemoglu, S. Bantle, T. Mindt, F. Nimmerfall, Novel Bioerodible Poly(hydroxyalkylene carbonates)s: A Versatile Class of Polymers for Medical and Pharmaceutical Applications. Macromolecules 28(9) (1995) 3030-3037.
    [80] M. Shuichi, H. Satoshi, T. Kazunobu, Lipase-catalyzed polymerization of diethyl carbonate and diol to aliphatic poly(alkylene carbonate). Macromol. Chem. Phys. 201(14) (2000) 1632-1639.
    [81] S. Kazuo, T. Yutaka, H. Satoru, I. Sakuji, Polymerization of propylene carbonate. Journal of Polymer Science: Polymer Chemistry Edition 15(1) (1977) 219-229.
    [82] R. Shi, D.F. Chen, Q.Y. Liu, Y. Wu, X.C. Xu, L.Q. Zhang, W. Tian, Recent Advances in Synthetic Bioelastomers. International Journal of Molecular Sciences 10(10) (2009) 4223-4256.
    [83] M. Jyuhou, S. Fumio, E. Takeshi, Anionic ring-opening polymerization behavior of a seven-membered cyclic carbonate; 1, 3-dioxepan-2-one. Journal of Polymer Science Part A: Polymer Chemistry 35(8) (1997) 1375-1380.
    [84] K.M. Stridsberg, M. Ryner, A.C. Albertsson, Controlled ring-opening polymerization: Polymers with designed macromolecular architecture. Degradable Aliphatic Polyesters 157 (2002) 41-65.
    [85] A. Toshiro, T. Toshikazu, E. Takeshi, Alkyl halide-initiated cationic polymerization of cyclic carbonate. Journal of Polymer Science Part A: Polymer Chemistry 31(2) (1993) 581-584.
    [86] M. Murayama, F. Sanda, T. Endo, Anionic Ring-Opening Polymerization of a Cyclic Carbonate Having a Norbornene Structure with Amine Initiators. Macromolecules 31(3) (1998) 919-923.
    [87] H.R. Kricheldorf, Ring-opening polycondensations. Macromolecular Rapid Communications 21(9) (2000) 528-541.
    [88] C. Xianhai, P.M. Stephen, A.G. Richard, Preparation and characterization of polycarbonates from 2,4,8,10-tetraoxaspiro[5,5]undecane-3-one (DOXTC)- trimethylenecarbonate (TMC) ring-opening polymerizations. J. Appl. Polym. Sci. 67(3) (1998) 547-557.
    [89] W. Birgid, K. Helmut, H. Hartwig, Polymerization of 2,2-dimethyltrimethylene carbonate with tri-sec-butoxyaluminium; a kinetic study. Macromol. Chem. Phys. 195(10) (1994) 3489-3498.
    [90] H.R. Kricheldorf, I. Kreiser-Saunders, C. Boettcher, Polylactones: 31. Sn(II)octoate-initiated polymerization of L-lactide: a mechanistic study. Polymer 36(6) (1995) 1253-1259.
    [91] K.R. Carter, R. Richter, H.R. Kricheldorf, J.L. Hedrick, Synthesis of Amine -Terminated Aliphatic Polycarbonates via Al(Et)2(OR)-Initiated Polymerizations. Macromolecules 30(20) (1997) 6074-6076.
    [92] L.S. Wang, S.X. Cheng, R.X. Zhuo, Novel Biodegradable Aliphatic Polycarbonate Based on Ketal Protected Dihydroxyacetone. Macromolecular Rapid Communications 25(9) (2004) 959-963.
    [93] Z.G. Xie, X.L. Hu, X.S. Chen, J. Sun, Q. Shi, X.B. Jing, Synthesis and characterization of novel biodegradable poly(carbonate ester)s with photolabile protecting groups. Biomacromolecules 9(1) (2008) 376-380.
    [94] C.H. Lu, Q. Shi, X.S. Chen, T.C. Lu, Z.G. Xie, X.L. Hu, J. Ma, X.B. Jing, Sugars-grafted aliphatic biodegradable poly(L-lactide-co-carbonate)s by click reaction and their specific interaction with lectin molecules. Journal of Polymer Science Part a-Polymer Chemistry 45(15) (2007) 3204-3217.
    [95] X.L. Hu, X.S. Chen, J.Z. Wei, S. Liu, X.B. Jing, Core Crosslinking of Biodegradable Block Copolymer Micelles Based on Poly(ester carbonate). Macromolecular Bioscience 9(5) (2009) 456-463.
    [96] X.L. Hu, X.S. Chen, H.B. Cheng, X.B. Jing, Cinnamate-Functionalized Poly(ester-carbonate): Synthesis and Its UV Irradiation-Induced Photo -Crosslinking. Journal of Polymer Science Part a-Polymer Chemistry 47(1) (2009) 161-169.
    [97] S. Kobayashi, H. Uyama, S. Kimura, Enzymatic polymerization. Chem. Rev. 101(12) (2001) 3793-3818.
    [98] S. Matsumura, K. Tsukada, K. Toshima, Enzyme-Catalyzed Ring-Opening Polymerization of 1,3-Dioxan-2-one to Poly(trimethylene carbonate). Macromolecules 30(10) (1997) 3122-3124.
    [99] Y.X. Wang, F. He, R.X. Zhuo, Synthesis and characterization of amphiphilic blockcopolymer containing PVP and poly(5-benzyloxytrimethylene carbonate). Chin. Chem. Lett. 17(2) (2006) 239-242.
    [100] X.H. Yu, R.X. Zhuo, J. Feng, Ring-opening polymerization of trimethylene carbonate catalyzed by PPL immobilized on silica nanoparticles. Chemical Journal of Chinese Universities-Chinese 26(5) (2005) 978-981.
    [101] Y. Zhou, R.X. Zhuo, Z.L. Liu, D. Xu, Synthesis, degradation and in vitro controlled drug release of novel copolymers of 5-methyl-5-methoxycarbonyl -1,3-dioxan-2-one and caprolactone. Polymer 46(15) (2005) 5752-5757.
    [102] F. He, Y.X. Wang, J. Feng, R.X. Zhuo, X.L. Wang, Synthesis of poly [(5-benzyloxy-trimethylene carbonate)-co-(5,5 dimethyl-trimethylene carbonate)] catalyzed by immobilized lipase on silica particles with different size. Polymer 44(11) (2003) 3215-3219.
    [103] X.H. Yu, R.X. Zhuo, J. Feng, J. Liao, Enzymatic ring-opening polymerization of 2,2-dimethyltrimethylene carbonate catalyzed by PPL immobilized on silica nanoparticles. European Polymer Journal 40(11) (2004) 2445-2450.
    [104] C.S. Xiao, H.Y. Tian, X.L. Zhuang, X.S. Chen, X.B. Jing, Recent developments in intelligent biomedical polymers. Sci. China Ser. B-Chem. 52(2) (2009) 117-130.
    [105] D.G. Barrett, M.N. Yousaf, Design and Applications of Biodegradable Polyester Tissue Scaffolds Based on Endogenous Monomers Found in Human Metabolism. Molecules 14(10) (2009) 4022-4050.
    [106] J.M. Raquez, O. Coulembier, A. Duda, R. Narayan, P. Dubois, Recent advances in the synthesis and applications of poly(1,4-dioxan-2-one)based copolymers. Polimery 54(3) (2009) 165-178.
    [107] R. Dinarvand, M.M. Alimorad, M. Amanlou, H. Akbari, Preparation, characterization and in vitro drug release properties of polytrimethylene carbonate/polyadipic anhydride blend microspheres. J. Appl. Polym. Sci. 101(4) (2006) 2377-2383.
    [108] X.L. Hu, X.B. Jing, Biodegradable amphiphilic polymer-drug conjugate micelles.Expert Opin. Drug Deliv. 6(10) (2009) 1079-1090.
    [109] Y.K. Feng, S.F. Zhang, Hydrophilic-hydrophobic AB diblock copolymers containing poly (trimethylene carbonate) and poly(ethylene oxide) blocks. Journal of Polymer Science Part a-Polymer Chemistry 43(20) (2005) 4819-4827.
    [110] D.K. Kim, J. Dobson, Nanomedicine for targeted drug delivery. Journal of Materials Chemistry 19(35) (2009) 6294-6307.
    [111] M. Schappacher, T. Fabre, A.F. Mingotaud, A. Soum, Study of a (trimethylenecarbonate-co-[var epsilon]-caprolactone) polymer--Part 1: preparation of a new nerve guide through controlled random copolymerization using rare earth catalysts. Biomaterials 22(21) (2001) 2849-2855.
    [112] A.P. Pego, C. Vleggeert-Lankamp, M. Deenen, E. Lakke, D.W. Grijpma, A.A. Poot, E. Marani, J. Feijen, Adhesion and growth of human schwann cells on trimethylene carbonate (co)polymers. Journal of Biomedical Materials Research Part A 67A(3) (2003) 876-885.
    [113] X.L. Hu, X.S. Chen, Z.G. Xie, H.B. Cheng, X.B. Jing, Aliphatic Poly(ester-carbonate)s Bearing Amino Groups and Its RGD Peptide Grafting. Journal of Polymer Science Part a-Polymer Chemistry 46(21) (2008) 7022-7032.
    [114] S. Stolnik, L. Illum, S.S. Davis, Long circulating microparticulate drug carriers. Adv. Drug Deliv. Rev. 16(2-3) (1995) 195-214.
    [115] F.H. Meng, G.H.M. Engbers, J. Feijen, Biodegradable polymersomes as a basis for artificial cells: encapsulation, release and targeting. Journal of Controlled Release 101(1-3) (2005) 187-198.
    [116] B. Hu, G.P. Yan, R.X. Zhuo, Y. Wu, C.L. Fan, Polycarbonate microspheres containing tumor necrosis factor-alpha genes and magnetic powder as potential cancer therapeutics. J. Appl. Polym. Sci. 107(5) (2008) 3343-3349.
    [117] Z. Zhang, D.W. Grijpma, J. Feijen, Trimethylene carbonate-based polymers for controlled drug delivery applications. Journal of Controlled Release 116(2) (2006) e28-e29.
    [118] Z.G. Xie, X.L. Hu, X.S. Chen, G.J. Mo, J. Sun, X.B. Jing, A NovelBiodegradable and Light-Breakable Diblock Copolymer Micelle for Drug Delivery. Adv. Eng. Mater. 11(3) (2009) B7-+.
    [119] T. Kojima, M. Nakano, K. Juni, S. Inoue, Y. Yoshida, PREPARATION AND EVALUATION INVITRO AND INVIVO OF POLYCARBONATE MICROSPHERES CONTAINING DIBUCAINE. Chemical & Pharmaceutical Bulletin 33(11) (1985) 5119-5125.
    [120] T. Kojima, M. Nakano, K. Juni, S. Inoue, Y. Yoshida, PREPARATION AND EVALUATION INVITRO OF POLYCARBONATE MICROSPHERES CONTAINING LOCAL-ANESTHETICS. Chemical & Pharmaceutical Bulletin 32(7) (1984) 2795-2802.
    [121] Y. Shen, X. Chen, R.A. Gross, Aliphatic Polycarbonates with Controlled Quantities of d-Xylofuranose in the Main Chain. Macromolecules 32(12) (1999) 3891-3897.
    [122] J.P. Jain, D. Chitkara, N. Kumar, Polyanhydrides as localized drug delivery carrier: an update. Expert Opin. Drug Deliv. 5(8) (2008) 889-907.
    [123] R.K. Hans, P. Oliver, New polymer syntheses. CXI. Aliphatic polyesters by the ring-opening polycondensation of glutaric anhydride with ethylene or trimethylene carbonate. Journal of Polymer Science Part A: Polymer Chemistry 40(23) (2002) 4357-4367.
    [124] Y.C. Wang, Y.Y. Yuan, J.Z. Du, X.Z. Yang, J. Wang, Recent Progress in Polyphosphoesters: From Controlled Synthesis to Biomedical Applications. Macromol. Biosci. 9(12) (2009) 1154-1164.
    [125] X.L. Wang, R.X. Zhuo, L.J. Liu, Synthesis and characterization of novel biodegradable poly(carbonate-co-phosphate)s. Polymer International 50(11) (2001) 1175-1179.
    [126] J.A. Ray, N. Doddi, D. Regula, J.A. Williams, A. Melveger, Polydioxanone (PDS), a novel monofilament synthetic absorbable suture. Surg Gynecol Obstet 153(4) (1981) 497-507.
    [127] S. Vainionpaa, P. Rokkanen, P. Tormala, Surgical applications of biodegradablepolymers in human tissues. Prog. Polym. Sci. 14(5) (1989) 679-716.
    [128] B. Narayan, K. Hak Yong, L. Douk Rae, P. Soo-Jin, Synthesis and characterization of ABA type tri-block copolymers derived from p-dioxanone, L-lactide and poly(ethylene glycol). Polymer International 52(1) (2003) 6-14.
    [129] M.X. Li, R.X. Zhuo, F.Q. Qu, Study on the preparation of novel functional poly(dioxanone) and for the controlled release of protein. Reactive and Functional Polymers 55(2) (2003) 185-195.
    [130] J.M. Park, D.S. Kim, S.R. Kim, Nondestructive evaluation of interfacial damage properties for plasma-treated biodegradable poly(p-dioxanone) fiber/poly(lactide) composites by micromechanical test and surface wettability. Composites Science and Technology 64(6) (2004) 847-860.
    [131] G.A. Thomson, An investigation of leakage tracts along stressed suture lines in phantom tissue. Medical Engineering & Physics 29(9) (2007) 1030-1034.
    [132] J.C. Kim, Y.K. Lee, B.S. Lim, S.H. Rhee, H.C. Yang, Comparison of tensile and knot security properties of surgical sutures. Journal of Materials Science-Materials in Medicine 18 (2007) 2363-2369.
    [133] J.N. Im, J.K. Kim, H.-K. Kim, C.H. In, K.Y. Lee, W.H. Park, In vitro and in vivo degradation behaviors of synthetic absorbable bicomponent monofilament suture prepared with poly(p-dioxanone) and its copolymer. Polymer Degradation and Stability 92(4) (2007) 667-674.
    [134] T. Kajiyama, H. Kobayashi, T. Taguchi, K. Kataoka, J. Tanaka, Improved Synthesis with High Yield and Increased Molecular Weight of Poly(α,β-malic acid) by Direct Polycondensation. Biomacromolecules 5(1) (2003) 169-174.
    [135] A.R. Webb, J. Yang, G.A. Ameer, Biodegradable polyester elastomers in tissue engineering. Expert Opin. Biol. Ther. 4(6) (2004) 801-812.
    [136] S. Brocchini, K. James, V. Tangpasuthadol, J. Kohn, A combinatorial approach for polymer design. Journal of the American Chemical Society 119(19) (1997) 4553-4554.
    [137] S. Brocchini, K.S. James, V. Tangpausuthadol, J. Kohn, A combinatorialapproach for the development of new polymer biomaterials. Abstracts of Papers American Chemical Society 213(1-3) (1997) BIOT 257.
    [138] S. Brocchini, K. James, V. Tangpasuthadol, J. Kohn, Structure-property correlations in a combinatorial library of degradable biomaterials. Journal of Biomedical Materials Research 42(1) (1998) 66-75.
    [139] K. James, H. Levene, J.R. Parsons, J. Kohn, Small changes in polymer chemistry have a large effect on the bone-implant interface: evaluation of a series of degradable tyrosine-derived polycarbonates in bone defects. Biomaterials 20(23-24) (1999) 2203-2212.
    [140] A.A. Deschamps, M.B. Claase, W.J. Sleijster, J.D. de Bruijn, D.W. Grijpma, J. Feijen, Design of segmented poly(ether ester) materials and structures for the tissue engineering of bone. Journal of Controlled Release 78(1-3) (2002) 175-186.
    [141] Q.P. Hou, D.W. Grijpma, J. Feijen, Porous polymeric structures for tissue engineering prepared by a coagulation, compression moulding and salt leaching technique. Biomaterials 24(11) (2003) 1937-1947.
    [142] E. Bat, J.A. Plantinga, M.C. Harmsen, M.J.A. van Luyn, Z. Zhang, D.W. Grijpma, J. Feijen, Trimethylene Carbonate and epsilon-Caprolactone Based (co)Polymer Networks: Mechanical Properties and Enzymatic Degradation. Biomacromolecules 9(11) (2008) 3208-3215.
    [143] V. Balasubramanian, O. Onaca, R. Enea, D.W. Hughes, C.G. Palivan, Protein delivery: from conventional drug delivery carriers to polymeric nanoreactors. Expert Opin. Drug Deliv. 7(1) 63-78.
    [144] S. Cartmell, Controlled Release Scaffolds for Bone Tissue Engineering. Journal of Pharmaceutical Sciences 98(2) (2009) 430-441.
    [145] D.A. Christian, S. Cai, D.M. Bowen, Y. Kim, J.D. Pajerowski, D.E. Discher, Polymersome carriers: From self-assembly to siRNA and protein therapeutics. European Journal of Pharmaceutics and Biopharmaceutics 71(3) (2009) 463-474.
    [146] M. Stevanovic, D. Uskokovic, Poly(lactide-co-glycolide)-based Micro and Nanoparticles for the Controlled Drug Delivery of Vitamins. Current Nanoscience 5(1) (2009) 1-14.
    [147] T. Peng, J. Su, S.X. Cheng, R.X. Zhuo, Poly-α,β-(N-(2-hydroxyethyl)-L- aspartamide)-g-poly(1,3-trimethylene carbonate) amphiphilic graft co-polymer as a potential drug carrier. J. Biomater. Sci.-Polym. Ed. 17(8) (2006) 941-951.
    [148] Q. Shi, Y. Huang, X. Chen, M. Wu, J. Sun, X. Jing, Hemoglobin conjugated micelles based on triblock biodegradable polymers as artificial oxygen carriers. Biomaterials 30(28) (2009) 5077-5085.
    [149] T. Merdan, K. Kunath, H. Petersen, U. Bakowsky, K.H. Voigt, J. Kopecek, T. Kissel, PEGylation of poly(ethylene imine) affects stability of complexes with plasmid DNA under in vivo conditions in a dose-dependent manner after intravenous injection into mice. Bioconjugate Chemistry 16(4) (2005) 785-792.
    [150] T. Merdan, K. Kunath, D. Fischer, J. Kopecek, T. Kissel, Intracellular processing of poly(ethylene imine)/ribozyme complexes can be observed in living cells by using confocal laser scanning microscopy and inhibitor experiments. Pharmaceutical Research 19(2) (2002) 140-146.
    [151] C.F. Wang, Y.X. Lin, T. Jiang, F. He, R.X. Zhuo, Polyethylenimine-grafted polycarbonates as biodegradable polycations for gene delivery. Biomaterials 30(27) (2009) 4824-4832.
    [152] W.Y. Seow, Y.Y. Yang, Functional polycarbonates and their self-assemblies as promising non-viral vectors. Journal of Controlled Release 139(1) (2009) 40-47.
    [1] K. Kataoka, A. Harada, Y. Nagasaki, Block copolymer micelles for drug delivery: design, characterization and biological significance. Advanced Drug Delivery Reviews 47(1) (2001) 113-131.
    [2] V.P. Torchilin, Block copolymer micelles as a solution for drug delivery problems. Expert Opinion on Therapeutic Patents 15(1) (2005) 63-75.
    [3] N. Nishiyama, K. Kataoka, Current state, achievements, and future prospects of polymeric micelles as nanocarriers for drug and gene delivery. Pharmacology & Therapeutics 112(3) (2006) 630-648.
    [4] R. Savic, A. Eisenberg, D. Maysinger, Block copolymer micelles as delivery vehicles of hydrophobic drugs: Micelle-cell interactions. Journal of Drug Targeting 14(6) (2006) 343-355.
    [5] Y. Matsumura, T. Hamaguchi, T. Ura, K. Muro, Y. Yamada, Y. Shimada, K. Shirao, T. Okusaka, H. Ueno, M. Ikeda, N. Watanabe, Phase I clinical trial and pharmacokinetic evaluation of NK911, a micelle-encapsulated doxorubicin. British Journal of Cancer 91(10) (2004) 1775-1781.
    [6] T.Y. Kim, D.W. Kim, J.Y. Chung, S.G. Shin, S.C. Kim, D.S. Heo, N.K. Kim, Y.J. Bang, Phase I and pharmacokinetic study of Genexol-PM, a cremophor-free,polymeric micelle-formulated paclitaxel, in patients with advanced malignancies. Clinical Cancer Research 10(11) (2004) 3708-3716.
    [7] K.T. Oh, H.Q. Yin, E.S. Lee, Y.H. Bae, Polymeric nanovehicles for anticancer drugs with triggering release mechanisms. Journal of Materials Chemistry 17 (2007) 3987-4001.
    [8] C.J.F. Rijcken, O. Soga, W.E. Hennink, C.F. van Nostrum, Triggered destabilisation of polymeric micelles and vesicles by changing polymers polarity: An attractive tool for drug delivery. Journal of Controlled Release 120(3) (2007) 131-148.
    [9] S. Ganta, H. Devalapally, A. Shahiwala, M. Amiji, A review of stimuli-responsive nanocarriers for drug and gene delivery. Journal of Controlled Release 126(3) (2008) 187-204.
    [10] K. Ulbrich, V. Subr, Polymeric anticancer drugs with pH-controlled activation. Advanced Drug Delivery Reviews 56(7) (2004) 1023-1050.
    [11] E.R. Gillies, J.M.J. Frechet, Development of acid-sensitive copolymer micelles for drug delivery. Pure and Applied Chemistry 76(7-8) (2004) 1295-1307.
    [12] V. Toncheva, E. Schacht, S.Y. Ng, J. Barr, J. Heller, Use of block copolymers of poly(ortho esters) and poly (ethylene glycol) micellar carriers as potential tumour targeting systems. Journal of Drug Targeting 11(6) (2003) 345-353.
    [13] H.S. Yoo, E.A. Lee, T.G. Park, Doxorubicin-conjugated biodegradable polymeric micelles having acid-cleavable linkages. Journal of Controlled Release 82(1) (2002) 17-27.
    [14] Y. Bae, S. Fukushima, A. Harada, K. Kataoka, Design of environment-sensitive supramolecular assemblies for intracellular drug delivery: Polymeric micelles that are responsive to intracellular pH change. Angewandte Chemie-International Edition 42(38) (2003) 4640-4643.
    [15] E.R. Gillies, J.M.J. Frechet, A new approach towards acid sensitive copolymer micelles for drug delivery. Chemical Communications(14) (2003) 1640-1641.
    [16] N. Murthy, M.C. Xu, S. Schuck, J. Kunisawa, N. Shastri, J.M.J. Frechet, Amacromolecular delivery vehicle for protein-based vaccines: Acid-degradable protein-loaded microgels. Proceedings of the National Academy of Sciences of the United States of America 100(9) (2003) 4995-5000.
    [17] E.R. Gillies, T.B. Jonsson, J.M.J. Frechet, Stimuli-responsive supramolecular assemblies of linear-dendritic copolymers. Journal of the American Chemical Society 126(38) (2004) 11936-11943.
    [18] E.R. Gillies, J.M.J. Frechet, pH-responsive copolymer assemblies for controlled release of doxorubicin. Bioconjugate Chemistry 16(2) (2005) 361-368.
    [19] R. Jain, S.M. Standley, J.M.J. Frechet, Synthesis and degradation of pH-sensitive linear poly(amidoamine)s. Macromolecules 40(3) (2007) 452-457.
    [20] E.M. Bachelder, T.T. Beaudette, K.E. Broaders, J. Dashe, J.M.J. Frechet, Acetal-derivatized dextran: An acid-responsive biodegradable material for therapeutic applications. Journal of the American Chemical Society 130(32) (2008) 10494-10495.
    [21] S.E. Paramonov, E.M. Bachelder, T.T. Beaudette, S.M. Standley, C.C. Lee, J. Dashe, J.M.J. Frechet, Fully acid-degradable biocompatible polyacetal microparticles for drug delivery. Bioconjugate Chemistry 19(4) (2008) 911-919.
    [22] Y. Chan, V. Bulmus, M.H. Zareie, F.L. Byrne, L. Barner, M. Kavallaris, Acid-cleavable polymeric core-shell particles for delivery of hydrophobic drugs. Journal of Controlled Release 115(2) (2006) 197-207.
    [23] V. Bulmus, Y. Chan, Q. Nguyen, H.L. Tran, Synthesis and characterization of degradable p(HEMA) microgels: Use of acid-labile crosslinkers. Macromolecular Bioscience 7(4) (2007) 446-455.
    [24]R. Chandra, R. Rustgi, Biodegradable polymers. Progress in Polymer Science 23(7) (1998) 1273-1335.
    [25] S. Kuhling, H. Keul, H. Hocker, Polymers from 2-Allyloxymethyl-2-ethyltrimethylene Carbonate and Coplymers with 2,2 -Dimethyltrimethylene Carboante Obtained by Anionic Ring-opening Polymerization. Makromolekulare Chemie-Macromolecular Chemistry and Physics 191(7) (1990) 1611-1622.
    [26] S. Kuhling, H. Keul, H. Hocker, H.J. Buysch, N. Schon, Synthesis of Poly(2-ethyl-2-hydroxymethyltrimethylene Carbonate). Makromolekulare Chemie -Macromolecular Chemistry and Physics 192(5) (1991) 1193-1205.
    [27] E.J. Vandenberg, D. Tian, A new, crystalline high melting bis(hydroxymethyl) polycarbonate and its acetone ketal for biomaterial applications. Macromolecules 32(11) (1999) 3613-3619.
    [28] Z.L. Liu, Y. Zhou, R.X. Zhuo, Synthesis and properties of functional aliphatic polycarbonates. Journal of Polymer Science Part a-Polymer Chemistry 41(24) (2003) 4001-4006.
    [29] L.S. Wang, S.X. Cheng, R.X. Zhuo, Novel biodegradable aliphatic polycarbonate based on ketal protected dihydroxyacetone. Macromolecular Rapid Communications 25(9) (2004) 959-963.
    [30] H.J. Mei, Z.L. Zhong, F.F. Long, R.X. Zhuo, Synthesis and characterization of novel glycerol-derived polycarbonates with pendant hydroxyl groups. Macromolecular Rapid Communications 27(22) (2006) 1894-1899.
    [31] A.N. Zelikin, P.N. Zawaneh, D. Putnam, A functionalizable biomaterial based on dihydroxyacetone, an intermediate of glucose metabolism. Biomacromolecules 7(11) (2006) 3239-3244.
    [32] W.C. Ray, M.W. Grinstaff, Polycarbonate and poly(carbonate-ester)s synthesized from biocompatible building blocks of glycerol and lactic acid. Macromolecules 36(10) (2003) 3557-3562.
    [33] J.B. Wolinsky, W.C. Ray, Y.L. Colson, M.W. Grinstaff, Poly(carbonate ester)s based on units of 6-hydroxyhexanoic acid and glycerol. Macromolecules 40 (2007) 7065-7068.
    [34] C.H. Lu, Q. Shi, X.S. Chen, T.C. Lu, Z.G. Xie, X.L. Hu, J. Ma, X.B. Jing, Sugars -grafted aliphatic biodegradable poly(L-lactide-co-carbonate)s by click reaction and their specific interaction with lectin molecules. Journal of Polymer Science Part a-Polymer Chemistry 45(15) (2007) 3204-3217.
    [35] Z.G. Xie, C.H. Lu, X.S. Chen, L. Chen, Y. Wang, X.L. Hu, Q. Shi, X.B. Jing,Synthesis and characterization of novel poly(ester carbonate)s based on pentaerythritol. Journal of Polymer Science Part a-Polymer Chemistry 45(9) (2007) 1737-1745.
    [36] R.C. Pratt, F. Nederberg, R.M. Waymouth, J.L. Hedrick, Tagging alcohols with cyclic carbonate: a versatile equivalent of (meth)acrylate for ring-opening polymerization. Chemical Communications(1) (2008) 114-116.
    [37] B. Aguilera, L. Romero-Ramirez, J. Abad-Rodriguez, G. Corrales, M. Nieto-Sampedro, A. Fernandez-Mayoralas, Novel disaccharide inhibitors of human glioma cell division. Journal of Medicinal Chemistry 41(23) (1998) 4599-4606.
    [38] G.S. Kwon, T. Okano, Polymeric micelles as new drug carriers. Advanced Drug Delivery Reviews 21(2) (1996) 107-116.
    [39] A. Harada, K. Kataoka, Supramolecular assemblies of block copolymers in aqueous media as nanocontainers relevant to biological applications. Progress in Polymer Science 31(11) (2006) 949-982.
    [40] V.P. Torchilin, Micellar nanocarriers: Pharmaceutical perspectives. Pharmaceutical Research 24(1) (2007) 1-16.
    [41] M.M. Gottesman, I. Pastan, S.V. Ambudkar, P-glycoprotein and multidrug resistance. Current Opinion in Genetics & Development 6(5) (1996) 610-617.
    [42] F.H. Meng, C. Hiemstra, G.H.M. Engbers, J. Feijen, Biodegradable polymersomes. Macromolecules 36(9) (2003) 3004-3006.
    [43] M. Leemhuis, C.F. van Nostrum, J.A.W. Kruijtzer, Z.Y. Zhong, M.R. ten Breteler, P.J. Dijkstra, J. Feijen, W.E. Hennink, Functionalized poly(alpha-hydroxy acid)s via ring-opening polymerization: Toward hydrophilic polyesters with pendant hydroxyl groups. Macromolecules 39(10) (2006) 3500-3508.
    [1] B.M. Discher, Y.Y. Won, D.S. Ege, J.C.M. Lee, F.S. Bates, D.E. Discher, D.A. Hammer, Polymersomes: Tough vesicles made from diblock copolymers. Science 284(5417) (1999) 1143-1146.
    [2] D.E. Discher, A. Eisenberg, Polymer vesicles. Science 297(5583) (2002) 967-973.
    [3] F.H. Meng, G.H.M. Engbers, J. Feijen, Biodegradable polymersomes as a basis for artificial cells: encapsulation, release and targeting. Journal of Controlled Release 101(1-3) (2005) 187-198.
    [4] Y.F. Zhou, D.Y. Yan, Real-time membrane fission of giant polymer vesicles. Angewandte Chemie-International Edition 44(21) (2005) 3223-3226.
    [5] D.E. Discher, F. Ahmed, Polymersomes. Annual Review of Biomedical Engineering 8 (2006) 323-341.
    [6] D.E. Discher, V. Ortiz, G. Srinivas, M.L. Klein, Y. Kim, C.A. David, S.S. Cai, P. Photos, F. Ahmed, Emerging applications of polymersomes in delivery: From molecular dynamics to shrinkage of tumors. Progress in Polymer Science 32 (2007)838-857.
    [7] F.H. Meng, Z.Y. Zhong, J. Feijen, Stimuli-Responsive Polymersomes for Programmed Drug Delivery. Biomacromolecules 10(2) (2009) 197-209.
    [8] M.H. Li, P. Keller, Stimuli-responsive polymer vesicles. Soft Matter 5(5) (2009) 927-937.
    [9] D.A. Christian, S. Cai, D.M. Bowen, Y. Kim, J.D. Pajerowski, D.E. Discher, Polymersome carriers: From self-assembly to siRNA and protein therapeutics. European Journal of Pharmaceutics and Biopharmaceutics 71(3) (2009) 463-474.
    [10] S.H. Qin, Y. Geng, D.E. Discher, S. Yang, Temperature-controlled assembly and release from polymer vesicles of poly(ethylene oxide)-block-poly(N-isopropylacrylamide). Advanced Materials 18(21) (2006) 2905-+.
    [11] F.H. Meng, C. Hiemstra, G.H.M. Engbers, J. Feijen, Biodegradable polymersomes. Macromolecules 36(9) (2003) 3004-3006.
    [12] A. Napoli, M. Valentini, N. Tirelli, M. Muller, J.A. Hubbell, Oxidation-responsive polymeric vesicles. Nature Materials 3(3) (2004) 183-189.
    [13] C. Nardin, T. Hirt, J. Leukel, W. Meier, Polymerized ABA triblock copolymer vesicles. Langmuir 16(3) (2000) 1035-1041.
    [14] H.J. Dou, M. Jiang, H.S. Peng, D.Y. Chen, Y. Hong, pH-dependent self-assembly: Micellization and micelle-hollow-sphere transition of cellulose-based copolymers. Angewandte Chemie-International Edition 42(13) (2003) 1516-1519.
    [15] H.J. Lee, S.R. Yang, E.J. An, J.D. Kim, Biodegradable polymersomes from poly(2-hydroxyethyl aspartamide) grafted with lactic acid oligomers in aqueous solution. Macromolecules 39(15) (2006) 4938-4940.
    [16] M. Yang, W. Wang, F. Yuan, X.W. Zhang, J.Y. Li, F.X. Liang, B.L. He, B. Minch, G. Wegner, Soft vesicles formed by diblock codendrimers of poly(benzyl ether) and poly(methallyl dichloride). Journal of the American Chemical Society 127(43) (2005) 15107-15111.
    [17] C.J.F. Rijcken, O. Soga, W.E. Hennink, C.F. van Nostrum, Triggered destabilisation of polymeric micelles and vesicles by changing polymers polarity: An attractive toolfor drug delivery. Journal of Controlled Release 120(3) (2007) 131-148.
    [18] K. Ulbrich, V. Subr, Polymeric anticancer drugs with pH-controlled activation. Advanced Drug Delivery Reviews 56(7) (2004) 1023-1050.
    [19] J.Z. Du, Y.P. Tang, A.L. Lewis, S.P. Armes, pH-sensitive vesicles based on a biocompatible zwitterionic diblock copolymer. Journal of the American Chemical Society 127(51) (2005) 17982-17983.
    [20] H. Lomas, I. Canton, S. MacNeil, J. Du, S.P. Armes, A.J. Ryan, A.L. Lewis, G. Battaglia, Biomimetic pH sensitive polymersomes for efficient DNA encapsulation and delivery. Advanced Materials 19(23) (2007) 4238-+.
    [21] U. Borchert, U. Lipprandt, M. Bilang, A. Kimpfler, A. Rank, R. Peschka-Suss, R. Schubert, P. Lindner, S. Forster, pH-induced release from P2VP-PEO block copolymer vesicles. Langmuir 22(13) (2006) 5843-5847.
    [22] E.P. Holowka, V.Z. Sun, D.T. Kamei, T.J. Deming, Polyarginine segments in block copolypeptides drive both vesicular assembly and intracellular delivery. Nature Materials 6(1) (2007) 52-57.
    [23] F. Ahmed, D.E. Discher, Self-porating polymersomes of PEG-PLA and PEG-PCL: hydrolysis-triggered controlled release vesicles. Journal of Controlled Release 96(1) (2004) 37-53.
    [24] F. Ahmed, R.I. Pakunlu, A. Brannan, F. Bates, T. Minko, D.E. Discher, Biodegradable polymersomes loaded with both paclitaxel and doxorubicin permeate and shrink tumors, inducing apoptosis in proportion to accumulated drug. Journal of Controlled Release 116(2) (2006) 150-158.
    [25] Y.H. Kim, M. Tewari, J.D. Pajerowski, S.S. Cai, S. Sen, J. Williams, S. Sirsi, G. Lutz, D.E. Discher, Polymersome delivery of siRNA and antisense oligonucleotides. Journal of Controlled Release 134(2) (2009) 132-140.
    [26] Z.Q. Pang, W. Lu, H.L. Gao, K.L. Hu, J. Chen, C.L. Zhang, X.L. Gao, X.G. Jiang, C.Q. Zhu, Preparation and brain delivery property of biodegradable polymersomes conjugated with OX26. Journal of Controlled Release 128(2) (2008) 120-127.
    [27] E.R. Gillies, J.M.J. Frechet, A new approach towards acid sensitive copolymermicelles for drug delivery. Chemical Communications(14) (2003) 1640-1641.
    [28] N. Murthy, M.C. Xu, S. Schuck, J. Kunisawa, N. Shastri, J.M.J. Frechet, A macromolecular delivery vehicle for protein-based vaccines: Acid-degradable protein-loaded microgels. Proceedings of the National Academy of Sciences of the United States of America 100(9) (2003) 4995-5000.
    [29] E.R. Gillies, A.P. Goodwin, J.M.J. Frechet, Acetals as pH-sensitive linkages for drug delivery. Bioconjugate Chemistry 15(6) (2004) 1254-1263.
    [30] E.R. Gillies, J.M.J. Frechet, pH-responsive copolymer assemblies for controlled release of doxorubicin. Bioconjugate Chemistry 16(2) (2005) 361-368.
    [31] R. Jain, S.M. Standley, J.M.J. Frechet, Synthesis and degradation of pH-sensitive linear poly(amidoamine)s. Macromolecules 40(3) (2007) 452-457.
    [32]S.E. Paramonov, E.M. Bachelder, T.T. Beaudette, S.M. Standley, C.C. Lee, J. Dashe, J.M.J. Frechet, Fully acid-degradable biocompatible polyacetal microparticles for drug delivery. Bioconjugate Chemistry 19(4) (2008) 911-919.
    [33] E.M. Bachelder, T.T. Beaudette, K.E. Broaders, J. Dashe, J.M.J. Frechet, Acetal-derivatized dextran: An acid-responsive biodegradable material for therapeutic applications. Journal of the American Chemical Society 130(32) (2008) 10494-10495.
    [34] Y. Chan, V. Bulmus, M.H. Zareie, F.L. Byrne, L. Barner, M. Kavallaris, Acid-cleavable polymeric core-shell particles for delivery of hydrophobic drugs. Journal of Controlled Release 115(2) (2006) 197-207.
    [35] W. Chen, F.H. Meng, F. Li, S.J. Ji, Z.Y. Zhong, pH-Responsive Biodegradable Micelles Based on Acid-Labile Polycarbonate Hydrophobe: Synthesis and Triggered Drug Release. Biomacromolecules 10(7) (2009) 1727-1735.
    [36] Y.Y. Won, A.K. Brannan, H.T. Davis, F.S. Bates, Cryogenic transmission electron microscopy (cryo-TEM) of micelles and vesicles formed in water by polyethylene oxide)-based block copolymers. Journal of Physical Chemistry B 106(13) (2002) 3354-3364.
    [37] Y.Y. Won, H.T. Davis, F.S. Bates, Giant wormlike rubber micelles. Science283(5404) (1999) 960-963.
    [38] E.J. Vandenberg, D. Tian, A new, crystalline high melting bis(hydroxymethyl) polycarbonate and its acetone ketal for biomaterial applications. Macromolecules 32(11) (1999) 3613-3619.
    [39] G. Gasparini, R. Longo, M. Fanelli, B.A. Teicher, Combination of antiangiogenic therapy with other anticancer therapies: Results, challenges, and open questions. Journal of Clinical Oncology 23(6) (2005) 1295-1311.
    [40] S. Sengupta, D. Eavarone, I. Capila, G.L. Zhao, N. Watson, T. Kiziltepe, R. Sasisekharan, Temporal targeting of tumour cells and neovasculature with a nanoscale delivery system. Nature 436(7050) (2005) 568-572.
    [41] M.J. Vicent, F. Greco, R.I. Nicholson, A. Paul, P.C. Griffiths, R. Duncan, Polymer therapeutics designed for a combination therapy of hormone-dependent cancer. Angewandte Chemie-International Edition 44(26) (2005) 4061-4066.
    [42] A. Sacchi, A. Gasparri, C. Gallo-Stampino, S. Toma, F. Curnis, A. Corti, Synergistic antitumor activity of cisplatin, paclitaxel, and gemcitabine with tumor vasculature-targeted tumor necrosis factor-alpha. Clinical Cancer Research 12(1) (2006) 175-182.
    [43] Y. Bae, T.A. Diezi, A. Zhao, G.S. Kwon, Mixed polymeric micelles for combination cancer chemotherapy through the concurrent delivery of multiple chemotherapeutic agents. Journal of Controlled Release 122(3) (2007) 324-330.
    [44] T.O. Harasym, P.G. Tardi, N.L. Harasym, P. Harvie, S.A. Johnstone, L.D. Mayer, Increased preclinical efficacy of irinotecan and floxuridine coencapsulated inside liposomes is associated with tumor delivery of synergistic drug ratios. Oncology Research 16(8) (2007) 361-374.
    [45] N. Wiradharma, Y.W. Tong, Y.Y. Yang, Self-assembled oligopeptide nanostructures for co-delivery of drug and gene with synergistic therapeutic effect. Biomaterials 30(17) (2009) 3100-3109.
    [1] R.A. Gross, B. Kalra, Biodegradable polymers for the environment. Science 297(5582) (2002) 803-807.
    [2] R.W. Lenz, Biodegradable Polymers. Advances in Polymer Science 107 (1993) 1-40.
    [3] C. Jerome, P. Lecomte, Recent advances in the synthesis of aliphatic polyesters by ring-opening polymerization. Advanced Drug Delivery Reviews 60(9) (2008) 1056-1076.
    [4]R. Chandra, R. Rustgi, Biodegradable polymers. Progress in Polymer Science 23(7) (1998) 1273-1335.
    [5] M. Okada, Chemical syntheses of biodegradable polymers. Progress in Polymer Science 27(1) (2002) 87-133.
    [6] A.C. Albertsson, I.K. Varma, Recent developments in ring opening polymerization of lactones for biomedical applications. Biomacromolecules 4(6) (2003) 1466-1486.
    [7] O. Dechy-Cabaret, B. Martin-Vaca, D. Bourissou, Controlled ring-opening polymerization of lactide and glycolide. Chemical Reviews 104(12) (2004) 6147-6176.
    [8] J.C. Middleton, A.J. Tipton, Synthetic biodegradable polymers as orthopedic devices. Biomaterials 21(23) (2000) 2335-2346.
    [9] Y. Lu, S.C. Chen, Micro and nano-fabrication of biodegradable polymers for drug delivery. Advanced Drug Delivery Reviews 56(11) (2004) 1621-1633.
    [10] F.P.W. Melchels, J. Feijen, D.W. Grijpma, A poly(D,L-lactide) resin for the preparation of tissue engineering scaffolds by stereolithography. Biomaterials 30(23-24) (2009) 3801-3809.
    [11] L.E. Freed, G. Vunjak-Novakovic, R.J. Biron, D.B. Eagles, D.C. Lesnoy, S.K. Barlow, R. Langer, Biodegradable Polymer Scaffolds for Tissue Engineering. Nat Biotech 12(7) (1994) 689-693.
    [12] K.E. Uhrich, S.M. Cannizzaro, R.S. Langer, K.M. Shakesheff, Polymeric systems for controlled drug release. Chemical Reviews 99(11) (1999) 3181-3198.
    [13] R. Langer, Biomaterials in drug delivery and tissue engineering: One laboratory's experience. Accounts of Chemical Research 33(2) (2000) 94-101.
    [14] R. Duncan, The dawning era of polymer therapeutics. Nature Reviews Drug Discovery 2(5) (2003) 347-360.
    [15] L.S. Nair, C.T. Laurencin, Biodegradable polymers as biomaterials. Progress in Polymer Science 32 (2007) 762-798.
    [16] F.H. Meng, Z.Y. Zhong, J. Feijen, Stimuli-Responsive Polymersomes for Programmed Drug Delivery. Biomacromolecules 10(2) (2009) 197-209.
    [17] R. Langer, D.A. Tirrell, Designing materials for biology and medicine. Nature 428(6982) (2004) 487-492.
    [18] J. Kohn, New approaches to biomaterials design. Nature Materials 3(11) (2004) 745-747.
    [19] J.A. Hubbell, Bioactive biomaterials. Current Opinion in Biotechnology 10(2) (1999) 123-129.
    [20] E.S. Place, N.D. Evans, M.M. Stevens, Complexity in biomaterials for tissue engineering. Nature Materials 8(6) (2009) 457-470.
    [21] D. Tian, P. Dubois, C. Grandfils, R. Jerome, Ring-opening polymerization of1,4,8-trioxaspiro[4.6]-9-undecanone: A new route to aliphatic polyesters bearing functional pendent groups. Macromolecules 30(3) (1997) 406-409.
    [22] E.J. Vandenberg, D. Tian, A new, crystalline high melting bis(hydroxymethyl)polycarbonate and its acetone ketal for biomaterial applications. Macromolecules 32(11) (1999) 3613-3619.
    [23] M. Trollsas, V.Y. Lee, D. Mecerreyes, P. Lowenhielm, M. Moller, R.D. Miller, J.L. Hedrick, Hydrophilic aliphatic polyesters: Design, synthesis, and ring-opening polymerization of functional cyclic esters. Macromolecules 33(13) (2000) 4619-4627.
    [24] X.L. Wang, R.X. Zhuo, L.J. Liu, F. He, G. Liu, Synthesis and characterization of novel aliphatic polycarbonates. Journal of Polymer Science Part a-Polymer Chemistry 40(1) (2002) 70-75.
    [25] W.C. Ray, M.W. Grinstaff, Polycarbonate and poly(carbonate-ester)s synthesized from biocompatible building blocks of glycerol and lactic acid. Macromolecules 36(10) (2003) 3557-3562.
    [26] M. Leemhuis, C.F. van Nostrum, J.A.W. Kruijtzer, Z.Y. Zhong, M.R. ten Breteler, P.J. Dijkstra, J. Feijen, W.E. Hennink, Functionalized poly(alpha-hydroxy acid)s via ring-opening polymerization: Toward hydrophilic polyesters with pendant hydroxyl groups. Macromolecules 39(10) (2006) 3500-3508.
    [27] W.W. Gerhardt, D.E. Noga, K.I. Hardcastle, A.J. Garcia, D.M. Collard, M. Weck, Functional lactide monomers: Methodology and polymerization. Biomacromolecules 7(6) (2006) 1735-1742.
    [28] Z.G. Xie, C.H. Lu, X.S. Chen, L. Chen, Y. Wang, X.L. Hu, Q. Shi, X.B. Jing, Synthesis and characterization of novel poly(ester carbonate)s based on pentaerythritol. Journal of Polymer Science Part a-Polymer Chemistry 45(9) (2007) 1737-1745.
    [29] X.L. Hu, S. Liu, X.S. Chen, G.J. Mo, Z.G. Xie, X.B. Jing, Biodegradable amphiphilic block copolymers bearing protected hydroxyl groups: Synthesis and characterization. Biomacromolecules 9(2) (2008) 553-560.
    [30] X.J. Zhang, H.J. Mei, C. Hu, Z.L. Zhong, R.X. Zhuo, Amphiphilic Triblock Copolycarbonates with Poly(glycerol carbonate) as Hydrophilic Blocks. Macromolecules 42(4) (2009) 1010-1016.
    [31] Y. Kimura, K. Shirotani, H. Yamane, T. Kitao, Ring-opening polymerization of 3(S)-[(benzyloxycarbonyl)methyl]-1,4-dioxane-2,5-dione: a new route to a poly(.alpha.-hydroxy acid) with pendant carboxyl groups. Macromolecules 21(11) (1988) 3338-3340.
    [32] J.A.i.t.V. Peter, J.D. Pieter, F. Jan, Synthesis of biodegradable polyesteramides with pendant functional groups. Die Makromolekulare Chemie 193(11) (1992) 2713-2730.
    [33] D. Wang, X.D. Feng, Synthesis of Poly(glycolic acid-alt-l-aspartic acid) from a Morpholine-2,5-dione Derivative. Macromolecules 30(19) (1997) 5688-5692.
    [34] R.F. Storey, B.D. Mullen, K.M. Melchert, Synthesis of novel hydrophilic poly(ester-carbonates) containing pendent carboxylic acid groups. Journal of Macromolecular Science-Pure and Applied Chemistry 38(9) (2001) 897-917.
    [35] R.S. Lee, J.M. Yang, T.F. Lin, Novel, biodegradable, functional poly(ester-carbonate)s by copolymerization of trans-4-hydroxy-L-proline with cyclic carbonate bearing a pendent carboxylic group. Journal of Polymer Science Part a-Polymer Chemistry 42(10) (2004) 2303-2312.
    [36] D.E. Noga, T.A. Petrie, A. Kumar, M. Weck, A.J. Garcia, D.M. Collard, Synthesis and modification of functional poly(lactide) copolymers: Toward biofunctional materials. Biomacromolecules 9(7) (2008) 2056-2062.
    [37] Y. Zhou, R.X. Zhuo, Z.L. Liu, Synthesis and characterization of novel aliphatic poly(carbonate-ester)s with functional pendent groups. Macromolecular Rapid Communications 26(16) (2005) 1309-1314.
    [38] D.A. Barrera, E. Zylstra, P.T. Lansbury, R. Langer, Synthesis and RGD peptide modification of a new biodegradable copolymer: poly(lactic acid-co-lysine). Journal of the American Chemical Society 115(23) (1993) 11010-11011.
    [39] X. Chen, S.P. McCarthy, R.A. Gross, Synthesis, Characterization, and Epoxidationof an Aliphatic Polycarbonate from 2,2-(2-Pentene-1,5-diyl)trimethylene Carbonate (cHTC) Ring-Opening Polymerization. Macromolecules 30(12) (1997) 3470-3476.
    [40] D. Mecerreyes, J. Humes, R.D. Miller, J.L. Hedrick, C. Detrembleur, P. Lecomte, R. Jerome, J. San Roman, First example of an unsymmetrical difunctional monomer polymerizable by two living/controlled methods. Macromolecular Rapid Communications 21(11) (2000) 779-784.
    [41] D. Mecerreyes, V. Lee, C.J. Hawker, J.L. Hedrick, A. Wursch, W. Volksen, T. Magbitang, E. Huang, R.D. Miller, A novel approach to functionalized nanoparticles: Self-crosslinking of macromolecules in ultradilute solution. Advanced Materials 13(3) (2001) 204-208.
    [42] C. Vaida, P. Mela, H. Keul, M. Moller, 2D-and 3D-Microstructured Biodegradable Polyester Resins. Journal of Polymer Science Part a-Polymer Chemistry 46(20) (2008) 6789-6800.
    [43] D. Mecerreyes, R.D. Miller, J.L. Hedrick, C. Detrembleur, R. Jerome, Ring-opening polymerization of 6-hydroxynon-8-enoic acid lactone: Novel biodegradable copolymers containing allyl pendent groups. Journal of Polymer Science Part a-Polymer Chemistry 38(5) (2000) 870-875.
    [44] B. Parrish, J.K. Quansah, T. Emrick, Functional polyesters prepared by polymerization of alpha-allyl(valerolactone) and its copolymerization with epsilon-caprolactone and delta-valerolactone. Journal of Polymer Science Part a-Polymer Chemistry 40(12) (2002) 1983-1990.
    [45] R.C. Pratt, F. Nederberg, R.M. Waymouth, J.L. Hedrick, Tagging alcohols with cyclic carbonate: a versatile equivalent of (meth)acrylate for ring-opening polymerization. Chemical Communications(1) (2008) 114-116.
    [46] C.H. Lu, Q. Shi, X.S. Chen, T.C. Lu, Z.G. Xie, X.L. Hu, J. Ma, X.B. Jing, Sugars-grafted aliphatic biodegradable poly(L-lactide-co-carbonate)s by click reaction and their specific interaction with lectin molecules. Journal of Polymer Science Part a-Polymer Chemistry 45(15) (2007) 3204-3217.
    [47] R. Riva, S. Schmeits, C. Jerome, R. Jerome, P. Lecomte, Combination ofring-opening polymerization and "click chemistry": Toward functionalization and grafting of poly(epsilon-caprolactone). Macromolecules 40(4) (2007) 796-803.
    [48] M.A. Gauthier, M.I. Gibson, H.A. Klok, Synthesis of Functional Polymers by Post-Polymerization Modification. Angewandte Chemie-International Edition 48(1) (2009) 48-58.
    [49] J. Rieger, K. Van Butsele, P. Lecomte, C. Detrembleur, R. Jerome, C. Jerome, Versatile functionalization and grafting of poly(epsilon-caprolactone) by Michael-type addition. Chemical Communications(2) (2005) 274-276.
    [50] X.D. Lou, C. Detrembleur, P. Lecomte, R. Jerome, Two-step backbiting reaction in the ring-opening polymerization of gamma-acryloyloxy-epsilon-caprolactone initiated with aluminium isopropoxide. Macromolecular Rapid Communications 23(2) (2002) 126-129.
    [51] C. Vaida, M. Takwa, M. Martinelle, K. Hult, H. Keul, M. Moller, gamma-Acyloxy-epsilon-Caprolactones: Synthesis, Ring-Opening Polymerization vs. Rearrangement by Means of Chemical and Enzymatic Catalysis. Macromolecular Symposia 272 (2008) 28-38.
    [52] W. Chen, F.H. Meng, F. Li, S.J. Ji, Z.Y. Zhong, pH-Responsive Biodegradable Micelles Based on Acid-Labile Polycarbonate Hydrophobe: Synthesis and Triggered Drug Release. Biomacromolecules 10(7) (2009) 1727-1735.
    [53] M.P. Lutolf, N. Tirelli, S. Cerritelli, L. Cavalli, J.A. Hubbell, Systematic modulation of Michael-type reactivity of thiols through the use of charged amino acids. Bioconjugate Chemistry 12(6) (2001) 1051-1056.
    [54] B.P. Alison, E.W. Franz, G.S. Hugo, M. Ralph, A.H. Jeffrey, Synthetic extracellular matrices for in situ tissue engineering. Biotechnology and Bioengineering 86(1) (2004) 27-36.
    [55] B.D. Mather, K. Viswanathan, K.M. Miller, T.E. Long, Michael addition reactions in macromolecular design for emerging technologies. Progress in Polymer Science 31(5) (2006) 487-531.
    [56] F. Rusmini, Z.Y. Zhong, J. Feijen, Protein immobilization strategies for proteinbiochips. Biomacromolecules 8(6) (2007) 1775-1789.
    [57] U. Hersel, C. Dahmen, H. Kessler, RGD modified polymers: biomaterials for stimulated cell adhesion and beyond. Biomaterials 24(24) (2003) 4385-4415.
    [58] H.A. Klok, Biological-synthetic hybrid block copolymers: Combining the best from two worlds. Journal of Polymer Science Part a-Polymer Chemistry 43(1) (2005) 1-17.
    [59] C.J. Hawker, K.L. Wooley, The convergence of synthetic organic and polymer chemistries. Science 309(5738) (2005) 1200-1205.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700