尼龙66/聚酚氧共混物性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为重要的工程塑料,聚酰胺66(俗称尼龙66)具有较好的拉伸强度,耐磨性,耐腐蚀性,白润滑和良好的加工性能。但是,由于含有极性基团,所以吸水率大,从而影响加工性能和尺寸稳定性,进而限制了尼龙66的应用。为了提高尼龙66的综合性能,本文采用双螺杆挤出机制备了一系列不同共混比例、不同原始颗粒尺寸PHE以及不同加工条件的PA66/PHE共混物。然后通过DSC、SEM、POM、WXRD和力学性能测试来对PA66/PHE共混物的结晶性能和力学性能进行测试。研究发现,不同颗粒尺寸的PHE以及改变加工条件主要是对共混物的相形态和力学性能有明显的影响,对共混物的结晶性能没有产生明显的影响。
     对PA66/PHE共混物的形态和力学性能的研究结果显示:随着PHE的加入,PA66/PHE共混物的形态发生了转变,由连续相-分散相转变为共连续相。当使用原始颗粒尺寸较小的PHE时,PA66/PHE共混物的相尺寸较小,而且分散均匀。同时,加工条件也会对相形态产生影响,我们发现在强的剪切作用下,PA66/PHE共混物的分散相尺寸更小。
     当使用小颗粒尺寸的PHE时,PA66/PHE共混物的冲击强度有所提高,拉伸强度则略高于纯的尼龙66,但是两者都呈现协同效应。当使用大颗粒尺寸的PHE时,共混物的冲击强度下降,而拉伸强度却得到提高,甚至高于小颗粒尺寸的PHE制备的共混物的拉伸强度。当其他条件相同时,与弱剪切作用相比,强剪切作用下制备的共混物的力学性能更好,特别是当PHE含量较低的时候。
     我们也通过DSC、WXRD和POM对PA66/PHE共混物的结晶、熔融行为进行了研究,结果显示:当PHE含量小于10%时,PHE的加入使得共混物的结晶温度增加,共混物中晶体的尺寸也减小;当PHE含量大于10%时,随着PHE含量的增加,共混物的结晶温度降低,晶体尺寸增大。原因可能是当PHE含量较少时,PHE是比较好的成核剂,从而加快了尼龙66的结晶速度,缩短了结晶时间,提高了结晶温度,以及使得共混物中的PA66晶体的尺寸减小;当PHE含量较多时,PA66/PHE共混物的形态发生转变,PHE开始阻碍尼龙66的结晶,降低结晶速度,从而延长了结晶的时间,进而使得尼龙66晶体的尺寸增大。由于PHE的加入起到稀释效应或是使得PA66晶体的完善程度降低,从而使得共混物的熔点降低。另外,测试结果还显示,相比较而言,PHE的加入促进了晶型的生长,阻碍了晶型的生长。
Polyamide 66 (commonly known as nylon 66) is an important engineering plastics with high strength wear resistance, corrosion resistance, self lubrication and outstanding fluid processing properties. However, strong water absorption affect the processing properties and dimensional stability because of its rich of polar groups limited its application. In order to improve the integrated property of nylon 66, polyamide 66/poly(hydroxy ether of bisphenol A) (PHE) blends were prepared by a dual-screw extruder in the whole composition range. PHE with different sizes of raw materials were adopted in this research. The PA66/PHE blends were characterized by DSC, WXRD, POM, SEM and so on. The results show that the different size of original PHE and processing conditions remarkably affect the morphology and mechanical properties of PA66/PHE blends while have no influence on the crystalline of the blends.
     The investigation of the morphology and the mechanical properties of blends showed that the addition of PHE changed the morphology of PA66/PHE blends:from continuous phase-disperse phase to co-continuous phase. When smaller PHE particle is used as the original material, the phase size of PA66/PHE blends are more small and the dispersion and distribution are more homogeneous. The processing conditions can also affect the phase morphology. We find that under the stronger shear force the disperse phase of PA66/PHE blend are smaller.
     When PHE with small particle size (remarked as PHE-S) was used, the impact and tensile strength of PA66/PHE blends were improved by the addition of the PHE, and presented synergistic effect. When PHE with big particle size (remarked as PHE-B) was used, the impact strength of blends was reduced, but the tensile strength of blends was elevated even higher than that of the corresponding blend started by PHE-S. When other conditions are the same, compare to weaker shear force, stronger shear force leads to better mechanical properties, particularly at low PHE content.
     The melting and crystallization behaviors of PA66/PHE blends were also investigated in this work by differential scanning calorimetry (DSC), Wide-angle X-ray diffraction (WXRD) and Polarizing optical microscope (POM). The results showed when the content of PHE is below 10%, with the increasing of PHE content the crystallization temperature of blends decreased and the size of PA66 crystal were reduced. When the content of PHE is higher than 10%, the crystallization temperature then decrease with increasing of PHE content. The reasons may be that at low PHE content, the PHE was a good nucleating agent, which could evaluate the crystallization rate of PA66, shorten the half-time of crystallization, increase the crystallization temperature, and reduce the size of PA66 crystal; at high PHE content, the morphology of PA66/PHE blends is inversed, the PHE could hinder the crystallization of PA66, reduce the crystallization rate of PA66, which prolong the half-time of crystallization, and enlarged the size of PA66 crystal. The addition of PHE also reduced the melt temperature of blends, which result from the dilution effect of PHE that reduced the degree of PA66 crystal. The result also showed that the addition of PHE promoted the growth ofα2 crystal, and hindered the growth ofα1 crystal.
引文
[1]张道权等.超高分子量聚乙烯填料改性研究[J].材料科学与工程,1997,154(4):61-63
    [2]吴培熙,张智城.聚合物共混改性[M].北京:中国轻工业出版社,2001
    [3]黄继雅.高聚物共混改性[J].浙江化工,1990,21(3):1-8
    [4]王国全.聚合物共混改性原理与应用[M].北京:中国轻工业出版社,2007
    [5]耿孝正,张沛.塑料混合及设备[M].北京:中国轻工业出版社,1992
    [6]封朴.聚合物合金[M].上海:同济大学出版社,1997
    [7]许民,王清文,宋永明,隋淑娟.熔融共混对聚合物性能的影响[J].东北林业大学学报,2007,35(6):59-62
    [8]黄兴.PA共混改性研究进展[J].塑料科技,2000,(4):37~39
    [9]陈蔚萍,高青雨,米常焕,张举贤.尼龙66的改性研究进展[J].河南大学学报,2000,30(2):71-73
    [10]欧玉春等.马来酸酐改性聚乙烯的制备及其与尼龙的共混物[J].高分子学报,1991,(3):301-308
    [11]俞强,李绵春,林明德.尼龙1010/HDPE-g-MAH共混体系界面形态及结晶行为的研究[J].高分子材料科学工程,1998,14(1):45-51
    [12]欧玉春,冯宇鹏,梁恩芳.尼龙/聚乙烯共混物的界面相互作用[J].高分子学报,1991,5:526-531
    [13]段建华,张增民.PA/PP/SEBS三元合金的结构与性能[J].中国塑料,1995,9(6):40-44
    [14]王华等.耐磨型尼龙6合金的摩擦行为研究[J].合成树脂塑料,1995,12(4):10~13
    [15]彭治汉,施祖培.塑料工业手册:聚酰胺[M].北京:化学工业出版社,2001
    [16]邓如生.共混改性工程塑料.北京:化学工业出版社,2003
    [17]樊孝玉,孟大维,吴秀玲.工程塑料尼龙66的增韧改性研究状况[M].广州化工,2004,32(4):46~48
    [18]Xiangmin Xu, Binjie Li, Huimin Lu, Zhijun Zhang. The interface structure of nano-SiO2/PA66 composites and its influence on material's mechanical and thermal properties[J]. Appied Surface Science,2007,254:1456~1462
    [19]Huimin Lu, Xiangmin Xu, Xiaohong Li, Zhijun Zhang. Morphology, crystallization and dynamic mechanical properties of PA66/nano-SiO2 composites[J]. Indian Academy of Science,2006,29(5):485~490
    [20]张良均,童身毅.PP-g-MAH增容PP/PA66共混物形态结构和性能[J].塑料科技,2004,18(5):19-22
    [21]周伟平,刘先珍等.PA6/SEBS/PP-g-MAH的共混改性[J].高分子材料科学与工程,2004,20(6):203-206
    [22]丁永红,俞强等.一步法反应制备PA66/HDPE合金[J].塑料工业,2003,31(1):64-67
    [23]P.R. Homsby, J. Wang. Thermal decomposition bahaviour of polyamide fire-retardant compositions containing magnesium hydroxide filler[J]. Polymer Degradation and Stability, 1996,51:235-249
    [24]B.K. Kandola, A.R. Horrochs, P. Myler, etal. Mechanical performance of heat/fire damaged novel flame retardant glass-reinforced epoxy composites[J]. Composites Part A:Applied science and manufacturing,2003,34:863-873
    [25]P.K. Mallich, Y.X. Zhou. Effect of mean stress on the stress-controlled fatigue of a short E-glass fiber reinforced polyamide66[J]. International Journal of Fatigue,2004,26:941-946
    [26]欧育湘.新型无卤阻燃工程塑料[J].现代化工,2000,31:158-160
    [27]S.Y. Lu, I. Hamerton. Recent developments in the chemistry of halogen-free flame retardant polymers[J]. Progress in Polymer Science,2002,27:1661~1712
    [28]J. Davis. The technology of halogen-free flame retardant additives for polymeric systems[J]. Engineering Plastic,1996,9(5):403~419
    [29]董萌,王汝敏,姚梅.改善聚合物共混材料界面相容性的研究进展[J].涂料涂装与电镀,2006,4(5):15-19
    [30]刘灿强,张公正,张莹莹.聚合物共混物相容性评价的研究进展[J].塑料工业,2005,33(5):1-11
    [31]叶佳佳,杨青芳,张爱军,梁建峰.聚合物合金相容性的预测和表征[J].工程塑料应用,2007,35(12):81-83
    [32]Flory P J. Thermodynamics of Polymer Solubility[J]. J. Chem. Phys.,1942,10:51~61
    [33]Huggins M L. Solutions of Long Chain Compounds. J. Chem. Phys.,1941,9:440
    [34]Paul D R, Newman S. Polymer Blends[M]. Academic, New York,1978
    [35]邓本诚,李俊山.橡胶塑料共混改性[M].北京:中国石化出版社,1996
    [36]Coleman M M, Menestrel C L, Bhagwagar D E, Painter P C. Hydrogen bonding in ternary polymer blend systems:determination of association parameters[J]. Macromolecules,1992, 25:7101~7106
    [37]Yong He, Bo Zhu, Yoshio Inoue. Hydrogen bonds in polymer blends[J]. Progress in polymer science,2004,29:1021~1051
    [38]Coleman M M, Moskala E J, Howe S E, Painter P C. On the role of intermolecular hydrogen bonding in miscible polymer blends. Macromolecules,1984,17:1671 ~1678
    [39]Jeffrey G A. An introduction to hydrogen bonding[M]. NewYork:Oxford University Press, 1997
    [40]金日光,华幼卿.高分子物理[M].北京:化学工业出版社,2000
    [41]陈耀庭.橡胶并用共混原理及应用系统讲座(二)[J].橡胶工业,1982,(11):30-35
    [42]Wunderlich B. Macromolecular Physics[M]. Academic Press:New York,1973
    [43]Kawaguchi M. Structure of iodine-nylon a complex:1. The investigation of the lattice constants and hydrostatic compression of the complex crystal[J]. Polymer,1992,33:3981~ 3984
    [44]Kyotani M, Mitsuhashi S. Studies on crystalline forms of nylon 6.2. Crystallization from the melt[J]. Journal of Polymer Science, Macromol. Rev.,1972,10:1497~1508
    [45]Kyotani M. Studies on crystalline forms of nylon 6.3. Crystallization from the glassy state[J]. J. Macromol. Sci. Phys,1975, B11:209~525
    [46]Hiramata N, Haraguchi K. Study of transformations among α,γ and γ' forms in nylon 12 by X-ray and DSC[J]. Jpn Appl Phys,1983,22:335-339
    [47]Kawaguchi A, Ikawa J. Polymorphism in lamellar single crystals of nylon 11[J]. J. Macromol. Sci. Phys,1981, B20:1-20
    [48]Suehiro K, Egashira T, Imamura K, Nagano Y. Structural studies on 6-66 and 6-68 copolyamide[J]. Acta Polymerica,1989,40:4-8
    [49]Vogelsong D C. Crystal structure studies on the polymorphic forms of nylon 6 and 8 and other even nylons. Journal of Polymer Science. Polym. Chem.,1963,1:1055~1065
    [50]Kinoshita Y. An investigation of the structures of polyamide series[J]. Makromol. Chem., 1959,33:1~20
    [51]Franco L, Cooper S J, Atkins E D T. Nylon 69 can crystallize with hydrogen bonding in two and in three interchain direction[J]. Journal of Polymer Science. Part B:Polymer Physics, 1998,36:1153-1165
    [52]Salvador L, Carlos A, Marta B. Structure of nylon 46 lamellar crystals:An investigation including adjacent chain folding[J]. Macromolecules,2000,33:8756~8763
    [53]Marta B, Salvador L, Carlos A. Structure and morphology of nylon 46 lamellar crystals: electron microscopy and energy calculation[J]. Journal of Polymer Science, Part B: Polymer Physics,2000,38:41~52
    [54]Sikorski P, Jones N A, Atkins E D T. Measurement of the intersheet shear along the chain axis in nylon 6[J]. Macromolecules,2001,34:1673~1676
    [55]Murthy N S, Grubb D T. Deformation of lamellar structures:simultaneous small and wide-angle X-ray scattering studies of polyamide-6[J]. Journal of Polymer Science PartB: Polymer Physics,2002,40:691-705
    [56]Li Y Y, Goddard W A. Nylon6 crystal structures, folds, and lamellar from theory[J]. Macromolecules,2002,35:8440-8455
    [57]Bunn C W, Garner E V. The crystal structures of the polyamide (nylons). Proc.R.Soc. (Lond),1947,189A:3279~3282
    [58]Franco L, Subirana J A, Puiggali J. Incorporation of glycine residues in even-even polyamides. Part1:Nylons 6,10 and 12,10[J]. Polymer,1999,40:2429~2438
    [59]Geil P H. Nylon single crystals[J]. Journal of Polymer Science,1960,44:449~458
    [60]Holand V F. Morphology and electron diffractions of nylon-66 single crystals[J]. Makromol. Chem,1963,71:204-206
    [61]Mgill J H, Girolamo M, Keller A. Crystallization and morphology of nylon-6,6 crystals:Ⅰ. Solution crystallization and solution annealing behavior[J]. Polymer,1981,22:43~55
    [62]Dasgupta S, Hammond W B, Goddard WAIIL. Cyrstal structures and properties of nylon polymers from theory[J]. J. Am. Chem. Soc,1996,118:12291~12301
    [63]Atkins EDT, Keller A, Sadler D M. Structure analysis of chain-folded lamellar polyamide crystals form X-ray diffraction[J]. Journal of Polymer Science Part-2,1972,10:863~875
    [64]Hiroshi K, Masaru K. Structural study on X-ray diffraction curves using the crystallite structure factor for polymers[J]. Macromolecules,1994,27:5877~5881
    [65]Nadarajah Vasanthan, N. Sanjeeva Murthy, Robert G. Bray. Investigation of Brill Transition in Nylon 6 and Nylon 6,6 by Infrared Spectroscopy[J]. Macromolecules,1998,31:8433~ 8435
    [66]Starlnveather H W, Whitney J F. Johnson D R. Crystalline order in nylon 66[J]. Journal Polymer Science,1963,1:715~723
    [67]Colclough M L. Polymorphism in nylon66[J]. J. Mater. Sci.,1978,13:2531~2540
    [68]Itoh T. Change with temperature in crystal structures of nylon 6,66 and 610[J]. Japan J. Appl. Phys,1976,15:2295~2299
    [69]Starkweather HWJ, Jones G A. Cyrstalline transitions in powder of nylon66 crystallized from solution[J]. Journal of Polymer Science:Polymer Physics,1981,19:467~477
    [70]Hirschinger J, Mints H, Gardner K H, English A D. Segmental dynamic in the crystalline phase of nylon 66:solid-state 1H NMR[J]. Macromolecules,1990,23:2153~2169
    [71]焦剑,雷渭媛编著.高聚物结构、性能与测试[M].北京:化学化工出版社,2003

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700