集中空调系统中光催化降解室内甲醛的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着室内空气质量(Indoor Air Quality, IAQ)受到人们越来越多的重视,光催化作为提高IAQ的高科技前沿净化技术由于其广泛性、彻底性、安全性和持久性等特点而世界瞩目。本课题采用这一技术去除广泛存在于室内的代表性污染物甲醛,结合中央空调系统进行研究,对改善IAQ具有十分重要的意义。本课题得到了上海市科委科研基金项目“纳米光催化材料及其集中空调系统中光催化净化装置的应用研究”(No.0552nm002)的资助。本文首先对影响光催化反应速率的因素进行了优化分析,研究了一种能够适用于集中空调系统的新型管网光催化净化器,并结合真空紫外(Vacuum Ultraviolet, VUV)技术加强了对甲醛的去除,最后对净化器应用于房间时的室内浓度及净化器性能要求进行了预测,为光催化去除室内甲醛在集中空调系统中的实际应用提供了理论依据。本文研究内容及结论分述如下:
     (1)基于反应动力学和质量传递理论的催化剂膜厚优化
     催化剂膜厚优化是催化剂固定所特有的问题,本文针对甲醛连续流过多孔泡沫镍网时的光催化降解,基于光催化反应动力学和质量传递理论,建立了能够预测催化剂最优膜厚的数学模型。研究表明:反应速率随着催化剂膜厚先是快速的增加而后到达一个稳定的值。紫外(Ultraviolet, UV)光在催化剂层内的衰减系数对最优催化剂膜厚有着较大的影响,它可以使最优膜厚有数量级上的改变。不同波长的UV光,衰减系数变化较大,波长越短,UV光在催化剂层内的衰减系数越大,最优膜厚越小。该研究揭示了催化剂膜厚如何影响光催化反应速率以及模型参数如何影响催化剂最优膜厚。
     (2)基于多相催化稳态理论的光强优化
     UV光是光催化反应的驱动力,直接影响光催化的反应速率,同时UV光也是一种能源,它的合理使用对节约能源有着至关重要的意义。本文分析了光催化过程中的光能损失组成,着重针对电子-空穴对的复合损失,提出了使用合适光强对其进行有效控制以提高光能利用率的思想,根据挥发性有机化合物(Volatile Organic Compounds, VOCs)的光催化降解机理并运用多相催化稳态理论建立了预测光强的数学模型。为了方便应用,定义了过量系数,进一步简化模型得到了估计合适光强的简单方法,并通过文献中和实验中的甲醛光催化降解数据说明了该方法的使用。研究表明:根据所提出的方法来确定光强,能够在保证好的降解性能的同时提高光能利用率。光强的大小与VOCs的种类和浓度、催化剂和载体的属性以及UV光的波长有关。该研究为节约光能提供了新思路。
     (3)集中空调用光催化净化器的设计和优化
     集中空调系统有着流速高的特点,如何增加反应物的停留时间,同时降低净化器的压力损失是集中空调用净化器设计的两个重要问题。本文本着增加迎风面积可降低迎面风速和压力损失的思想研究了一种新型管网光催化空气净化器,考察了净化器的阻力特性、光解和光催化降解室内浓度的甲醛的特性以及光能效率,并针对该结构类型的净化器提出了尺寸优化设计步骤。结果表明:该净化器具有表面光强均匀、压力损失小以及光能效率高等优点,可以通过改变迎风面积来灵活适用于具有不同流速的集中空调系统,还可以通过增加反应单元的数量来进行大比例应用。根据尺寸优化设计步骤进行设计,可合理的选择光源,在保证降解速率的同时使得能耗最小。
     (4)VUV联合光催化加强对甲醛降解的实验研究
     采用VUV这一较为经济的方法与光催化技术相结合来进一步提高对室内典型浓度的甲醛的降解效率,从技术上和经济上对该混合方法降解甲醛的可行性进行了实验研究和理论研究,并对其中的一些反应机理进行了研究。结果表明:该混合过程在技术和经济上都是可行的,一个突出的优点是VUV和光催化能够优势互补,VUV能在光催化的基础上大大提高对甲醛的降解效率,而光催化能够去除VUV产生的过量臭氧。该混合过程与光催化过程相比,当处理空气量为518 m3/h,甲醛浓度为0.6 mg/m3时,去除每kg甲醛节省成本约44%。由于室内材料对臭氧有多相分解作用,新风对臭氧有稀释作用,再加上光催化净化装置对回风中的臭氧有分解作用,使得允许混合系统生成的最大臭氧浓度高于WHO规定的室内臭氧浓度标准极限值。本文研究的VUV—光催化混合空气净化系统能够应用于实际工程中。
     (5)光催化净化器性能要求、使用时间和最高能耗要求的预测
     采用建筑材料的散发特性研究与光催化净化器的性能研究相结合的方法,分析了净化装置的去除效率对室内甲醛浓度和散发率的影响,并根据这些研究对光催化净化器的性能要求和使用时间进行了预测和分析,最后通过与通风方法的比较,对净化器最高能耗要求进行了预测。研究表明:净化装置的去除效率和自净时间的幂函数成线性关系,且线性系数受材料内部扩散系数的影响很大。当材料的散发过程由内部扩散过程控制,且当使用净化装置时的室内浓度降低速率不大于不使用净化装置的降低速率时,净化装置的使用不会增加室内VOC的去除速率,唯一的作用是将室内浓度控制的较低,但是否可以停止净化装置的运行,还取决于VOC剂量对人体健康的影响。在光催化和通新风具有相同自净时间的前提下,通新风的方法为光催化净化装置的最高能耗提出了要求,这一要求取决于室内温度的设定值、室外空气温度值以及室外VOC浓度值等参数。该研究为光催化空气净化器的设计要求提供了理论参考,并为其应用条件提供了理论依据。
With more and more attention of indoor air quality (IAQ), the photocatalysis technology, as an advanced high-tech purification technology, is paid great attention in the world due to the fact that it can degrade a broad range of volatile organic compounds (VOCs) to H2O and CO2 at room temperature and atmospheric pressure. Formaldehyde extensively exits in indoor environments, and it is one of representative indoor contaminant. In this study, the photocatalytic degradation of formaldehyde in heating, ventilating and air-conditioning (HVAC) systems was studied, which has a vital significance for improving IAQ and was supported by the Special Foundation of Nanometer Technology (No. 0552nm002) from the Shanghai Municipal Science and Technology Commission. The research included that the optimum of influence factors including the thin-film thickness of catalysts and the light intensity, the design and optimum of a new-type photocatalytic air-purifier, the improvement of formaldehyde degradation by the hybrid process of vacuum ultraviolet (VUV) and photocatalysis, and the prediction of performance demands of purifiers. The research provided a theoretical basis for the application of photocatalysis technology in HVAC systems. The contents and conclusions are as follows:
     (1) Optimum of the thin-film thickness of catalysts
     The optimum of the thin-film thickness of catalysts is a specific question for the immobilized catalyst. Based on the reaction kinetics and the mass transfer theory, a model was developed to predict the optimal thin-film thickness of catalysts for photocatalytic degradation of formaldehyde by a TiO2-coated foam nickel at the continuous flow mode. The results showed the reaction rate of formaldehyde increased firstly and then reached a plateau with the increase of the thin-film thickness of catalysts. The attenuation coefficient of ultraviolet (UV) light in catalyst layers had great effect on the optimal thickness of catalysts and made the optimal value change at the order of magnitude. Shorter the wavelength was, smaller the attenuation coefficient was. This model can explain the effect of catalyst thin-film thickness on photocatalytic reaction rate and the effect of model parameters on the optimal thin-film thickness of catalysts.
     (2) Optimum of light intensities
     The UV light is the driving force of photocatalytic reactions, and it directly influences the photocatalytic reaction rate. At the same time, it is also a kind of energy, so its appropriate use has vital significance for saving energy. Light energy losses in the heterogeneous photocatalysis process were analyzed. A new idea of using appropriate light intensities was presented to decrease the recombination of electron-hole pairs for improving the utilization ratio of light energy. A model was presented to predict light intensities for the photocatalytic degradation of indoor gaseous VOCs based on the degradation mechanism. A method was obtained to determine the appropriate light intensity by simplifying the model base on the definition of an excess coefficient. The use of the method was explained by the degradation data of formaldehyde from literature and experiments. The results showed that the derived light intensities according to our method were appropriate. Good degradation performance and high utilization ratio of light energy can be attained simultaneously. The appropriate light intensity depends on the species and concentration of VOCs, the properties of the catalysts and supports and the wavelength of UV light.
     (3) Design and optimum of a new-type photocatalytic air-purifier used in HVAC systems.
     The flow velocity in HVAC systems is high, so how to increase the resident time of VOCs and decrease the pressure loss of purifiers are two important questions in the design process of photocatalytic purifiers. A novel photocatalytic purifier, available to HVAC systems, was researched based on the effects of the windward area on the face velocity and the pressure drop. The resistant of the purifier was tested. The performance of the purifier was investigated by degrading formaldehyde at an indoor concentration level. The optimum step of purifier size was presented. The experimental results showed that the purifier had uniform light intensities, low pressure loss and high energy efficiency. This configuration allows for much larger reaction area on a limited cross section and the large-scale application by increasing the number of reaction cells connected in parallel. It is flexible enough to adapt to different HVAC systems with different air velocities by changing the windward area. The light source can be rationally selected according to the optimum step of purifier size for decreasing the energy consumption.
     (4) Experiments on the improvement of the removal of formaldehyde by the hybrid process of VUV and photocatalysis
     VUV, an economical method, was combined with photocatalysis to improve the removal of formaldehyde. The technological and economical feasibility of the hybrid process were investigated experimentally and theoretically. The results showed that the hybrid process can be technically feasible and economically attractive for the decomposition of gaseous formaldehyde. The outstanding merit of the hybrid process is the complementation of advantages of VUV and photocatalysis. The removal efficiency of formaldehyde can be improved markedly by VUV on the basis of photocatalysis. Ozone produced by VUV can be decomposed by photocatalysis. The hybrid process was more economical than the photocatalysis process with a cost reduction of about 44% for removing per kg formaldehyde when the air flow rate was 518 m3/h and the formaldehyde concentration was 0.6 mg/m3. Because the indoor materials can decompose ozone, the fresh air can dilute the ozone concentration, and the photocatalytic purifier can decompose ozone, the allowable concentration of ozone produced by the hybrid purification system is higher than the maximum value recommended by the WHO. Therefore, the hybrid system can be applied to the engineering.
     (5) Predictions of the performance demand, operation time and maximum energy consumption demand of photocatalytic purifiers.
     The effects of the efficiency of photocatalytic purifiers on the indoor concentration and emission rate of formaldehyde were investigated by considering the emission of building materials. According to these studies, the performance demand and the operation time of purifiers were predicted and analyzed. The maximum energy consumption demand of photocatalytic purifiers were predicted based on the comparison between the ventilation and photocatalysis. The results showed that the removal efficiency was proportional to the power function of purification times. The effect of the diffusion coefficient on the linear coefficient was large. When the interior diffusion process controlled the VOC emission and the decrease rate of the indoor VOC concentration with purifiers was no larger than that without purifiers, the application of purifiers will not improve the removal rate of indoor VOC and its unique action is that controlling the indoor VOC to low level. But, whether the purifier should stop operating depends on the effect of the VOC dose on the human’s health. The energy consumption of ventilation presents the demand of the maximum energy consumption to photocatalytic purifiers based on the same purification time. The maximum energy consumption depends on the set value of indoor air temperature, the outdoor air temperature, the outdoor contaminant concentration and so on. This research provided theoretical basis for the design and application of photocatalytic purifiers.
引文
[1] US EPA. Sick building syndrome (SBS). Indoor Air Facts No.4 (revised). US Environmental Protection Agency, Washington DC., 1991.
    [2] Spengler J.D. Indoor air quality issues in buildings. Proceedings of the Tenth Annual AIOH Conference, Bendigo 1991, S1-S14.
    [3] US EPA. Unfinished business: a comparative assessment of environmental problems, EPA report EPA-230/2-87-025, US Environmental Protection Agency, Washington DC., 1987.
    [4] Seitz T.A. NIOSH indoor air quality investigations: 1971 through 1988. The practitioner’s approach to indoor air quality investigations. Proceedings of the Indoor Air Quality International Symposium. Fairfax, VA, USA: American Industrial Hygiene Association, 1993, 163-171.
    [5] WHO. Indoor air quality: organic pollutants. EURO Reports and Studies, World Health Organization, Copenhagen, 1989.
    [6] 马仁民. 国外非工业建筑室内空气品质研究动态. 暖通空调, 1999, 29(2):38-41.
    [7] National Research Council. Indoor Pollutants. National Academy Press: Washington, D.C., 1981, 23-24.
    [8] Hays S.M., Gobbell R.V., Ganick N.R. Indoor air quality: solutions and strategies. McGraw-Hill, Inc.: New York, 1995, 74-75.
    [9] Environmental Health Center. http://www.nsc.org/ehc/indoor/sbs.htm. 1999, 11,16.
    [10] Bischof W., Herzog V., Finke U., et al. Ventilation control by perceived air quality-facts and possiblities. Indoor air-An Intergrated Approach. Oxford: Elsevier, 1995, 269-272.
    [11] Baechler M.C., Hadley D.L., Marseille T.J., et al. Sick Building Syndrome–Sources, Health Effects, Mitigation. Pollution Technology Review, New Jersey. Noyes Data Corporation, 1991, 205.
    [12] Wolkoff P. Volatile organic compounds-Sources, measurements, emissions and the impact on IAQ. Indoor Air Suppl., 1995, 3, 9-73.
    [13] 杨瑞. 纳米材料光催化降解VOCs的研究. 清华大学博士学位论文, 2006.
    [14] 陈清, 余刚, 张彭义. 室内空气中挥发性有机物的污染及控制措施. 上海环境科学, 2001, 20(12):616-620.
    [15] 张林, 戴树桂, 宋丽香. 室内空气中芳香烃的测定与污染源模拟. 环境科学, 1998, 19(5):63-65.
    [16] WHO. Reducting risk, promoting health life. The world health report, World Health Organization, Switzerland, 2002.
    [17] 北京晨报, 2002年4月23日.
    [18] 曹守仁. 室内空气污染与测定方法. 北京: 中国建筑工业出版社, 1988.
    [19] 徐文华, 韩华. 舒适性空调系统的临界去除效率与最小换气次数. 暖通空调, 2002, 32(1):85-88.
    [20] 白志鹏, 韩旸, 袭著革. 室内空气污染与防治. 化学工业出版社, 2006.
    [21] Zhao J., Yang X.D. Photocatalytic oxidation for indoor air purification: a literature review. Build.Environ., 2003, 38(5):645-654.
    [22] 吴延鹏,马重芳. 光催化技术在建筑环境与设备中的应用及研究现状. 暖通空调,2006, 36(3):29-36.
    [23] Fujishima A., Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature, 1972, 238, 37-38.
    [24] 高濂, 郑珊, 张青红. 纳米氧化钛光催化材料及应用. 北京: 化学工业出版社, 2002.
    [25] Yamashita H, Harada M. Photocatalytic degradation of organic compounds diluted in water using visible light-responsive metal ion-implanted TiO2 catalysts: Fe ion-implanted TiO2. Catal. Today, 2003, 84(3-4):191-196.
    [26] Ihara T., Miyoshi M. Visible-light-active titanium oxide photocatalyst realized by an oxygen-deficient structure and by nitrogen doping. Appl. Catal. B: Enviro., 2003, 42(4):403-409.
    [27] Khan SUM, Al-Shahry M., Ingler W.B. Efficient photochemical water splitting by a chemically modified n-TiO2. Science, 2002, 297, 2243-2245.
    [28] Zhang X., Yang H., Zhang F., et al. Preparation and characterization of Pt-TiO2-SiO2 mesoporous materials and visible-light photocatalytic performance. Materials Letters, 2006, in press.
    [29] Fang J.H., Lu X.M., Zhang X.F., et al. CdSe/ TiO2 nanocrystalline solar cells Supramolecular. Science, 1998, 5, 709-711.
    [30] Kata K., Tsuzki A., Torll Y., et al. Morphology of thin anatase coatings prepared form alkoxide solutions containing organic polymer affecting the photocatalytic decomposition of aqueous acetic acid. J. Mater. Sci., 1995, 30(3):837-841.
    [31] Sha J., Shiraishi F. Photocatalytic activities enhanced for decompositions of organic compounds over metal-photodepositing titanium dioxide. Chem. Eng. J., 2004, 97(2-3):203-211.
    [32] Kwon C.H., Kim J.H. Preparation and characterization of TiO2-SiO2 nano-composite thin films. Ceramics International, 2003, 29(8):851-856.
    [33] Nagaveni K., Sivalingam G., Hegde M.S., et al. Solar photocatalytic degradation of dyes: High activity of combustion synthesized nano TiO2. Appl. Catal. B: Environ., 2004, 48(2):83-93.
    [34] Blount M.C., Falconer J.L. Steady-state surface species during toluene photocatalysis. Appl. Catal. B:Environ., 2002, 39(1):39-50.
    [35] Rafael M.R., Nelson C.M. Relationship between the formation of surface species and catalyst deactivation during the gas-phase photocatalytic oxidation of toluene. Catal. Today, 1998, 40(4):353-365.11
    [36] 唐玉朝, 胡春, 王怡中. 无机阴离子对 Fe-TiO2/SiO2 复合光催化剂脱色染料的影响. 环境科学学报, 2003, 23(4):503-507.
    [37] Hoffmann M.R., Martin S.T., Choi W., et al. Environmental applications of semiconductor photocatalysis. Chem. Rev., 1995, 95(1):69-96.
    [38] Kim, J.S., Itoh K., Murabayashi M. Photocatalytic degradation of trichloroethylene in the gas phase over TiO2 sol-gel films: analysis of products. Chemosphere, 1998, 36(3):483-495.
    [39] Kozlov D.V., Vorontsov A.V., Smirniotis P.G., et al. Gas-phase photocatalytic oxidation of diethylsulfide over TiO2: kinetic investigations and catalyst deactivation. Appl. Catal. B: Environ., 2003, 42(1) :77-87.
    [40] Piera E., Ayllon J.A., Domenech X., et al. TiO2 deactivation during gas-phase photocatalyticoxidation of ethanol. Catal. Today, 2002, 76(2-4):259-270.
    [41] 孙怡宁. 酒精性肝病发病机制的研究进展. 国外医学, 消化系统病分册, 1999, 2, 97-101.
    [42] Alberici R.M., Jardim W.E. Photocatalytic degradation of VOCs in the gas-phase using titanium dioxide. Appl. Catal. B : Environ., 1997, 14(1-2):55-68.
    [43] Peral J, Ollis D.F. Heterogeneous photocatalytic oxidation of gas-phase organics for air purification: acetone, 1-butanol, butyraldehyde, formaldehyde, and m-xylene oxidation. J. Catal., 1992, 136(2):554-565.
    [44] Jacoby W.A., Blake D.M., Noble R.D., et al. Kinetics of the oxidation of trichloroethylene in air via heterogeneous photocatalysis. J. Catal., 1995, 157(1):87-96.
    [45] Kim S.B., Hwang H.T., Hong S.C. Photocatalytic degradation of volatile organic compounds at the gas-solid interface of a TiO2 photocatalyst. Chemosphere, 2002, 48(4):437-444.
    [46] Kim S.B., Hong S.C. Kinetic study for photocatalytic degradation of volatile organic compounds in air using thin film TiO2photocatalyst. Appl. Catal. B: Environ., 2002, 35(4):305-315.
    [47] Obee T.N., Brown R.T. TiO2 photocatalysis for indoor air applications: effects of humidity and trace contaminant levels on the oxidation rates of formaldehyde, toluene, and 1,3-butadiene. Environ. Sci. Technol., 1995, 29(5):1223-1231.
    [48] Stevens L., Lanning J.A., Anderson L.G., et al. Investigation of the photocatalytic oxidation of low-level carbonyl compounds. J. Air and waste manage. Assoc., 1998, 48, 979-984.
    [49] Ao C.H., Lee S.C. Indoor air purification by photocatalyst TiO2 immobilized on an activated carbon filter installed in an air cleaner. Chem. Eng. Sci., 2005, 60(1):103-109.
    [50] Jo W.K., Park J.H., Chun H.D. Photocatalytic destruction of VOCs for in-vehicle air cleaning. J. Photochem. Photobiol. A: Chem., 2002, 148(1-3):109-119.
    [51] Shiraishi F., Ohkubo D., Toyoda K., et al. Decomposition of gaseous formaldehyde in a photocatalytic reactor with a parallel array of light sources 1. Fundamental experiment for reactor design. Chem. Eng. J., 2005, 114(1-3):153-159.
    [52] Shiraishi F., Toyoda K., Miyakawa H. Decomposition of gaseous formaldehyde in a photocatalytic reactor with a parallel array of light sources 2. Reactor performance. Chem. Eng. J., 2005, 114(1-3):145-151.
    [53] Martra, G., Coluccia, S., Marchese, L., et al. The role of H2O in the photocatalytic oxidation of toluene in vapour phase on anatase TiO2 catalyst: a FTIR study. Catal. Today, 1999, 53(4):695-702.
    [54] Wang K.H., Hsieh Y.H., Lin C.H., et al. The study of the photocatalytic degradation kinetics for dichloroethylene in vapor phase. Chemosphere, 1999, 39(9):1371-1384.
    [55] Obee T.N., Hay S.O. Effects of moisture and temperature on the photooxidation of ethylene on titania. Environ. Sci. Technol., 1997, 31(7):2034–2038.
    [56] Hager S., Bauer R. Heterogeneous photocatalytic oxidation of organics for air purification by near UV irradiated titanium dioxide. Chemosphere, 1999, 38(7):1549-1559.
    [57] Okamoto K., Yamamoto Y., Tanaka H. Kinetics of heterogeneous photocatalytic decomposition of phenol over anatase TiO2 power. Bull. Chem. Soc. Jpn., 1985, 58(7):2023-2027.
    [58] D’oliveira J.C., Ghassan A.S., Pichat P. Photodegradation of 2- and 3-chlorophenol in TiO2 aqueous suspensions. Environ. Sci. Technol., 1990, 24(7):990-996.
    [59] Ollis D.F., Pelizzetti E., Serpone N. Photocatalyzed destruction of water contaminants. Environ. Sci. Technol., 1991, 25(9):1523-1528.
    [60] Shang J., Du Y.G., Xu Z.L. Photocatalytic oxidation of heptane in the gas-phase over TiO2. Chemosphere, 2002, 46(1):93-99.
    [61] Jung S.C., Kim S.J., Imaishi N., et al. Effect of TiO2 thin film thickness and specific surface area by low-pressure metal–organic chemical vapor deposition on photocatalytic activities. Appl. Catal. B: Environ., 2005, 55(4):253-257.
    [62] Termakone K., Tilakaratne C.T.K., Kottegoda I.R.M. Photomineralization of carbofuran by TiO2 supported catalyst. Wat. Res., 1997, 31(8):1909-1912.
    [63] Chang H.T., Wu N.M., Zhu F.Q. A kinetic model for photocatalytic degradation of organic contaminants in a thin-film TiO2 catalyst. Wat. Res., 2000, 34(2):407-416.
    [64] Chen D.W., Li F.M., Ray A.K. Effect of Mass Transfer and Catalyst Layer Thickness on Photocatalytic Reaction. AIChE J., 2000, 46(5):1034-1045.
    [65] Wang K.H., Hsieh Y.H. Heterogeneous photocatalytic degradation of trichloroethylene in vapor phase by titanium dioxide. Environ. Int., 1998, 24(3):267-274.
    [66] 刘娟, 张彭义, 余刚等. 气相正己烷的光催化及臭氧/光催化降解动力学. 环境科学, 2004, 25(1):35-39.
    [67] Yannick C., Danilo K., Christophe G., et al. Photocatalytic oxidation of volatile organic compounds using fluorescent visible light. J. Air Waste Manage. Assoc., 2002, 52, 845-854.
    [68] Jocaby W.A., Blake D.M., Noble R.D., et al. Kinetics of the oxidation of trichloroethylene in air via heterogeneous photocatalysis. J.Catal., 1995, 157(1):87-96.
    [69] Larson S.A., Widegren J.A., Falconer J.L. Transient studies of 2-propanol photocatalytic oxidation on titania. J. Catal., 1995, 157, 611-625.
    [70] Ku, Y., Ma, C.M., Shen, Y.S., Decomposition of gaseous trichloroethylene in a photoreactor with TiO2-coated nonwoven fiber textile. Appl. Catal. B: Environ., 2001, 34(3):181-190.
    [71] Hossain Md.M., Raupp G.B. Three-dimensional developing flow model for photocatalytic monolith reactors. AIChE J., 1999, 45(6):1309-1321.
    [72] ávila P., Bahamonde A., Blanco J., et al. Gas-phase photo-assisted mineralization of volatile organic compounds by monolithic titania catalysts. Appl. Catal. B: Environ., 1998, 17(1):75-88.
    [73] ávila P., Sánchez B., Cardona A.I., et al. Influence of the methods of TiO2 incorporation in monolithic catalysts for the photocatalytic destruction of chlorinated hydrocarbons in gas phase. Catal. Today, 2002, 76(3-4):271-278.
    [74] Arabatzis I.M., Spyrellis N., Loizos Z., et al. Design and theoretical study of a packed bed photoreactor. J. Mater. Process. Tech., 2005, 161, 224-228.
    [75] Raupp G.B., Nico J.A., Annangi S., et al. Two-flux radiation-field model for an annular packed-bed photocatalytic oxidation reactor. AIChE J., 1997, 43(3):792-801.
    [76] Dlbblet L.A., Raupp G.B. Fluidized-Bed Photocatalytic Oxidation of Trichloroethylene in Contaminated Airstreams. Environ. Sci. Technol., 1992, 26, 492-495.
    [77] Peill N.J., Hoffmann M.R. Development and optimization of a TiO2-coated fiber-optic cable reactor: photocatalytic degradation of 4-chlorophenol. Environ. Sci. Technol., 1995, 29(12):2974-2981.
    [78] Peill N J, Hoffmann M R. Mathematical model of a photocatalytic fiber-optic cable reactor for heterogeneous photocatalysis. Environ. Sci. Technol., 1998, 32(2):298-404.
    [79] Wang W., Ku Y. photocatalytic degradation of gaseous benzene in air streams by using an optical fiber photoreactor. J. Photochem. Photobiol. A: Chem., 2003, 159(1):47-59.
    [80] Yue P.L., Ollis D.F., Hal-Ekabi. Photocatalytic purification and treatment of water and air, Elsevier Science Publishers, 1993, 495-510.
    [81] Romero R.L., Alfano O.M., Cassano A.E. Cylindrical photocatalytic reactors: radiation sbsorption anddcattering effects produced by suspended fine particles in an annular space. Ind. Eng. Chem. Res., 1997, 36(8):3094-3109.
    [82] Sgalari G.G., Camera-Roda S.F. Discrete ordinate method in the analysis of radiative transfer in photocatalytically reacting media. Int. Commun. Heat Mass Transfer, 1998, 25(5):651–660.
    [83] Pareek V.K., Adesina A.A. Light intensity distribution in a photocatalytic reactor using finite volume. AIChE J., 2004, 50(6):1273-1288.
    [84] Changrani R., Raupp G.B. Monte carlo simulation of the radiation field in a reticulated foam photocatalytic reactor. AIChE J., 1999, 45(5):1085-1094.
    [85] Yokota T., Yashima K., Takigawa T., et al. New random-walk model for assessment of light energy absorption by a photosynthetic microorganism. J. Chem. Eng. Jan., 1991, 24(5):558-562.
    [86] Hossain Md.M., Raupp G.B. Radiation field modeling in a photocatalytic monolith reactor. Chem. Eng. Sci., 1998, 53(22):3771-3780.
    [87] Hossain Md.M., Raupp G.B. Polychromatic radiation field model for a honeycomb monolith photocatalytic reactor. Chem. Eng. Sci., 1999, 54(15-16):3027-3034.
    [88] Obee T.N. Photocatalytic of sub-parts-per-million toluene and formaldehyde levels on titania using a glass-plate reactor. Environ. Sci. Technol., 1996, 30(12):3578-3584.
    [89] Zhang Z, Anderson W.A., Moo-Young M. Modeling of corrugated plate photocatalytic reactors and experimental validation. Chem. Eng. Sci., 2003, 58(3-6):911-914.
    [90] Ku Y., Ma C.M., Shen Y.S. Decomposition of gaseous trichloroethylene in a photoreactor with TiO2-coated nonwoven fiber textile. Appl. Catal. B: Environ., 2001, 34(3):181-190.
    [91] Changrani R.G., Raupp G.B. Two-dimensional heterogeneous model for a reticulated-foam photocatalytic reactors. AIChE J., 2000, 46(4):829-842.
    [92] Mohseni M., Taghipour F. Experimental and CFD analysis of photocatalytic gas phase vinyl chloride (VC) oxidation. Chem. Eng. Sci., 2004, 59(7):1601-1609.
    [93] Zhang Y.P., Yang R, Zhao R.Y. A model for analyzing the performance of photocatalytic air cleaner in removing volatile organic compounds. Atmos. Environ., 2003, 37, 3395-3399.
    [94] Raupp G.B., Alexiadis A., Hossain Md.M., et al. First-principles modeling, scaling laws and design of structured photocatalytic oxidation reactors for air purification. Catal. Today, 2001, 69(1):41-49.
    [95] Alexiadis A., Mazzarino I. Design guidelines for fixed-bed photocatalytic reactors. Chem. Eng. Process., 2005, 44(4):453-459.
    [96] Danion A., Bordes C., Disdier J. Optimization of a single TiO2-coated optical fiber reactor using experimental design. J. Photochem. Photobiol. A: Chem., 2004, 168(3):161-167.
    [97] 戴智铭, 陈爱平, 古政荣等. 室内空气重三氯乙烯在 TiO2/AC 上的光催化氧化反应动力学.化学反应工程与工艺, 2001, 17(4):297-302.
    [98] Zhang P.Y., Liang F.Y., Yu G., et al. A comparative study on decomposition of gaseous toluene by O3/UV, TiO2/UV and O3/TiO2/UV. J. Photochem. Photobiol. A: Chem., 2003, 156(1-3):189-194.
    [99] Zhang P.Y., Liu J. Photocatalytic degradation of trace hexane in the gas phase with and without ozone addition: kinetic study. J. Photochem. Photobiol. A: Chem., 2004, 167(2-3):87-94.
    [100] Shen Y.S., Ku Y. Decomposition of gas-phase trichloroethene by the UV/TiO2 process in the presence of ozone. Chemosphere, 2002, 46(1):101-107.
    [101] Valcioglu I.A., Getoff N., Bekbolet M. A comparative study for the synergistic effect of ozone on the irradiated and photocatalytic reaction of 4-chlorobenazldehyde. J. Photochen. Photobiol. A: Chem., 2000, 135(2-3):229-233.
    [102] Kataoka S., Tompkins D.T., Zeltner W.A. Photocatalytic oxidation in the presence of microwave irradiation: observations with ethylene and water. J Photochem. Photobiol. A:Chem., 2002,148(1-3):323-330.
    [103] 李旦振, 郑宜, 付贤智. 微波—光催化耦合效应及其机理研究. 物理化学学报, 2002,18(4):332-335.
    [104] 柳丽芬, 杨凤林, 张兴文. 磁化与光催化协同作用氧化含酚水溶液. 2002全国光催化学术会议论文集, 北京:2002.10.
    [105] 姚清照, 刘正宝. 光催化降解燃料废水. 工业水处理, 1999, 19(6): 15-16.
    [106] Jeong J., Sekiguchi K., Lee W., et al. Photodegradation of gaseous volatile organic compounds (VOCs) using TiO2 photoirradiated by an ozone-producing UV lamp: decomposition characteristics, identification of by-products and water-soluble organic intermediates. J. Photochem. Photobiol. A: Chem., 2004, 169(3):277-285.
    [107] Zhang P.Y., Liu J., Zhang Z.L. VUV photocatalytic degradation of toluene in the gas phase. Chem. Lett., 2004, 33(10):1242-1243.
    [108] Jeong J., Sekiguchi K., Sakamoto K. Photochemical and photocatalytic degradation of gaseous toluene using short-wavelength UV irradiation with TiO2 catalyst: comparison of three UV sources. Chemosphere, 2004, 57(7):663-671.
    [109] Kogelschatz U. Silent-discharge friven excimer UV sources and their applications. Appl. Surf. Sci., 1992, 54(1):410-423.
    [110] Chin P., Yang L.P., Ollis D.F. Formaldehyde removal from air via a rotating adsorbent combined with a photocatalyst reactor: Kinetic modeling. J. Catal., 2006, 237(1):29–37.
    [111] VanOsdell D.W. Evaluation of test methods for determining the effectiveness and capacity of gas-phase air filtration equipment for indoor air applications-phase 1: literature review and test recommendations. ASHRAE Trans., 1994, 100(2):511-523.
    [112] 付贤智, 李旦振. 福州大学学报(自然科学版),2000, 29(6):104-114.
    [113] Danion A., Bordes C., Disdier J., et al. Optimization of a single TiO2-coated optical fiber reactor using experimental design. J. Photoch. Photobio. A: Chem., 2004, 168(3):161-167.
    [114] 菲列波夫. 催化作用. 中国工业出版社, 1962.
    [115] 李作骏. 多相催化反应动力学基础. 北京大学出版社, 1990.
    [116] US EPA. Indoor air quality in public buildings. Project summary: EPA/600/S6-88/009a andEPA/600/S6-88/009b. Washington DC 1988.
    [117] Liu H.M., Lian Z.W., Ye X.J., et al. Kinetic analysis of photocatalytic oxidation of gas-phase formaldehyde over titanium dioxide. Chemosphere, 2005, 60(5):630-635.
    [118] Westerterp K.R., Swaaij W.P.M.van., Beenackers, A.A.C.M. Chemical reactor design and operation (2nd ed.), Chichester:Wiley, 1984.
    [119] Harriott P. Chemical reactor design, Cornell University Ithaca, New York, 2003.
    [120] Holmgren A., Andersson B. Mass transfer in monolith catalysts-CO oxidation experiments and simulations. Chem. Eng. Sci., 1998, 53(13):2285-2298.
    [121] 贾绍义. 化工传质与分离过程. 化学工业出版社, 2001.
    [122] Dijkstra M.F.J., Panneman H.J., Winkelman J.G.M., et al. Modeling the photocatalytic degradation of formic acid in a reactor with immobilized catalyst. Chem. Eng. Sci., 2002, 57 (22-23):4895-4907.
    [123] Cen J.W., Li X.J., He M.X., et al. The effect of background irradiation on photocatalytic efficiencies of TiO2 thin films. Chemosphere, 2006, 62(5):810-816.
    [124] Iliev V., Tomova D., Bilyarska L., et al. Photooxidation of xylenol orange in the presence of palladium-modified TiO2 catalysts. Catal. Commun., 2004, 5(12):759-763.
    [125] Wang C., Wang T.M., Zheng S.K. Investigation of the photoreactivity of nanocrystalline TiO2 thin film by ion-implantation technique. Physica E: Low-Dimensional Systems and Nanostructures, 2002, 14(1-2):242-248.
    [126] Wakasa M., Suda S., Hayashi H., et al. Magnetic field effect on the photocatalytic reaction with ultrafine TiO2 particles. J. Phys. Chem. B: Environ., 2004, 108 (32):11882-11885.
    [127] Rothenberger G, Moser J, Gr?tzel M, et al. Charge carrier trapping and recombination dynamics in small semiconductor particles. J. Am. Chem. Soc., 1985, 107(26):8054-8059.
    [128] Xu Y.M., Langford C.H. Variation of Langmuir adsorption constant determined for TiO2-catalyzed degradation of acetophenone under different light intensity. J. Photochem. Photobiol. A: Chem., 2000, 133(1-2):67–71.
    [129] Meng Y.B., Huang X., Wu Y.X., et al. Kinetic study and modeling on photocatalytic degradation of para-chlorobenzoate at different light intensities. Environ. Pollut., 2002, 117(2):307-313.
    [130] Gerischer H. A Mechanism of Electron Hole Pair Separation in Illuminated Semiconductor Particles. J. Phys. Chem., 1984, 88(25):6096-6097.
    [131] Kelly J.J., Vanmaekelbergh D. Charge carrier dynamics in nanoporous photoelectrodes. Electrochim. Acta, 1998, 43(19-20):2773-2780.
    [132] Turchi C.S., Ollis D.F. Photocatalytic degradation of organic water contaminants: mechanisms involving hydroxyl radical attack. J. Catal., 1990, 122(1):178-192.
    [133] Anpo M., Shima T., Kubokawa Y. ESR and photoluminescence evidence for the photocatalytic formation of hydroxyl radicals on small TiO2 particles. Chem. Lett., 1985, 168(17):1799-1802.
    [134] Martra G., Coluccia S., Marchese L., et al. The role of H2O in the photocatalytic oxidation of toluene in vapour phase on anatase TiO2 catalyst: a FTIR study. Catal. Today, 1999, 53(4):695-702.
    [135] Davydov L., Tsekov R., Smirniotis P.G. Optimal radiation field in one-dimensional continuous flow heterogeneous photocatalytic reactors. Chem. Eng. Sci., 2001, 56(16):4837-4847.
    [136] Mao, Y., Schoneich, C., Asmus, K.D. Identification of organic acids and other intermediates in oxidative degradation of chlorinated ethanes on titania surfaces en-route to mineralization: a combined photocatalytic and radiation chemical study. J. Phys. Chem., 1991, 95, 10080-10089.
    [137] Nimlos M.R., Wolfrum E.J., Brewer, M.L., et al. Gas-Phase Heterogeneous Photocatalytic Oxidation of Ethanol: Pathways and Kinetic Modeling Environ. Sci. Technol., 1996, 30(10):3102-3110.
    [138] Yang J.J., Li D.X., Zhang Z.J., et al. A study of the photocatalytic oxidation of formaldehyde on Pt/Fe2O3/TiO2. J Photoch Photobio A: Chem., 2000, 137(2-3):197-202.
    [139] Chen, Y.J., Dionysiou, D.D. A comparative study on physicochemical properties and photocatalytic behavior of macroporous TiO2-P25 composite films and macroporous TiO2 films coated on stainless steel substrate. Appl. Catal. A: Gen., 2007, 317(1):129-137.
    [140] Levenspiel O. Chemical reaction engineering. Chichester, UK: John Wiley & Sons, 1972.
    [141] Dijkstra M.F.J., Koerts E.C.B., Beenackers A.A.C.M., et al. Performance of immobilized photocatalytic reactors in continuous mode. AIChE J., 2003, 49(3):734-744.
    [142] 邓南圣, 吴峰. 环境光化学. 北京: 化学工业出版社, 2003.
    [143] Ray A.K., Beenackers A.A.C.M. Novel photocatalytic reactor for water purification. AIChE J., 1998, 44(2):477-483.
    [144] Ritchie I.M., Lehnen R.G. Formaldehyde-related health complaints of residents living in mobile and conventional homes. Am. J. Pub. Health., 1987, 77(3):323-328.
    [145] Wang J.H., Ray M.B. Application of ultraviolet photooxidation to remove organic pollutants in the gas phase, Sep. Purif. Technol., 2000, 19(1-2):11-20.
    [146] Zepp R.G., Quantum yields for reaction of pollutants in dilute aqueous solution, Environ. Sci. Technol., 1978, 12(3):327-329.
    [147] Pichat P., Disdier J., Hoang-van C., et al. Purification/deodorization of indoor air and gaseous effluents by TiO2 photocatalysis. Catal. Today, 2000, 63(2-4):363-369.
    [148] Frank X.M., Leopold L., William H.M. Decomposition rates of ozone in living areas. Environ. Sci. Technol., 1973, 7(4):342-346.
    [149] Sabersky R.H., Sinema D.A., Shair F.H. Concentration, decay rate, and removal of ozone and their relation to establishing clean indoor air. Environ. Sci. Technol., 1973, 7(4): 347-353.
    [150] GB 50019-2003, 采暖通风与空气调节设计规范.
    [151] Yang X., Chen Q., Zhang J.S., et al. Numerical simulation of VOC emissions from dry materials. Building and Environment, 2001, 36(10), 1099-1107.
    [152] Huang H., Haghighat F. Modelling of volatile organic compounds emission from dry building materials. Building and Environment, 2002, 37(12):1349-1360.
    [153] Xu Y., Zhang Y.P. An improved mass transfer based model for analyzing VOC emissions from building materials. Atmos. Environ., 2003, 37, 2497-2505.
    [154] 冯玉琪, 白亚南. 新编空调着冷设备安装使用维修手册. 宇航出版社,1994.
    [155] GB/T18883-2002, 室内空气质量标准.
    [156] 柳靖. 室内建筑装饰材料 VOC 散发特性的数值模拟研究. 哈尔滨工业大学硕士学位论文, 2004.
    [157] Deng B.Q., Kim C.N. An analytical model for VOCs emission from dry building materials.Atmos. Environ., 2004, 38(8): 1173-1180.
    [158] 余跃滨, 张国强, 余代红. 多孔材料污染物散发外部影响因素作用分析. 暖通空调, 2006, 36(1):13-19.
    [159] 赵荣义, 范存养, 薛殿华等. 空气调节. 北京:中国建筑工业出版社, 1994.
    [160] 刘朝贤. 夏季新风“逐时”冷负荷计算方法的探讨. 暖通空调, 1999, 29(6):65-67.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700