钴基合金及其纳米复合材料激光熔覆涂层研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在Ni基高温合金表面,激光熔覆钴基合金及其纳米氧化物颗粒复合材料涂层。利用光学显微镜、扫描电镜、透射电镜及XRD分析了熔覆层的组织结构。对熔覆层的硬度、耐磨性和高温抗氧化性等性能进行试验。研究了激光工艺参数、粉末供给方式、多道搭接、多层熔覆、基体、预热状态以及纳米材料的加入等对熔覆层的组织与性能的影响,结果如下。
     Stellite 6,H?gan?s(HMSP 2528/2537)合金熔覆层主要组成相均为γ-Co,Cr_(23)C_6,HMSP 2537合金涂层中出现了亚稳相Co_3W_9C_4;CoNiCrAlY合金熔覆层的组成相为γ-Co、Ni2Y和Cr3Ni2SiC等。
     Ni基合金熔覆层界面区宽且不规则,未出现45钢基体与熔覆层界面的平面结晶,向中心过渡为垂直于界面胞状晶、柱状枝晶等多种形态;熔覆层的近自由表面的结晶方向与激光扫描速度方向平行。随激光输入功率增大,基体溶入较多,且部分未完全熔化的颗粒在熔池中作为现成表面,使界面凝固形态发生变化。单层熔覆层组织细小致密,预热、搭接、多层熔覆的组织较粗大;在搭接、多层熔覆的界面区,发现重熔区界面部分晶粒的结晶方向继承了第一道的结晶方向,树枝晶的生长受择优取向的影响比热流的影响大。
     加入纳米Al_2O_3、Y_2O_3的复合材料熔覆层中,凝固组织一次枝晶间距均得到细化;所加入的纳米增强颗粒较均匀地分布于熔覆层中,纳米颗粒的加入促进了向平衡相ε-Co的转变,且有新相形成(CoAl_2O_4),亚结构由位错转变为层错;发现Y_2O_3、Cr_(23)C_6与γ-Co晶格错配度很小。应尽量避免纳米颗粒的长大及局部团聚现象。
     纳米材料的加入,熔覆层的硬度和耐磨性提高,当加入量为3%时,耐磨性反而下降。熔覆层的抗氧化性能比基体高,CoCrNiAlY合金熔覆层在1 100℃时的抗氧化性能比HMSP 2528/2537合金高,但其在1 300℃时抗氧化性能明显下降,而且表面出现少量熔化现象。
     建立相关模型,对熔覆层凝固组织随工艺参数变化、复合材料熔覆层中颗粒均匀分布等机理进行探讨。
     在滑(垫)块表面熔覆Sellite 6及HMSP 2537合金熔覆层已用于钢坯加热炉,效果良好。
Co-based alloy and its nano-oxide (nano-Y2O3 / Al2O3) composite coatings, deposited on Ni-based superalloy substrate by laser cladding are introduced. Cross-section and longitudinal section of single track, multi-track, single and milti-layer of the coatings have been examined to reveal microstructure and phase composition using optical microscope, scanning electron microscope (SEM, including EDS microanalysis), transmission electron microscope (TEM) and X-ray diffraction instrument (XRD). Microhardness profile, wear and oxidation resistance of the coatings were also tested. The influences of parameters on microstructure and properties of the coatings were also studied, such as laser processing parameters, means of powder supply, multi-track and multi-layer coatings, preheating and nano-materials addition, etc.
     The results showed that there were primary phase (γ-Co) and eutectic (γ-Co+Cr23C6) in the coatings of Stellite 6 and H?gan?s (HMSP 2528/2537) and un-equilibrium phase (Co3W9C4) was observed in HMSP 2537 coatings.γ-Co, Ni2Y and Cr3Ni2SiC phases were shown in CoNiCrAlY coatings.
     A thin plane front solidification layer appeared at the interface of the coatings on 45 steel substrate, which could not be seen at the interface of the coatings on Ni-based superalloy substrate. Rapid directional solidification was found at the interface and the growth direction was perpendicular to the interface. Growth direction is found parallel to the scanning direction of laser beam at the surface
     With the increase of laser power more substrate was fused and part of unmelted substrate in the melting pool acted as subsistent surface of solidification that resulted in changes of solidified form near interface. The fine microstructure was found in single layer coatings, whereas coarsened structures were observed at the boundary of multi-tracks or multi-layer coatings.
     The dendrite arm spacing (λ1) was greatly refined by adding nano-Al2O3 or nano-Y2O3 particles. The particles were well distributed. Equilibrium phase (ε-Co) and other new phases transformation appeared by adding nano particles. The sub-microstructure changes from dislocation to stacking fault. It is shown from calculation results that the degree of misfit between Y2O3, Cr23C6 andγ-Co was small. Agglomeration of nanocrystalline and its growth should be avoided by adjusting laser-processing parameters.
     The microhardness and wear resistance of the coating were much higher than that of the substrate, and were further improved by adding nano particles in the coatings. But the wear resistance decreased by adding two much additives (>3%). The oxidation resistance of the coatings was improved and CoCrNiAlY coatings was shown the best oxidation resistance at the temperature of 1 100℃.
     The mechanism of effects of parameters on microstructures in Co-based coatings was proposed and the distribution of particles in nano-composite coatings were analyzed and modelled.
     Pads with coatings made of Sellite 6 and HMSP 2537 alloy have been successfully used in billet heating furnace in steel plants.
引文
[1] Rotel M, Zahavi J, Tamir S, et al. Pre-bonding technology based on excimer laser surface treatment[J]. Applied Surface Science, 2000, (154-155): 610-616.
    [2] Przybylowicz J, Kusinski J. Structure of cladded tungsten carbide composite coatings[J]. Journal of Materials Processing Techonology, 2001, (109): 154-160.
    [3] Wu Y N, Zhang G, Feng Z C, et al. Oxidation behavior of laser remelted plasma sprayed NiCrAlY and NiCrAlY-Al2O3 coatings[J]. Surface and Coatings Technology, 2001, (138): 56-60.
    [4] Gahr K H Zum, Schneider J. Surface modification of ceramics for improved tribological properties[J]. Ceramics International, 2000, (26): 363-370.
    [5] Yang Yuanzheng, Zhu Youlan, Liu Zhengyi, et al. Laser remelting of plasma sprayed Al2O3 ceramic coatings and subsequent wear resistance[J]. Materials Science and Engineering, 2000, (291): 168-172.
    [6] 周尧和, 胡壮麒, 介万奇. 凝固技术[M]. 北京: 机械工业出版社, 1998.
    [7] Kurz W, Bezencon C, Gaumann M. Columnar to equiaxed in solidification processing[J]. Science and Technology of Advanced Materials, 2001, (2): 185-191.
    [8] Przybylowicz J, Kusinski J. Laser cladding and erosive wear of Co-Mo-Cr-Si coatings[J]. Surface and Coatings Technology, 2000, (125): 15-17.
    [9] Kwok C T, Leong K I, Cheng F T, et al. Microstructural and corrosion characteristics of laser surface-melted plastics mold steels[J]. Materials Science and Engineering, 2003, (357): 94 –103.
    [10] Lee SungJoon, Park ChanJin, Lim YunSoo, et al. Influences of laser surface alloying with niobium (Nb) on the corrosion resistance of Zircaloy-4[J]. Journal of Nuclear Materials, 2003, (321): 177-183.
    [11] 杨永强,田乃良. 激光溶覆高温合金及其应用[J]. 中国激光, 1995, 22 (8): 632-636.
    [12] Wu Xiaolei, Hong Youshi. Fe-based thick amorphous-alloy coating by laser cladding[J]. Surface and Coatings Technology, 2001, (141): 141-144.
    [13] Lo K H, Cheng F T, Kwok C T, et al. Improvement of cavitation erosion resistance of AISI 316 stainless steel by laser surface alloying using fine WC powder[J]. Surface and Coatings Technology, 2003, (165): 258-267.
    [14] Zhang Qingmao, He Jinjiang, Liu Wenjin, et al. Microstructure characteristics of ZrC-reinforced composite coating produced by laser cladding[J]. Surface and Coatings Technology, 2003, (162): 140-146.
    [15] d’Oliveira A S C M, Vilar R, Feder C G. High temperature behaviour of plasma transferred arc and laser Co-based alloy coatings[J]. Applied Surface Science, 2002, (201):154-160.
    [16] Ouyang J H, Nowotny S, Richter A, et al. Characterization of laser clad yttria partially stabilized ZrO2 ceramic layers on steel 16MnCr5[J]. Surface and Coatings Technology, 2001, (137): 12-20.
    [17] Wu Xiaolei, Hong Youshi. Microstructure and mechanical properties at TiCp/Ni-alloy interfaces in laser-synthesized coatings[J]. Materials Science and Engineering, 2001, (318): 15-21.
    [18] Xiong Huaping, Li Xiaohong, Mao Wei, et al. Wetting behavior of Co based active brazing alloys on SiC and the interfacial reactions[J]. Materials Letters, 2003, (57): 3417-3421.
    [19] Felberbaum L, Voisey K, Gaumann M, et al. Thermal fatigue of single-crystalline superalloy CMSX-4 a comparison of epitaxial laser-deposited material with the base single crystal[J]. Materials Science and Engineering, 2001, (299): 152-156.
    [20] 姚向东, 张静华, 张志亚等. 合金元素对一种定向凝固钴基高温合金组织和性能的影响[J]. 金属学报, 1995, 31(7): 320-328.
    [21] Ana Sofia C M D Oliveira, Paulo Sergio C P da Silva, Rui M C Vilar. Microstructural features of consecutive layers of Stellite 6 deposited by laser cladding[J]. Surface and Coatings Technology, 2002, (153): 203-209.
    [22] Agarwal S C, Ocken H. Microstructure and galling wear of a laser-melted cobalt-base hardfacing alloy[J]. Wear, 1996, 140 (2): 223-233.
    [23] Li Tiejun, Lou Qihong, Dong Jingxing, et al. Escape of carbon element in surface ablation of cobalt cemented tungsten carbide with pulsed UV laser[J]. Applied Surface Science, 2001, (172): 51-60.
    [24] 王忠柯, 郑启光, 陶曾毅等. 激光熔覆多元复合硬质合金覆层中颗粒相的行为特征[J]. 金属学报, 1999, 35(10): 1027-1030.
    [25] Jendrzejewskia R, Condeb A, Damboreneab J De, et al. Characterisation of the laser-clad stellite layers for protective coatings[J]. Materials and Design, 2002, (23): 83-88.
    [26] 刘喜明, 连建设, 张庆茂. 送粉激光熔覆界面特性及熔覆层稀释率[J]. 机械工程学报, 2001, 37(4): 38-53.
    [27] Kim Jae-Do, Peng Yun. Melt pool shape and dilution of laser cladding with wire feeding[J]. Journal of Materials Processing Technology, 2000, (104): 284-293.
    [28] Song Wulin, Echigoya J, Zhu Beidi, et al. Vacuum laser cladding and effect of Hf on the cracking susceptibility and the microstructure of FeCrNi laser clad layer[J]. Surface and Coatings Technology, 2000, (126): 76-80.
    [29] 张庆茂, 刘文今, 杨 森等. 送粉式激光熔覆稀释率的分析模型及其影响因素[J]. 钢铁研究学报, 2002, 14(1): 11-15.
    [30] Goward G W. Progress in coatings for gas turbine airfoils[J]. Surface and CoatingsTechnology, 1998, (108): 73-79.
    [31] Lin J, Steen W M. An in-process method for the inverse estimation of the powder catchment efficiency during laser cladding[J]. Optics & Laser Technology, 1998, (30): 77-84.
    [32] Peligrada A A, Zhou E, Mortona D, et al. Amelt depth prediction model for quality control of laser surface glazing of inhomogeneous materials[J]. Optics & Laser Technology, 2001, (33): 7-13.
    [33] 李明喜, 何宜柱, 孙国雄. Ni基合金/45钢宽、窄带熔覆Co基合金的组织[J]. 中国激光, 2003, 30(11): 1044-1048.
    [34] 刘其斌, 王存山, 夏元良. 宽带激光熔覆 WCp/Ni 基合金梯度涂层中 WCp 的溶解机理[J]. 材料热处理学报, 2001, 22(3): 33-36.
    [35] 刘喜明, 关振中. 送粉式激光熔覆获得最佳熔覆层的必要条件及其影响因素[J]. 中国激光, 1999, 26(5): 470-476.
    [36] 胡木林, 谢长生, 祝柏林等. 多道搭接激光熔覆镍基合金中裂纹断口形貌研究[J]. 材料热处理学报, 2001, 22(2): 23-26.
    [37] Zhong Minlin, Liu Wenjin, Yao Kefu, et al. Microstructural evolution in high power laser cladding of Stellite 6+WC layers[J]. Surface and Coatings Technology, 2002, (157): 128-137.
    [38] Murugan S, Kumar P V, Raj B, et al. Temperature distribution during multipass welding of plates[J]. International Journal of Pressure Vessels and Piping, 1998, (75): 891-905.
    [39] 李明喜, 何宜柱, 孙国雄Co基合金激光熔覆组织及近表面结晶方向[J]. 东南大学学报, 2002, 32(6): 932-935.
    [40] Li M, Lu Q H, Yin J, et al. Effects of post-thermal treatment on preparation of surface microstructures induced by polarized laser on polyimide film[J]. Materials Chemistry and Physics, 2002, (77): 895-898.
    [41] Zhang Da-wei, Lei T C, Zhang Ji-ge, et al. The effects of heat treatment on microstructure and erosion properties of laser surface-clad Ni-base alloy[J]. Surface and Coatings Technology, 1999, (115): 176-183.
    [42] Jones H. A perspective on the development of rapid solidification and nonequilibrium processing and its future[J]. Materials Science and Engineering, 2001, (304-306): 11-19.
    [43] Ludwig A, Pustal B, Herlach D M. General concept for a stability analysis of a planar interface under rapid solidification conditions in multi-component alloy systems[J]. Materials Science and Engineering, 2001, (318): 337-340.
    [44] Kanicky V, Otrub V, Mermet J M. Analysis of tungsten carbide coatings by infrared laser-induced argon spark with inductively coupled plasma atomic emission spectrometry[J]. Spectrochimica Acta Part B, 2000, (55): 1601-1610.
    [45] Bau S S, Miller M K, Vitek J M, et al. Characterization of the Microstructure Evolutionin Nickel Base Superalloy During Continuous Cooling Conditions[J]. Acta mater., 2001, (49): 4149-4160.
    [46] Ludwig A. Comparison of dendrites of a pure material with thermal alloy dendrites an experimental method to estimate the T0-temperature[J]. Acta mater, 2001, (49): 165-168
    [47] Kittl J A, Sanders P G, Aziz M J, et al. Complete experimental test of kinetic models for rapid alloy solidifcation[J]. Acta mater, 2000, (48): 4797-4811
    [48] Massimo Conti, Umberto Marini Bettolo Marconi. Interfacial dynamics in rapid solidification processes[J]. Physica, 2000, (280): 148-154.
    [49] GUO W, KAR A. Interfacial instability and microstructural growth due to rapid solidification in laser processing[J]. Acta mater., 1998, 46(10): 3485-3490.
    [50] Luuk K Koopal, Marcelo J Avena. A simple model for adsorption kinetics at charged solid–liquid interfaces[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2001, (192): 93-107.
    [51] Liu Chang-Yi, Lin Jehnming. Thermal processes of a powder particle in coaxial laser cladding[J]. Optics & Laser Technology, 2003, (35): 81-86.
    [52] Hoadley A F A, Rappaz M, Zimmermann M. Heat flows imulation of laser remelting with experimental validation[J]. Metallurgical Transactions, 1991, (22): 101-109.
    [53] Massimo Conti, Umberto Marini Bettolo Marconi. Interfacial dynamics in rapid solidification processes[J]. Physica, 2000, (280): 148-154.
    [54] 曾大文, 谢长生. 激光熔覆温度场和流场数值模拟研究现状和发展趋势[J]. 材料科学与工程, 1997, 15(4): 1-9.
    [55] Lan C W, Chang Y C. Efficient adaptive phase field simulation of directional solidification of a binary alloy[J]. Journal of Crystal Growth, 2003, (250): 525-537.
    [56] Britta Nestler, Adam A Wheeler, Harald Garcke. Modelling of microstructure formation and interface dynamics[J]. Computational Materials Science, 2003, (26): 111-119.
    [57] Lin Jehnming. A simple model of powder catchment in coaxial laser cladding[J]. Optics & Laser Technology, 1999, (31): 233-238.
    [58] Chan C L, Mazumder J, Chen M M. Three dimensional axisymmetric model for convection in laser melted pools[J]. Materials Science and Technology, 1987, (4): 306-311.
    [59] Kou S, Wang Y H. Three dimensional convection in laser melted pools[J]. Metallurgical Transactions, 1986, (17): 2265-2270.
    [60] Lin Jehnming. Numerical simulation of the focused powder streams in coaxial laser cladding[J]. Journal of Materials Processing Technology, 2000, (105): 17-23.
    [61] 邹德宁, 雷永平, 苏俊义. 激光表面重熔过程中流体流动和传热的数值模拟[J]. 中国激光, 2001, 28(1): 81-84.
    [62] Marios D Demetriou, Nasr M Ghoniem, Adrienne S Lavine. Kinetic modeling of phase selection during non-equilibrium solidification of a tungsten–carbon system[J]. ActaMaterialia, 2002, (50): 1421-1432.
    [63] Fan C H, Longtin J P. Laser-based measurement of liquid temperature or concentration at a solid-liquid interface[J]. Experimental Thermal and Fluid Science, 2000, (23): 1-9.
    [64] Gaumann M, Bezencon C, Canalis P, et al. Single-crystal laser deposition of superalloys: processing –microstructure maps[J]. Acta mater., 2001, (49): 1051-1062.
    [65] Kurz W, Bezencon C, Canalis P. Columnar to equiaxed transition in solidification processing[J]. Science and Technology of Advanced Materials, 2001, (2): 185-191.
    [66] Gaumann M, Trivedi R, Kurz W. Nucleation ahead of the advancing interface in direction solidification[J]. Materials Science and Engineering, 1997, (226): 763-769
    [67] Gandin Ch A, Guillemot G, Appolaire B, et al. Boundary layer correlation for dendrite tip growth with fluid flow[J]. Materials Science and Engineering, 2003, (342): 44-50.
    [68] Dexin Ma, Uwe Grafe. Microsegregation in directionally solidified dendritic/cellular structure of superalloy CMSX-4 Materials[J]. Science and Engineering, 1999, (270): 339-342.
    [69] Sen Yang, Weidong Huang, Wenjin Liu, et.al. Development of microstructures in laser surface remelting of DD2 single crystal[J]. Acta Materialia, 2002, (50): 315-325.
    [70] Gaumann M, Henry S, Cleton F, et al. Epitaxial laser forming: analysis of microstructure formation[J]. Materials Science and Engineering, 1999, (271): 232-241.
    [71] Hunziker O. Theory of plane front and dendritic growth in multicomponent alloys[J]. Acta mater., 2001, (49): 4191-4203.
    [72] Jiang L, Wang, H, Liaw P K, et al. Characterization of the temperature evolution during high-cycle fatigue of the ULTIMET superalloy[J]. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2001, 32(9): 2279-2296.
    [73] Ramirez L E, Castro M, Mendez M, et al. Precipitation path of secondary phases during solidification of the Co-25.5%Cr-5.5%Mo-0.26%C alloy[J]. Scripta Materialia, 2002, (47): 811-816.
    [74] de Mol van Otterloo J L, De Hosson J Th M. Microstructure and abrasive wear of cobalt-based laser coatings[J]. Scripta Materialia, 1997, 36(2): 239-245.
    [75] Blinovskii V A, Brover G I, Tsybrii I K. Condition of surface layers of VK8 (WCo8) laser-alloyed hard alloy[J]. Physics and Chemistry of Materials Treatment, 1991, 25(4): 418-421.
    [76] De Mol Van Otterloo J L, De Hosson, J Th M. Microstructural features and mechanical properties of a cobalt-based laser coating[J]. Acta Materialia, 1997, 45(3): 1225-1236.
    [77] Pizurova N, Komurka J, Svoboda M. Structure and phase composition of cobalt rich coating prepared by laser cladding on low carbon steel[J]. Materials Science and Technology, 1993, 9(2): 172-175.
    [78] Kwok C T, Cheng F T, Man H C. Laser surface modification of UNS 31603 stainlesssteel, Part II: cavitation erosion characteristics[J]. Materials Science and Engineering, 2000, (290): 74-88.
    [79] Przybylowicz J, Kusinki J. Structure of laser cladded tungsten carbide composite coatings[J]. Journal of Material Processing Technology, 2002, (109): 154-160.
    [80] Cadenas M, Vijande R, Montes H J, et al. Wear behaviour of laser cladded and plasma sprayed WC-Co coatings[J]. Wear, 1997, 212(2): 244-253.
    [81] Lo K H, Cheng F T, Kwok C T, et al. Improvement of cavitation erosion resistance of AISI 316 stainless steel by laser surface alloying using fine WC powder[J]. Surface and Coatings Technology, 2003, (165): 258-267.
    [82] Lu Z, Xu Y B, Hu Z Q. The dislocation structure of crack tip plastic zones in a cobalt base superalloy[J]. Materials Letters, 1998, (36): 218-222.
    [83] Yang F M, Sun X F, Guan H R, et al. On the low cycle fatigue deformation of K40S cobalt-base superalloy at elevated temperature[J]. Materials Letters, 2003, (57): 2823-2828.
    [84] Lu Zheng, Xu Yongbo, Hu Zhuangqi. Low cycle fatigue behavior of a directionally solidified cobalt base superalloy[J]. Materials Science and Engineering, 1999, (270): 162-169.
    [85] Mateos J, Ceutos J M, et al. Tribological behaviour of plasma-sprayed WC coatings with and without laser remelting[J]. Wear, 2000, (239): 274-281.
    [86] Li Mingxi, He Yizhu, Sun Guoxiong. Study of Laser Cladded Co-Based Alloy/SiCp Coatings[J]. Journal of Iron and Steel Research, (Accepted)
    [87] 李明喜, 何宜柱, 孙国雄. Ni基高温合金表面激光熔覆Co基合金的组织[J]. 焊接学报, 2002, 23(6): 17-20.
    [88] Yang Yongqiang, Man H C. Microstructure evolution of laser clad layers of W-C-Co alloy powders[J]. Surface and Coatings Technology, 2000, 132(3): 130-136.
    [89] Li Tiejun, LouQihong, DongJingxing, et al. Modified surface morphology in surface ablation of cobalt-cemented tungsten carbide with pulsed UV laser radiation[J]. Applied Surface Science, 2001, (172): 331-344.
    [90] 钟敏霖, 刘文今, 陈艳霞等. 斯太立合金加 WC 激光熔覆[J]. 材料热处理学报, 2001, 22(2): 27-31.
    [91] Przybylowicz J, Kusinski J. Laser cladding and erosive wear of CoMoCrSi coatings[J]. Surface and Coatings Technology, 2000, (125): 13-18.
    [92] Kwok C T, Cheng F T, Man H C. Laser-fabricated Fe-Ni-Co-Cr-B austenitic alloy on steels. Part Ⅰ. Microstructures and cavitation erosion behaviour[J]. Surface and Coatings Technology, 2000, (145): 201-204.
    [93] 闫毓禾, 钟敏霖. 高功率激光加工及其应用[M]. 天津: 天津科学技术出版社, 1994.
    [94] Herrera Y, Grigorescu I C, Ramirez J, et al. Microstructural characterization of vanadium carbide laser coatings[J]. Surface and Coatings Technology, 1998, (108): 308-311.
    [95] 沈以赴, 陈继志, 冯钟潮等. 稀土在激光熔覆层中的分布和行为[J]. 中国稀土学报, 1997, 15(4): 344-348.
    [96] 李明喜, 何宜柱, 孙国雄. CoNiCrAlY 合金激光熔覆层的组织与性能[J]. 稀有金属 (Accepted)
    [97] 尚丽娟, 才庆魁, 刘常升等. 用稀土改性钴基合金激光熔覆层[J]. 稀有金属, 2002, 26(3): 173-178.
    [98] Zhao Tao, Cai Xun, et al. Effect of CeO2 on microstructure and corrosive wear behavior of laser-cladded Ni/WC coating[J]. Thin Solid Films, 2000, (379): 128-132.
    [99] 杨庆祥, 高聿为, 廖波等. 夹杂物在中高碳钢堆焊金属中成为初生奥氏体非均质形核核心的探讨[J]. 中国稀土学报, 18(2): 138-141.
    [100] Wu Yingfang, Yuan Yi. The influence of rare earth on Co-based alloy[J]. Materials Science and Engineering, 1996, (209): 23-236.
    [101] 张庆茂, 刘文今, 杨森. 送粉式激光熔覆层横截面面积的分析模型[J]. 材料热处理学报, 2001, 22(4): 65-69.
    [102] Tzeng Yih Fong. Effects of operating parameters on surface quality for the pulsed laser welding of zinc-coated steel[J]. Journal of Materials Processing Technology, 2000, (100): 163-170.
    [103] 张庆茂, 王忠东, 刘喜明等. 工艺参数对送粉激光熔覆层几何形貌的影响[J]. 焊接学报, 2000, 21(2): 43-47.
    [104] 邹德宁, 雷永平, 苏俊义. 激光表面重熔过程中流体流动和传热的数值模拟[J]. 中国激光, 2001, 28(1): 81-84.
    [105] 刘振侠, 黄卫东, 杨森等. 激光熔凝的数值模拟及其在激光定向凝固中的应用[J]. 中国有色金属学报, 2002, 12(3): 458-463.
    [106] 魏艳红, 刘仁培, 董祖珏. 焊接凝固裂纹驱动力的分析与模拟[J]. 机械工程学报, 2000, 36(4): 14-16.
    [107] 宋武林, 朱蓓蒂, 甘翠华. 激光熔覆层结晶方向对覆层裂纹方向和开裂敏感性的影响[J]. 中国激光, 1995, 22(4): 309-312.
    [108] Song Wulin, Echigoya J, et al. Effect of Co on the cracking susceptibility and the microstructure of Fe-Cr-Ni laser-clad layer[J]. Surface and Coatings Technology, 2001, (138): 292-293.
    [109] 李明喜, 何宜柱, 孙国雄. 铸铁基体上激光熔覆 H?gan?s 钴基合金凝固组织的研究[J]. 现代铸铁, 2002, (2): 8-11.
    [110] Shankar V, Gill T P S, Mannan S L, et al. Effect of nitrogen addition on microstructure and fusion zone cracking in type 316L stainless steel weld metals[J]. Materials Science and Engineering, 2003, (343): 170-181.
    [111] Frenk A, Marsden C F, Wagniere J D, et al. Influence of an intermediate layer on the residual stress field in a laser clad[J]. Surface and Coatings Technology, 1991, 45(3):435-441.
    [112] S Wulin, Z Beidi, X Changsheng, et al. Cracking susceptibility of a laser-clad layer as related to the melting properties of the cladding alloy[J]. Surface and Coatings Technology, 1999, (115): 270-272.
    [113] 刘江龙, 邹至荣, 苏宝嫆. 高能束热处理[M]. 北京:机械工业出版社, 1997.
    [114] Dubourg L, Hlawk F, Cornet A. Study of aluminium–copper–iron alloys application for laser cladding[J]. Surface and Coatings Technology, 2002, (151): 329-332.
    [115] Shepeleva L, Medres B, Kaplan W D, et al. Laser cladding of turbine blades[J]. Surface and Coatings Technology, 2000, (125): 45-48.
    [116] Hisamoto Fujimagari, Makoto Hagiwara, Toshio Kojima. Laser cladding technology to small diameter pipes[J]. Nuclear Engineering and Design, 2000, (195): 289-298.
    [117] Zum Gahr K H, Schneider J. Surface modification of ceramics for improved tribological properties[J]. Ceramics International, 2000, (26): 363-370.
    [118] LIM L C, QING Ming, CHEN Z D. Microstructure of laser-clad nickel-based hardfacing alloys[J]. Surface and Coatings Technology, 1998, (106): 183-192.
    [119] Sextona L, Lavina S, Byrnea G, et al. Laser cladding of aerospace materials[J]. Journal of Materials Processing Technology, 2002, (122): 63-68.
    [120] 徐国财, 张立德. 纳米复合材料[M]. 北京: 化学工业出版社, 2002.
    [121] Heilmaier M, Maier H J, Jung A, et al. Cyclic stress–strain response of the ODS nickel-base, superalloy PM 1000 under variable amplitude loading at high temperatures[J]. Materials Science and Engineering, 2000, (281): 37–44.
    [122] ZENG Yi, LEE S W, GAO L, et al. Atmospheric sprayed coatings of nanostructured zirconia[J]. Journal of the European Ceramic Society, 2002, (22): 347-351.
    [123] Jiang Wenping, Molian U Pal. Nanocrystalline TiC powder alloying and glazing of H13 steel using a CO2 laser for improved life of die-casting dies[J]. Surface and Coatings Technology, 2001, (135): 139-149.
    [124] Silvain J F, Niino H, Yabe A. Nucleation and growth of surface microstructures on Nd: YAG laser ablated elastomer/carbon composite[J]. Composites: Part A: Applied science and manufacturing, 2000, (3): 469-478.
    [125] Sturma A, Betza U, Scipionea G, et al. Grain growth and phase stability in a nanocrystalline ZrO2-15w% Al2O3 ceramic[J]. NanoStructured Materials, 1999, 11(5): 651-661.
    [126] Jersch J, Demming F, Hildenhagen J, et al. Nano-material processing with laser radiation in the near field of a scanning probe tip[J]. Optics & Laser Technology; 1997, 29(8): 433-437.
    [127] Mishra R S, Mukherjee A K. Processing of high hardness-high toughness alumina matrix nanocomposites[J]. Materials Science and Engineering, 2001, (301): 97-101.
    [128] Wang H Z, Gao L, Guo J K. Fabrication and Microstructure of Al2O3-ZrO2 (3Y)-SiC Nanocomposites[J]. Journal of the European Ceramic Society, 1999, (19): 2125-2131.
    [129] 李明喜, 何宜柱, 孙国雄. 纳米 Al2O3 / Ni 基合金复合材料激光熔覆层组织[J]. 中国激光, 2004, 33(10): (Accepted)
    [130] 李明喜, 何宜柱, 孙国雄. 激光表面熔覆制备 ODS 高温合金涂层的组织[J]. 稀有金属材料与工程(Accepted)
    [131] Laszlo Granasy, Tamas Pusztail, James A Warren, et al. Growth of ‘dizzy dendrites’ in a random field of foreign particles[J]. Nature Materials, 2003, (2): 92-96.
    [132] 张文鉞. 焊接冶金学[M]. 北京: 机械工业出版社,1997.
    [133] Voevodin A A, O’Neill J P, Zabinski J S. Nano composite tribological coatings for aerospace applications[J]. Surface and Coatings Technology, 1999, (116): 36-45.
    [134] Lee D W, Ha G H, Kim B K. Synthesis of Cu-Al2O3 Nano Composite powder[J]. Scripta mater., 2001, (44): 2137-2140.
    [135] He Y, Pang H, Qi H, et al. Micro-crystalline Fe–Cr–Ni–Al–Y2O3 ODS alloy coatings produced by high frequency electric-spark deposition[J]. Materials Science and Engineering, 2002, (334): 179-186.
    [136] 李玉清, 刘锦岩. 高温合金晶界间隙相[M]. 北京: 冶金工业出版社, 1990.
    [137] Jong-Choul Shin , Jung-Man Doh , Jin-Kook Yoon, et al. Effect of molybdenum on the microstructure and wear resistance of cobalt-base Stellite hardfacing alloys[J]. Surface and Coatings Technology, 2003, (166): 117-126.
    [138] Wu Y N, Zhang U G, Feng Z C, et al. Oxidation behavior of laser remelted plasma sprayed NiCrAlY and NiCrAlY-Al2O3 coatings[J]. Surface and Coatings Technology, 2001, (138): 56-60
    [139] Wang Linchun, Li D Y. Effects of yttrium on microstructure, mechanical properties and high-temperature wear behavior of cast Stellite 6 alloy[J]. Wear, 2003, (255): 535-544.
    [140] Wang K L, Zhang Q B, Sun M L, et al. Microstructural characteristics of laser clad coatings with rare earth metal elements[J]. Journal of Materials Processing Technology, 2003, (139): 448-452.
    [141] Kurz W, Fisher D J. Fundamentals of Solidification. 3rd revised edition[M]. Netherlands: Trans Tech Publication Ltd, 1989.
    [142] Trived R, Kurz W. Dendrite growth[J]. International materials reviews, 1994, 39(2): 49-74.
    [143] Zhang Sam, Sun Deen, Fu Yongqing, et al. Recent advances of superhard nanocomposite coatings: a review[J]. Surface and Coatings Technology, 2003, (167): 113-119.
    [144] Gleiter H. Nanosturctured materials: Basic concepts and Microstructure[J]. Acta mater., 2000, (48): 1-29.
    [145] Zhang Ju-Xian, Gao Long-Qiao. Nanocomposite powders from coating with heterogeneous nucleation processing[J]. Ceramics International, 2001, (27): 143-147.
    [146] Layachi Hadji. Morphological instability prior to particle engulfment by a solidifying interface[J]. Scripta Materialia, 2003, (48): 665-669.
    [147] Yang Sen, Zhong Minlin, Liu Wenjin. TiC particulate composite coating produced in situ by laser cladding[J]. Materials Science and Engineering, 2003, (343): 57-62.
    [148] Wu P, Zhou C Z, Tang X N. Microstructural characterization and wear behavior of laser cladded nickel-based and tungsten carbide composite coatings[J]. Surface and Coatings Technology, 2003, (166): 84-88.
    [149] Persson D H E, Jacobson S, Hogmark S. Effect of temperature on friction and galling of laser processed Norem 02 and Stellite 21[J]. Wear, 2003, (255): 498-503.
    [150] Klimiankou M, Lindau R, Moslang A. HRTEM Study of yttrium oxide particles in ODS steels for fusion reactor application[J]. Journal of Crystal Growth, 2003, (249): 381-387.
    [151] Rempela A W, Worster M G. Particle trapping at an advancing solidification front with interfacial curvature effects[J]. Journal of Crystal Growth, 2001, (223): 420-432.
    [152] Stefanescu D M, Juretzko F R, Mukherjee S, et al. Particle engulfment and pushing by solidifying interface[J]. Materials Science Froum, 1991, 77: 25-42.
    [153] Shanguan D, Ahuja S. An analytical model for the interaction between an insoluble particle and an advancing solid/liquid interface[J]. Metall. Trans. 1992, (23): 669-680.
    [154] Kaptay G.. Interface phenomena during melt processing of ceramic particle reinforced matrix composite. Part 2, interfacial force between a spherical particle and an approaching solid/liquid interface[J]. Materials Science Forum, 1996, (215): 467-474.
    [155] Leonardo Ajdelsztajn, Josep A Picas, George E Kim, et al. Oxidation behavior of HVOF sprayed nanocrystalline NiCrAlY powder[J]. Materials Science and Engineering, 2002, (338): 33-/43.
    [156] Perez P, Haanappel V A C, Stroosnijder M F. Formation of an alumina layer on a FeCrAlY alloy by thermal oxidation for potential medical implant applications[J]. Surface and Coatings Technology, 2001, (139): 207-215.
    [157] 李美栓. 金属的高温腐蚀[M]. 北京: 冶金工业出版社, 2001.
    [158] He Y, Huang Z, Qi H, et al. Oxidation behaviour of micro-crystalline Ni–20Cr–Y2O3 ODS alloy coatings[J]. Materials Letters, 2000, (45): 79-85.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700