钢板—支撑钢筋—聚氨酯复合材料结构的性能及其在地下防护工程中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
根据国际研究动态,随着新材料和新结构不断地涌现与应用,针对我国未来防护工程建设(特别是高原高寒地区)对适应环境条件的新材料与新结构的迫切需要,研究和开发了钢板-支撑钢筋-聚氨酯泡沫三种不同材料复合而成的复合材料结构,通过系统的抗静载、动载力学性能试验、野外化爆试验及数值模拟,研究了这种新型复合材料结构的力学性能,提出了简化力学分析模型,同时研究了用该种复合材料结构制成的箱型浅埋工事在化爆作用下的受力性能,进而讨论了具体设计和应用施工的方法步骤,为这种结构材料的具体应用提供了基础。
     根据新材料的研究应用,提出钢板-支撑钢筋-聚氨酯泡沫复合材料结构及其复合成型工艺。复合结构在构造上采用上、下钢面板之间设置抗剪支撑钢筋,然后再与聚氨酯泡沫复合成型,使其抗剪、抗变形的能力大大提高,通过试验并和以往的夹层结构相比表明这种结构具有比承载能力高、延性和吸能特性好、抗爆能力强等特点。
     用数值模拟手段揭示了:不同受力状态下钢板-支撑钢筋结构的受力特性;钢板与支撑钢筋的相对刚度(或相对用量)对结构受力性能的影响;与结构轴向平行的彼此相邻两排钢筋的节间交叉排列与不交叉排列对结构受力性能影响。研究表明,钢筋充当压杆的作用,骨架结构的压屈是由于钢筋的失稳造成的;钢面板对钢筋起约束作用,这种作用影响着各钢筋临界压屈荷载以及平均轴向应力的分布情况。钢筋的节间距离s减小,压屈荷载增大,结构的临界压屈荷载也增大。钢板与钢筋的用量或相对刚度必须满足一个合理的关系。根据压杆与薄平板的稳定理论,分别推导了两种模型条件下骨架结构受剪临界荷载的计算公式。
     通过聚氨酯泡沫外包金属约束的原理性试验,研究了夹芯泡沫与外包薄金属层的相互作用,试验表明夹芯复合结构由于充填的聚氨酯对支撑钢筋和钢板产生约束作用,防止钢筋与钢板过早地屈曲,其承载及变形能力都要比骨架结构大得多;聚氨酯不但在受载前期能防止钢筋与钢板过早地屈曲,在后期仍能限制其进一步变形,使得夹芯复合结构在受载后期仍有较高的残余承载力。
     野外抗爆试验表明,复合材料结构具有良好的抗变形能力,能够经受住多次重复爆炸破坏而不丧失使用功能。复合材料结构可出现三塑性铰破坏机构和四塑性铰机动破坏机构两种破坏形态,试验结果可作为进一步研究复合材料结构抗爆分析方法的试验依据;在此基础上的进一步分析还表明,在相同爆深下,复合材料结构比粘钢混凝土板、混凝土板所承受的应力强度小,充分说明复合材料结构有良好的抗爆性能。
     通过正交各向异性厚板理论,提出了分析复合材料结构抗爆特性的简化方法,建立了分析模型,推导了刚度常数,建立了内力的基本方程,为这种新型复合材料结构的应用提供理论基础。
     基于一维平面波理论,提出应用梁式模型来分析复合材料结构组合成的浅埋地下箱体工事的受力,将地下箱体结构的顶板视作两端简支在弹性地基上的埋设梁,略去底板结构变形对顶板内力的影响,将梁离散为若干有限厚梁元(位移分量为垂直位移w、截面转角β、水平位移u),考虑横向剪切变形的影响,进行几何非线性计算。这一模型既考虑了箱体的整体运动,又考虑了顶板的挠曲变形,能有效且简便地对浅埋复合材料结构箱体进行受力计算。
     对复合材料装配式野战工事的设计进行了研究。工事应用设计需要根据战术技术要求来定,浅埋装配式野战工事往往顶板是最先破坏的部位,提出以梁的形式来计算和核算顶板,对于侧墙则以偏心受压构件来计算。工事的连接主要考虑搭接和串接紧固螺杆连接两种形式结合来完成,构件之间通过连接相互协同工作,充分发挥构件整体的变形能力。
     提出了复合材料装配式野战工事的施工技术要求。开挖平底坑是工事构筑的关键,快速开挖平底坑有机械和爆破开挖两种方法,要依据实际情况而定。依据试验提供了爆破开挖平底坑的有关方案数据,简要介绍了工事的安装,为工事的具体应用提供了方法依据。
According to the international research trends,along with the appearance and application of new materials and new types of structures,aiming at meet the needs of new materials and structures applying to future defending project(especially in cold region of tableland),a kind of composite material structure composed of armor plate, supporting rebar and polyurethane foam is studied and developed.By means of systematic load bearing experiments(including dead load and live load),field chemical blast test and numerical modeling,the mechanical properties of this new material structure is studied.Then,the simplified mechanics model regarding the new material structure is established.Furthermore,the mechanical properties of shallow buried basket type work made of the new material under the effect of chemical blast are also studied.Finally,the specific design and construction methods are discussed. All of these research results may provide a theoretic basis for practical application of the new material structure.
     The composite material structure composed of armor plate,supporting rebar and polyurethane foam and its molding techniques are brought forward.This composite structure is made of two layers of armor plate(one on the top,the other on the bottom), supporting rebar which connect the two layers of armor plate and polyurethane foam filled in the interspace of the structure.According to the test results,compared with the interlayer structure used in the past,this new structure has higher loading capacity, better ductility,better capacity of absorbing energy,and stronger antidetonating ability.
     Three problems are studied by numerical modeling analysis,including the mechanical property of the structure which is composed of armor plate and supporting rebar under various load cases,the influence of the relative stiffness of armor plate and supporting rebar to the mechanical behavior of the structure and the influence of the arrangement pattern(crossed or uncrossed)of the two rows adjacent rebar to the mechanical behavior of the structure.The results show that the supporting rebar acts as compression bar and it is constrained by the armor plate.The constrained effect affects the ultimate compression load magnitude and the average axial stress distribution of the supporting rebar.The less the space between two rows adjacent rebar is,the more the ultimate compression load will be.The relative stiffness of the armor plate and the supporting rebar should be compatible.Based on the compression bar and thin plate stability theory,formulas used to calculate the critical shear resistant load of the framework corresponding to two conditions are deduced.
     The interaction between inner foam and outer thin metal shell is studied by test. The test results show that the interlayer composite structure can prevent rebar and armor plate from inflecting untimely and enhance its carrying capacity and stiffness because the inner polyurethane foam can help to restrict the supporting rebar and the armor plate from deforming.The polyurethane foam can not only stop the rebar and armor plate from inflecting untimely,but also restrict the deformation of the rebar and the armor plate latterly so as to ensure the structure still retain a relatively higher residual carrying capacity.
     The field blast test results show that the composite material structure has good deformation resistant capacity and can endure repetitious blast.The composite structure may have two types of failure mode which are three plastic hinge and four plastic hinge failure framework.The test results may become test references for further research in composite material structure.And the further study also shows that the undergoing stress intensity of the composite material structure is smaller than that of the reinforced concrete plate or concrete plate that means the composite structure has better anti detonation ability.
     On the basis of perpendicular anisotropy thick slab theory,a kind of simplified method used to analyze the anti detonation property of the composite material structure is developed.The analysis model,the stiffness constant and the basic equation for internal force are all developed.The simplified method can provide a theoretical basis for the application of this new composite material structure.
     Based on one dimensional plane wave theory,a method that beam model is applied to analyzing the stress status of shallow buried box shaped work made of composite material structure.In this model,the top slab of the underground box shaped structure is treated as a buried beam which is simple supported on the elastic foundation;the beam is divided into some finite thick beam elements(displacement components include vertical displacement w,rotation angel of sectionβand horizontal displacement u);transverse shear deformation of beam is considered.Then, geometrical nonlinearity calculation is performed for this model.In this model,both the mass motion of the framework and the distortion of the top slab are all considered. Consequently,this model may be used to analyze the stress status of the shallow buried box shaped structure made of composite material effectively.
     How to design package type field operations works with compound material is studied in this paper.Application design of work depends on technical requirement of strategy.Top slab is always destroyed at first in low-buried package type field operations.This paper brings forward using a beam model to calculate and check top slab,and eccentric compression bar to analyze side wall.That coveting over and joining-up in series binding bolt are mainly considered to deal with the connection of work,and in this way,the entire resistance to deformation of the work can be fully used.
     Construction technical requirements for package type field operations made of composite material are brought forward.Digging flat bottom pit is very important for constructing field operations.There are two methods to dig flat bottom pit,which are by machine and by blasting,and the choice of the method depends on practical situation.According to the test which provides the relative method and datum of digging flat bottom pit by blasting,the installation of the work is introduced which may contribute to the actual application of the work.
引文
[1]Fundamentals of Protective Desing for Conventional Weapons.TM5-855-1.1986
    [2]Structures to Resist the Effect of Accindental Explosions.TMS-1300ARLCD-SP-84001.New York.Dec1987
    [3]金子明.张菡英.王亚平.芳纶复合材料抗爆炸性能研究[J].纤维复合材料,2002,16(1)43-46
    [4]高向勇.科索沃战争对防护工程建设的启示.防护工程学会第七次学术年会论文集,2000
    [5]田志敏,钱七虎.地下工程爆炸震动防护研究进展.二十一世纪土木工程学科的发展趋-中国科协第20次青年科学家论坛报告文集,科学出版社,1997.6
    [6]S.h.Goods.Mechanical Properties and Energy Absorption Characteristics of a Polyurethane Foam.Sandia National Laboratories,1997
    [7]徐加先.俞复青.周正谷.现代野战工事材料的发展及存在问题.防护工程学会第五次学术年会论文集,1996
    [8]A.G.Hanssen,M.Langseth,O.S.Hopperstad.Static and Dynamic Crushing of Circular Aluminium Extrusions with Aluminium Foam Filler.International Journal of Impact Engineering 24,2000
    [9]Shim.VPW,Yap.KY,shang.HM..Impact Response of Layered Foam-Plate Systems.Impact Dym.,Peking University Press,1994
    [10]Safety Analysis Report for the TRUPAVT-Shipping Package.NRC Docket No.71-9218,Nuclear Packaging Inc.Federal Way,Wash.,1989.
    [11]田志敏.蔡灿柳.聚氨酯泡沫在抗爆结构和隔震中的应用.中国科学技术报告 2002.10
    [12]胡明胜.刘剑飞.王悟.硬质聚氨酯泡沫塑料的缓冲吸能特性评估[J].爆炸与冲击.1998,18(1):42-47
    [13]王海福.冯顺山.爆炸荷载下聚氨酯泡沫中冲击波压力特性[J].爆炸与冲击.1999,19(1):79-83[8]
    [14]田志敏.蔡灿柳.聚氨酯泡沫塑料隔震系统的试验研究.[J]防护工程.1995,18(1):12-17
    [15]王作明,黄能法.聚氨酯泡沫材料单轴冲击压缩性质试验研究报告,总参工程兵科研三所科技报告,1998.8
    [16]田志敏.蔡灿柳.聚氨酯泡沫材料及其物理力学性能试验研究,总参工程兵科研三所科技报告,2003.3
    [17]陈网华.聚氨酯泡沫材料隔爆性能试验研究.防护工程学会第七次学术年会论文集,2000.
    [18]廖祖伟.邝隆均.一种新型防护工事.防护工程学会第八次学术年会论文集,2003.1
    [19]国防工程设计规范.中国人民解放军工程兵司令部,1976.8
    [20]Kazzo Fujimoto and et al.Effects of Cushion for Underground Structure Subjected to Impact Loading.Proc.of 5th Int.Symp on the Interaction of Non-Nuclear Munitions with Structures,Germany,May,1991.
    [21]胡明胜.刘剑飞.硬质聚氨酯泡沫塑料本构关系的研究[J].力学学报1998,30(2):151-156
    [22]卢子兴.赵洁.泡沫塑性力学性能研究[J]力学与实践,1998,16,(2):341-346 23 Sherwood JA,Frost C C.Constitutive modeling and simulation of energy absorbing polyurethane foam under impact loading[J].Polymer Engineering and Science,1992,32:1138-1146.
    [24]Patten W N.Sha S.Mo C.A vibration model of open celled polyurethane foam automotive seat cushions[J].Journal of Sound Vibration,1998,217(1):145-161.
    [25]田志敏.邓亮宇.蔡灿柳.聚氨酯泡沫材料用于爆炸震动隔震研究.总参工程兵科研三所科技报告.2001.8
    [26]M.C.llironaka,D.B.Brownic.Expedient Structural Sandwich Soil surfacing of Fiberglass Reinforced Polyester and Polyurethane Foam.Civil Engineering Laboratory,Naval construction Battlion Center,Port Hucneme,California.
    [27]伍俊.李福厚.常用野战工事结构形式的数值分析对比.总参工程兵科研三所科技报告,2001.3
    [28]T.C.Triantafillou.and L.T.Gibson(1990a).Constitutive Modeling of Elastic-Plastic Open-Cell Foams.J.Engrg.Mech.,ASCE,116(12),2722-2778
    [29]T.C.Triantafillou and L.T.Gibson(1990b).Multiaxial Failure Criteria for Brittle Foams.Int.J.Mech.Sci.N032.479-496.
    [30]W.A.Volz.Analytical Consideration in the Design of a Polyurethane Foam Shock Mount for Polaris.SVb,NO.31,Part 2,1963.
    [31]W.A.Volz,E.J.Barakauskas and R.H.Strong.Foam Shock Isolation System Feasibility Study.Phase Ⅱ Summary Report,BSD-TR-66-11,Air Force Contract AF04(694)-568,1969.
    [32]Valentin Sepcenko.Analysis of Open Cell Polyurethane Foam under Impact Loading. 44th Shock and Vibration Bulloetin,1974.
    [33]T.Liber and Et.Al.Shock Isolation Elements Testing for High Input Loading—Foam Shock Isolation Elements.SAMSO TR69-118,1969.
    [34]Benjamin.Arden.Plastic and Elastometric Foam Materials.Institute for Applied Technology,National Bureau of Standards,U.S.
    [35]P.C.Calcaterra.Design Guide for Polyurethane Foam Isolation Systems.U.S.Naval Air Development Center,Report No.NADC-AE-6522.
    [36]Alvin.Smith.Constuction With Field Moldable Polyurethane Foam Blocks,Construction Engineering Research Laboratory,1978.
    [37]Alvin Smith.Damaged Building Repair With Polyurethane Foam.Construction Engineering Research Laboratory,1978.
    [38]廖祖伟.邝隆均.新型防护工事的构筑.防护工程学会第八次学术年会论文集,2003.1
    [39]国防工程设计规范.中国人民解放军工程兵司令部,1976.8
    [40]郝义勇等.装配式玻璃钢蜂窝夹层野战工事系列研究报告,总参工程兵科研三所科技报告,1997.7
    [41]廖祖伟.田志敏.罗丹.装配式工事结构研究.成都军区工程科研设计院.总参工程兵科研三所科技报告.2003.12
    [42]田志敏.廖祖伟.泡沫夹层结构有限元分析.成都军区工程科研设计院.总参工程兵科研三所科技报告.2003.4
    [43](苏)А.Ф.斯米尔诺夫.杆系、平板及壳体计算方法.中国铁道出版社.1982.北京
    [44](日)冈本正明.金冈昭治等.陈和翻译.最新材料力学.同济大学出版社1991.11.上海
    [45]廖祖伟.田志敏.吕和林.充填聚氨酯泡沫的薄壁金属筒的力学性能试验研究[J].材料科学与工艺.2006.14(6):670-672(EI收录号:070610415599)
    [46]廖祖伟.刘情杰.钢板泡沫复合夹层板抗爆试验研究[J],地下空间与工程学报2005.6(1):401-405
    [47]廖祖伟.田志敏.吕和林.一种新型复合材料防护结构的抗静载试验分析[J].土木工程学报.2006.39(2):98-102(EI收录号:063610101497)
    [48]刘锡礼,王秉权.复合材料力学基础[M].北京:中国建筑工业出版社,1984
    [49]胡明.王悟.硬质聚氨酯泡沫塑料.本构关系的研究[J].力学学报.1998,30(2):151-156
    [50]田志敏.邓亮宇.杜宁波.聚氨酯泡沫夹层在抗爆复合结构中的作用研究.总参工程兵科 研三所科技报告.2002.8
    [51]廖祖伟.田志敏.吕和林.钢板-聚氨酯泡沫复合材料抗静载的简化力学分析模型[J],复合材料学报(已录用)
    [52]W.A.Volz.Application of Polyurethane Faoam to Shock Isolation of of Large Silo-based Missile.AD647644.
    [53]沈观林.复合材料力学.清华大学出板社.1996.2
    [54]张志呈.爆破基础理论与设计施工技术[M].重庆大学出版社.1994
    [55]Shim.VPW,Yap.KY,shang.HM.Impact Response of Layered Foam-Plate Systems.Impact Dym.Psking University Press,1994
    [56]Alvin.Smith.Constuction With field Moldable Polyurethane Foam Blocks.Construction Engineering Research Laboratory,1978.
    [57]Wu,C.L.,Weeks,and Sun,C.T.,Improving Honeycomb-Core Sandwich Structures for Impact Resistance,J.Advanced Mats.,July 1995,41-47
    [58]田志敏等,轻质高强保温型SLP复合构件及其抗爆特性研究,防护工程,洛阳,2003
    [59]张素梅,钢筋混凝土复合结构的抗爆性能研究(硕士论文).南京工程兵工程学院,1999
    [60]田志敏,邓亮宇,杜宁波.聚氨酯泡沫夹层在抗爆复合结构中的作用研究.总参工程兵科研三所科技报告,2002.
    [61]张守中.爆炸基本原理[M].国防工业出版社,1988.4
    [62]任志刚.田志敏.内桁架-泡沫塑料夹层板简化力学模型[J].力学季刊.2003.24(3):323-329
    [63]吴鸿窑.合成板.夹层板与整体板的强度计算原理.北京:国防工业出版社,1989
    [64]Fung T C,Tan K H,Lok T S.Shear stiffness for Z-CORE sandwich panels.Journal of Structural Engineering,1998,124(7):809-816
    [65]Fung T C,Tan K H,Lok T S.Shear stiffness DQy for C-CORE sandwich panels.Journal of Structural Engineering,1996,122(8):956-966
    [66]Tan K H,Fung T C,Lok T S.A Simplified thick plate analysis of all-steel sandwich panel.The Structural Engineering,London1993,71(14):253-258
    [67]Lok T S,Cheng Q H.Elastic stiffness properties and behavior of truss-core sandwich panel.Journal of Structural Engineering,2000.125(5):332-559
    [68]刘畅.钟善桐.正交各向异性板基本抗弯方程.哈尔滨建筑大学学报.1998,31(2):20-25
    [69]王兴业.唐羽章.复合材料力学性能.国防科技大学出版社.1988
    [70]张锦.张乃恭.新型复合材料力学机理及其应用.北京航天航空大学出版社,1993
    [71]刘海.夹层板的弯曲稳定和振动.中国科学院力学所.科学出版社
    [72]T.S.Lok and Q.H.Cheng,Equivalent Stiffness Parameters of Tress-Core Sandwich Panel,Proc.9th int.Offshore & Polar Engineering Confer.&Exhibition,Vol.4,Brest,France,1999,292-298
    [73]张铜生.张富德.简明有限无法及其应用[M],地震出版社.1990
    [74]陈精一.蔡国忠.电脑辅助工程分析-ANSYS使用指南,中国铁道出版社,北京,2001
    [75]龚曙光.ANSYS基础应用及范例解析,机械工业出版社,北京,2003
    [76]廖祖伟.田志敏.新型复合材料防护结构的试验研究分析.成都军区工程科研设计院研究报告.2003
    [77]廖祖伟.田志敏.关于几个参数的讨论.成都军区工程科研设计院研究报告.2002
    [78]M.C.llironaka,D.B.Brownic.Expedient Structural Sandwich Soil surfacing of Fiberglass Reinforced Polyester and Polyurethane Foam.Civil Engineering Laboratory,Naval construction Battlion Center,Port Hucneme,California.
    [79]Sherwood JA,Frost C.Constitutive modeling and simulation of energy absorbing polyurethane foam under impact loading[J].Polymer Engineering and Science,1992,32:1138-1146.
    [80]田志敏.粘弹阻尼结构和粘弹阻尼隔振研究与应用评述,人防科研,洛阳,2002
    [81]Patten W N.Sha S.Mo C.A vibration model of open celled polyurethane foam automotive seat cushions[J].Journal of Sound Vibration,1998,217(1):145-161.
    [82]钱七虎.防护结构计算原理[M].工程兵工程学院,1981
    [83]刘汉义.洪志泉.浅埋地下复合材料组合结构在化爆荷载下梁式模型的非线性计算[J].防护工程.1990.1:45-50
    [84]熊建国.高伟健.许贻燕.土中箱形结构的荷载[J].岩土工程学报,1984.4:13-21
    [85]宗开福.爆炸荷载作用下浅埋框架结构刚柔计算模式的选择[J].爆炸与冲击,1987.3:202-209
    [86]钱七虎.核爆作用下成层式工事支撑结构上荷载的确定.私人通信(1979)
    [87]曹志远.张佑启.结构与介质分析的半解析法[J].力学与实践.1985.7(6):9-14
    [88]熊建国.土壤结构相互作用分析中的几个问题.防护工程学术交流会文选.1979.
    [89]熊建国.高伟健.土中箱形结构动力反应分析[J].爆炸与冲击波.1981.1:49-54
    [90]曹志远.崔桐.埋置结构动力相互作用问题的半解析法[J].土木工程学报.1986.1:27-24
    [91]王年桥.防护工程计算原理与设.丁程兵工程学院.1998.8
    [92]钱七虎.方秦.岩土爆炸波与结构相互作用研究.中国土木工程学会防护工程学会第三次学术年会论文集,1992
    [93]刘泽圻.林润德.常规武器爆炸的整体破坏荷载分析.中国土木工程学会防护工程学会第三次学术年会论文集,1996
    [94]门玉义.复合材料装配式浅埋箱型工事在化爆荷载下的计算.科研报告,国防科大
    [95]王保安.王年桥.航弹隔土爆炸整体作用下土中浅埋结构顶板的动载[J].防护工程,2000.2
    [96]J.L.Drake,R.A.Frank.M.A.Rochefort.A Simplified Method for the Prediction of the Ground Shock Loads on Buried Structures.Proceedings of the First International Symposium on the Interaction of Non-nuclear Munitions with Structures.1983
    [97]李福厚等.复合材料集装箱工事计算报告,总参工程兵科研报告,1990
    [98]Seed.H.B.用有限元法分析土壤—结构相互作用的现状[J].国外地震工程.1981.12
    [99]李广信.有关土的相互作用问题[J].岩土工程学报,1996.6:111-114
    [100]俞载道.结构动力学基础[M].上海:同济大学出版社,1987
    [101]K.J.Bathe,Finite Element Procedures in Engineering Analysis,Prentice-Hall,Inc 1982
    [102]T.Krauthammer.Modem Protecive Structures Design Analysis and Evaluation.July 1995.总参工程兵科研三所译.现代防护结构设计、分析与评估.1995.7
    [103]杨拂康.结构动力学[M].人民交通出版社.1987
    [104]曹志远.地下结构动力计算的双有限条法[J].土木工程学报.1989,6(2):23-29
    [105]张志民.张开达.杨乃宾.复合材料结构力学.北京航空航天大学出版社,1993
    [106]刘汉义.洪志泉.浅埋地下结构抗爆动力计算的多元藕合模型[J].防护工程,2002.1:69-77
    [107]Foudamentals of Potective design for conventional weapon.1984 TM5-855-1.
    [108]J.亨利奇.爆炸动力学及其应用.科学出版社,1979
    [109]Fundmametals of Protective Design for Conventional Weapons.Department of The Army.Nov.1986,TM5-855-1(常规武器防护设计原理,方秦等译,工程兵工程学院,1997)
    [110]防常规武器爆炸设计计算方法,总参谋部兵种部,20002
    [111]殷有泉.固体力学非线性有限元引论[M].北京:北京大学、清华大学出版社,1987
    [112]Zhang Chuban,Zhao Chongbin.A coupling method of finite and infinite elements for strip foundation wave problems[J].Earthq.Eng.Struct.Dyn.,1987.5:P539-857
    [113]Wolf J.P.Dynamic soil-structure interation.Prentice-Hall,1985
    [114]Bathe K.J.Finite Elements Procedures in Engineering Analysis[M].Prentice-Hall Inc,Englewoon Cliffs,New
    [115]门玉明.黄义.土-结构动力相互作用的研究现状及展望[J].力学与实践,2000.4:1-7
    [116]秦荣.计算结构动力学[M].南宁.广西人民出版社,1985
    [117]钱七虎.陈震元.冲击波作用下浅埋结构覆土层中的卸荷波[J].爆炸与冲击,1982.1
    [118]李国豪.刘泽祈.林润德.冲击波对浅埋结构的动力作用[J].同济大学学报.1980.Ⅲ
    [119]曲传军.熊建国.地下箱形结构动力分析的一种半解析元法[J].爆炸与冲击.1987.7(4):289-298
    [120]伍俊.刘晶波.装配式防爆墙组合结构弹性动力计算[J].防护工程2007.29(2):29-32
    [121]江水德.陈肇元.苗启松.冲击波作用下浅埋结构顶板荷载的机理分析[J].中国土木工程学会第二次学术会论文集.1990

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700