燃气调压器数值模拟与试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
21世纪是世界天然气工业高速发展的时期,也是我国天然气工业兴起并走向成熟的时期,我国燃气事业正在迅猛地发展,工程量的增加将直接导致对燃气设备需求量的加大。燃气调压器是燃气工程中一种非常重要的设备,其功能是在燃气需用工况发生变化时自动地控制出口压力,使之在规定的范围内变化,保证燃气压力正常,并通常具有一定的安全保护功能。目前,我国燃气调压器设备的国产率并不高,燃气调压器面临需求量大、国产率低、研究少的局面,这与我国正在飞速发展的燃气事业的需求是极不相称的。加强燃气调压器的机理分析和设计研究工作,对于开发出优质的国产设备,发展我国的燃气事业,节省投资,有着非常重要的意义。
     本文以自主设计的RTZ-21/50FS(Q)型燃气调压器试验系统为研究对象,建立三维几何模型,进行网格划分,在一系列进口压力和阀口开度下进行了数值模拟,通过对阀杆的受力分析模拟出RTZ-21/50FS(Q)型燃气调压器的流量特性曲线,寻求了一条燃气调压器数值模拟的途径。燃气调压器数值模拟的目的是在设备制造之前即获得其调压性能参数,即模拟出调压特性,从中寻找不足,从而有针对性地进行改进设计,或者验证改进设计的效果,避免仅凭经验反复多次制造样机造成的研发时间和经费上的浪费。燃气调压器数值模拟以样机试验系统作为研究对象,从样机试验系统中确定出一部分作为数值模拟的范围,经过适当的简化后,对其进行几何建模,建立起燃气调压器数值模拟的三维几何模型。
     将燃气调压器的三维几何模型引入CFD专业前处理软件,构建一系列主阀口开度下的几何模型,组合成气体流动空间,再根据各部分的特点,选择合适的网格划分算法进行网格划分,定义边界条件,最后输出网格。
     将网格引入CFD专业软件FLUENT,设定合适的解的格式、流动模型、流体性质和边界条件,对一系列主阀口开度、多种入口压力、不同流量的燃气流动分别进行模拟计算,得到燃气调压器各种工况下的运行参数。建立燃气调压器的关键部件的数学模型,通过分析阀杆的受力,调节运行工况,求出多组阀杆受力平衡的工作点,组成燃气调压器的流量特性曲线。通过对模拟出的流量特性曲线分析发现燃气调压器的调压特性存在的不足。从而有针对性地进行改进设计和重新设定,并分别进行数值模拟计算,通过比较流量特性曲线图的变化预测改进设计和重新设定的效果。依照有关国家标准,设计建立了RTZ-21/50FS(Q)型燃气调压器试验系统,对试验样机进行了调压特性试验,并将数值模拟出的流量特性曲线和实测的流量特性曲线进行了对比,分析了产生模拟误差的原因和减小模拟误差的途径。
The 21 century is the high speed develop period of natural gas industry in the world, at the same time it is the rise and tend towards maturity period of natural gas industry of China. Gas projects are developing impetuously in China now, the requirement for gas equipment will increase as a result of engineering expand. Gas regulator is one of the important equipment in the gas distribution system which can control the outlet pressure in a set range automatically to hold the gas pressure normal when the system state of supply and demand is changed. Moreover, it usually has the function of protection. Presently, gas regulator of high quality is seldom made in China, it is heavy required but low independence and few study. It is unsuitable to meet the need of the rapid developing of gas projects in our country. Enhancing the work of mechanism analyze and design investigation of gas regulator is very important to produce the high quality equipment and developing gas project of our country and investment saving. The study object in this paper is the regulate characteristic testing system of the RTZ-21/50FS(Q) gas regulator which independence design. The technique of gas regulator numerical simulation is work out with three dimensions geometry modeling, meshing, numerical simulating of a series of inlet pressure and orifice open extent, gained the pressure regulate characteristic simulation curve of the RTZ-21/50FS(Q) gas regulator by mechanics analyze on stem.
     The intention of gas regulator numerical simulation is obtain it’s regulate characteristic data, namely regulate characteristic, before the equipment is manufactured. Base on it, the disadvantage of design can be found out, accordingly, improve design can be processed pertinently or forecast the result of improve design to avoid the waste of develop time and outlay which come from manufactured sample equipment time after time with experience only. The study object of gas regulator numerical simulation is the regulate characteristic testing system of the sample equipment, a part of it is decided as the numerical simulation area. After appropriately simplify, it is geometry modeling, the three dimensions geometry model of gas regulator numerical simulation is created.
     The three dimensions geometry model of gas regulator is imported in the CFD professional preliminary treatment software, geometry model of a series of orifice open extent are created and then gas flow space are constructed. According as the characteristic of every part, it is meshing after chosen suitable meshing arithmetic and boundary setting. Last, the mesh is export.
     The mesh is imported in FLUENT, the CFD professional software, it is setting that the suitable solution format, flow model, fluid property and boundary condition. The gas flow is numerical simulated at a series of orifice open extent,several inlet pressure and different flux, then gained the gas regulator working parameter of various status. The key part’s mathematics model of the gas regulator is established, by mechanics analyze on stem and adjust status many group work point that the stem stand in mechanical balance. The flux characteristic curve of the gas regulator is constituted.
     The disadvantage of the gas regulator’s pressure regulate characteristic is detected by analyze the flux characteristic simulation curve. Accordingly, improve design and reset is processed pertinently before simulating in turn. Through compare the pressure regulate characteristic simulation curves, the result of improve design and reset is forecast. According to the international standard involved, the characteristic testing system of the RTZ-21/50FS(Q) gas regulator is established. The sample equipment is tested on pressure regulate characteristic. The curve of flux characteristic which simulated and tested is compared. It is analyzed the numerical simulation error causation and the way to reduce it.
引文
1 Jim Watts. Worldwide Pipeline Construction. Pipeline and Gas Journal. 1990, 217 (Sept.): 14~18
    2 Jim Watts. Pipeline Construction Steady. Pipeline and Gas Journal. 1988, 215 (Sept.): 12~18
    3 Ibrahim D. Energy, Environment and Sustainable Development. Applied Energy. 1999,(64):427~440
    4 R. O. Jaques. Planning and Design Considerations To Be Given To The Development of A Natural Gas Grid. John J. Kelly. Natural Gas Processing and Utilization,Dublin,1976. I Chem E,3-54~3-63
    5 William S.Scholes. Asia Pacific Turns to Gas. Pipeline and Gas Journal. 1991, 218 (June):46~48
    6 Dean Hale. Global Pipeliners Keeping Busy. Pipeline and Gas Journal. 1986, 213(Sept.): 12~17
    7 Herbert J.Bickel. The Natural Advantages of Natural Gas. American Gas Journal. 1966, 193(Jan.): 43~51
    8 薛四敏,朱万美,李连星,孙军,齐月华. 合理利用天然气的途径. 煤气与热力. 2006,26(9):27~30
    9 欧翔飞,罗东晓. 国内压缩天然气汽车发展分析. 天然气工业. 2007, 27(4):129~132
    10 阎光灿,毛云龙,罗勤. 天然气汽车的市场发展前景. 天然气与石油. 2005, 23(5):36~40
    11 郑定成,杨泽亮,王聪. 广东天然气工业用户市场的发展潜力. 中山大学学报论坛. 2007, 27(2):101~104
    12 Red Cavaney. US Oil, Gas Industry Enhances Health, Safety, Environment. Oil and Gas Journal. 2000,98.46(Nov.13):64~69
    13 张焕云. 天然气发电的市场前景. 中国能源. 2005,27(12):41~42
    14 Bulletin Daily Newspaper.20th World Gas Conference,Copenhagen,1997
    15 15届世界石油大会综合导报. 中国石油报. 1997,(10)
    16 李宏勋等. 世界天然气工业的发展趋势. 中国能源. 1999,(2):15~19
    17 王兵. 2006年石油和天然气开采业运行情况分析及2007年发展展望. 中国石油和化工经济分析. 2006, (23):26~30
    18 杨建红. 中国天然气市场发展形势. 当代石油石化. 2005, 13(10):32~37
    19 James P. Dorian and Brett Wigdortz. Turkmenistan Gas: Transporting, Distributing to China and Japan. Pipe Line and Gas Industry. 1997,Jan.: 63~70
    20 黄帆 . 我国液化天然气现状及发展前景分析 . 天然气技术 . 2007, 1(1):68~71
    21 李佩铭,焦文玲. 液化天然气工业链与国际贸易. 煤气与热力. 2006, 26(12):33~36
    22 液化天然气消费快速增长. 石油和化工节能. 2007, (1):33~34
    23 陈 四 祥 , 吴 世 勤 . 2000 年 中 国 天 然 气 工 业 综 述 . 国 际 石 油 经 济 . 2001,(8):5~6
    24 曾叶丽,董秀成,朱敏. 新时期我国天然气工业发展战略转变探讨. 天然气工业. 2007,27(2):131~133
    25 姜林庆,张美玲,朱万美. 城镇天然气输配管网系统的选择. 煤气与热力. 2007,27(2):5~6
    26 Yang Z,Wu T,Li X H. Experimental Studies and Estimates of the Explosion Limit of Some Environmentally Friendly Refrigerants. Combustion Science and Technology, 2005, (3) :613~626
    27 Bolk J W, Westerterp K R. Influence of Hydrodynamics on the Upper Explosion Limit of Ethene-air-nitrogen Mixtures. American Institute of Chemical Engineers Journal. 1999, 45(1) :124~144
    28 Mulbauer W K. Pipeline Risk Management Manual. Houston Gulf Publishing Company, 1996
    29 Jones D and Dawson I. Risk Assessment to Pipeline Life Managent. Pipes and Pipeline International. 1998,43(1):5~18
    30 Steven Ward and Alan Conway. Accuracy, Efficiency Primary Goals of Distribution Utilities. Pipe Line and Gas Industry. 1997, May: 83~84
    31 Jerry O. Blanchard. Pressure Monitoring Technique Provides Cost-savings Solution. Pipe Line Industry. 1994, 77(May):45~46
    32 Mahboobul Mannan, Dwight Pfenning and Harry West. Gas Pipe Line Failure: Causes and Mitigation. Pipe Line Industry. 1992, 75(July):37~39
    33 Marlon Mc.Clinton.Gas Operation Benefit From Technology Advances. Pipe Line and Gas Industry. 2000,Jan.: 30~31
    34 Flow Control. Design Engineering. 2002,Oct.: 42
    35 Richard Johnson and Mark Neob. Upgrading Turbomachinery Controls Saves Times, Money. Pipe Line and Gas Industry. 2001,Oct.: 31~35
    36 Randy F. Gaffred and Robert Zlokwitz. Optimizing Low-preassure Regulator Station Performance. Pipe Line Industry. 1991, 74(March):72~75
    37 New Gas Pressure Regulator Blends Features of Boots, Plugs. Pipe Line and Gas Industry. 1999,May: 59~61
    38 Rodney I.J. Duck. Residential Gas Regulators. Pipeline and Gas Journal. 1988, 215(July.): 30~33
    39 Rick F. Mooney. Pressure Regulator Selection Based on Performance, Design. Pipe Line and Gas Industry. 1999,May: 55~58
    40 Matt Esmacher. Utility Installs Surge Protection to Safeguard Remote Stations. Pipe Line and Gas Industry. 1999,Oct.: 37~38
    41 Bill Hobson. Careful Analysis Should Guide Gas Pressure Regulator Choice. Pipe Line and Gas Industry. 1997,June: 49~52
    42 Dick Livingston. Design Innovations Offered in Compressor Surgerelief Valves. Pipe Line and Gas Industry. 2000,July: 35~39
    43 Yu Xufang. An Intelligent PID Regulator and Its Application, Proceedings. AMSE MSC’93, 1993: Vol.3:988~991
    44 尤克强. 调节阀设计计算选型导则(一). 中国仪器仪表. 2000,(1):34~39
    45 陈世伟. 调节阀选型的若干问题. 炼油化工自动化. 1997,(6):63~65
    46 张云海. 环喷式调节阀的开发与应用. 阀门. 1998,(1):6~8
    47 李彤. 城镇燃气中低压调压器的选型. 上海煤气. 2005, (6):21~22
    48 杜龙飞. 低低压燃气调压器在高层建筑中的应用. 机械管理开发. 2004, (5):60~62
    49 陈卫星,倪超. 调压站设计应注意天然气含水问题.上海电力. 2006,(1):31~32
    50 刘镇. 楼栋式燃气调压箱改进的必然性. 城市燃气. 2004,358(12): 23~26
    51 王伟,韩露,于庆东. 燃气调压柜在北方地区的应用. 煤气与热力. 2004, 24(2):94~96
    52 卓小军,隋昆. 利用数据库技术实现燃气调压器的自动选型. 管道技术与设备. 2004,(2):20~22
    53 李康, 张志安. 燃气调压箱的保温隔热. 天津职业技术师范学院学报. 2000,10(2):31~33
    54 李康,刘俊. 城镇燃气调压箱的设计及开发.煤气与热力. 2000,20(3): 236~237
    55 周粉兰,常保平,沈卫东,宋亚东,马凤美. 转换天然气后雷诺式调压站的技术改造. 煤气与热力. 2007,27(4): 7~9
    56 李军,姚欣. 燃气锅炉和直燃机专用调压器的选型设计. 机械工程与自动化. 2004,(2):41~42
    57 瞿晓华,谢晶,徐世琼. 计算流体力学在制冷工程中的应用. 制冷. 2003, 22(1):17~22
    58 Mohseni K et al. Numerical Simulation of the Lagrangian Averaged Navier-Stokes Equation for Homogeneous Turbulence. Physic of Fluids. 2003,15: 524~544
    59 王福军. 计算流体动力学分析. 北京:清华大学出版社, 2004:1~13
    60 章本照,印建安,张宏基. 流体力学数值方法. 北京:机械工业出版社, 2003:1~5
    61 姚征,陈康民. CFD通用软件综述. 上海理工大学学报. 2002,24(2):117~144
    62 Oden J T,Prudhomme S. New Approaches to Error Estimation and Adaptivity for Navier-Stokes Equation. Tenth International Conference on Finite Elements in Fluent. Tucson. 1998.
    63 Ethier C R,Steinman D A. Exactly Fully 3D Navier-Stokes Solution for Benchmarking. Int J Numer Methods Fluids. 1994,19(5):369~376
    64 AIAA-G077-1998. Guide for Verification and Validation of Computational Fluid Dynamics Simulations
    65 Lorensen W E,Cline H E. Marching Cubes: A High Resolution 3-D Surface Construction Algorithm. Computer Graphics. 1987,21(4): 163~169
    66 Walker I S,Wilson D J,Sherman M H. A Comparison of the Power Law to Quadratic Formulations for Air Infiltration Calculation. Energy and Buildings. 1998,27(3):293~299
    67 Germano M et al. A Dynamic Subgrid-scale Eddy Viscosity Model. Physic of Fluids. 1991,A3:1760
    68 Weather J W,Spitler J D. A comparative Study of Room Airflow: Numerical Prediction Using Computational Fluid Dynamics and Full-scale Experimental Measurements. ASHRAE Trans. 1993,99(1):144~157
    69 Chen Qingyan,Zhai Zhiqian. How Realistic Is CFD as A Tool for Indoor Environment Design and Studies without Experiment. The 4th International Symposium on HVAC. 2003: 62~77
    70 ZHU Yong-bo,JIANG Gen-shan,C. M. Mak.A CFD Study of Airflow and Air-conditioning Systems in Buildings. Journal of North China Electric Power University.2003,30(2):71~77
    71 LI Damei,WANG Xiangsan,LAI Yonggen. Study of Water Intakes for Oncomelania Control Based on Information of Oncomelania Behavior and CFD Results. SCIENCE IN CHINA (Series E).2001,44(5):522~530
    72 Martin P. CFD in the Real World. ASHRAE Journal. 1999,(41):20~25
    73 周继惠,曹青松,宋京伟,钟建伟. 传统机械优化设计方法和遗传算法的比较. 华东交通大学学报.2002,19(4):65~68
    74 张荣沂. 智能优化算法在机械优化设计中的应用. 机械设计与制造. 2003, (1):46~47
    75 刘霞,葛新锋. FLUENT软件及其在我国的应用. 能源研究与利用. 2003, (2): 36~38
    76 李勇,刘志友,安亦然. 介绍流体力学通用软件FLUENT. 水动力学研究与进展. 2001,16(2): 254258
    77 钟英杰,都晋燕,张雪梅. CFD技术及在现代工业中的应用. 浙江工业大学学报. 2003,31(3): 284289
    78 谷现良,赵加宁,高军,高甫生. CFD商业软件与制冷空调. 制冷学报. 2003,(4):45~49
    79 张瑞华,樊丁,杜华云. PHOENICS在焊接数值模拟中的应用. 甘肃工业大学学报. 2003,29(4):26~28
    80 马希金,郭俊杰,孙永平. 轴流式油气混输泵内部的CFD分析及优化设计. 化工机械. 2004,31(2):90~92
    81 羌卫中,陈斌,张克危. 一种高扬程排污泵的CAD设计. 流体机械. 2002, 30 (1): 21~25
    82 鲍敏,傅新,陈鹰. 利用CAD获取超声流量计截面速度分布. 工程设计. 2002,9(2):101~102
    83 赵琴,王靖. FLUENT在暖通空调领域中的应用. 制冷与空调. 2003,(1): 15~18
    84 赵敬源,黄曼. 用Phoenics软件模拟庭院温度场. 长安大学学报(建筑与环境科学版). 2004,19(1):11~14
    85 Control Valves for Nuclear Power Plants. Catalog MASONEILAN. Bulletin Nr. 665(E).
    86 Baumann H.D.Control Valve Noise: Cause and Cure.Chemical Engineering, New York, 1971
    87 Control Valve Sizing Equations for Incompressible Fluids.Standard ISAS 39.1,1972.
    88 Baumann H.D. Control Valve: Sound Pressure Lever Prediction.Instruments and Control Systems, New York, 1971
    89 程晓蒙,雷步芳,李永堂. 液压阀CFD研究方法在CAD/CAE一体化设计中应用. 锻压装备与制造技术. 2004,(3):73~75
    90 邓春晓,潘地林. 液压锥阀的有限元分析及优化设计. 煤矿机械.2004,(6): 1~3
    91 王艳珍,于兰英,柯坚,王国志,邓斌. 水压锥阀流场的CFD解析. 机械. 2003,30(5): 20~22
    92 高红,傅新,杨华勇,築地徹浩. 球阀阀口气穴流场的模拟与可视化研究. 农业机械学报. 2003, 34(3): 45~48
    93 魏伟. 120阀及试验台的计算机模拟. 铁道学报. 2000,22(1): 31~35
    94 陶正良,蔡定硕,严春雷. 电站调节阀内流场的三维数值模拟及试验研究. 工程热物理学报. 2003,24(1): 63~65
    95 Highcapacity, Pilotoperated Pressure Regulator. Pipe Line and Gas Industry. 2001,Oct.: 81
    96 Buckle U,Durst F. Investigation of Laminar Flow in A Pipe with Sudden Contraction of Cross Sectional Area. ASME Fluids Engineering Division. 1993,115(1):61~78 (3):2225
    97 戚昌滋. 机械现代设计方法学. 中国建筑工业出版社,1987:7~70
    98 周粉兰,沈卫东,宋亚东,常保平. 双薄膜直接作用式燃气调压器(箱)的设计. 煤气与热力. 2007,27(2): 13~16
    99 齐旭. 滚动膜片在燃气调压器中的应用与设计. 城市燃气. 2005,365(7): 11~15
    100 Smith R J,Johson L J. Automatic Grid Generation and Flow Solution for Complex Geometries. J AIAA. 1996,34:1 120~1 124
    101 Roache P J. Prospective: A Method for Uniform Reporting of Grid Refinement Studies. ASME J Fluids Eng. 1994,116(3):405~413
    102 Ma K L,Smith P J. Virtual Smoke: An Interactive 3d Flow Visualization Technique. Proceedings Visualization’92. IEEE Computer Society Press: 46~53
    103 Buning P. Computer Graphics and Flow Visualization in Computational Fluid Dynamics. Belgium: Von Karman Institute for Fluid Dynamics. 1989:1~10
    104 Mccormick B H,Defanti T A,Brown M D. Visualization in Scientific Computing. Computer Graphics. 1987,21(6): Special Issue
    105 崔根宝,周仕业,于世奇. 自动调节仪表. 机械工业出版社. 1985:4~82
    106 聂铁军. 计算方法. 北京:国防工业出版社,1988
    107 杜轩,曾孟雄. 机械产品方案优化设计系统的研究与实现. 机械设计与制造. 2002,(3):70~71
    108 Hongbo Sun, D.C.Yu. A Multiple-objective Optimization Model of Transmission Enhancement Planning for Independent Transmission Company (ITC).Power Engineering Society Summer Meeting. IEEE. 2000,4: 2033~2038
    109 Bo-Feng Zhang, Qing Cai, Jian Zhao.Fuzzy Technology in Intelligent CAD. Intelligent Processing Systems. ICIPS '97,IEEE International Conference on. 1997,1:338~342
    110 A. Trebi-Ollennu, B.A.White.Multi-objective Fuzzy Optimization Approach to Eigen-structure Assignment. Fuzzy Systems.Proceedings of the Fifth IEEE International Conference on.1996,2:1325~1331
    111 Hwee lim. Fuzzy Constraint Logic Programming: a Proposal.Proceedings of 1995 IEEE International Conference on Fuzzy Systems.1995,4:2305~2310
    112 Jiranut Loetamonphong, Shu-Cherng Fang, Robert E.Young.Multi-objective Optimization Problems with Fuzzy Relation Equation Constraints.Fuzzy Sets and Systems. 2002, (127): 141~164
    113 莫才颂. 机械零部件的可靠性优化设计. 茂名学院学报. 2004,13(4):63~65
    114 S. Saito, H.Ishii.Fuzzy Optimization Problems by Parametric Representation in the Two-dimensional Metric Space.IFSA World Congress and 20th NAFIPS International Conference.2001,1:65~69
    115 V. Ravi, P.Reddy, H.Zimmermann.Fuzzy Global Optimization of Complex System Reliability. IEEE Transactions on Fuzzy Systems.2000,8(3):241~248
    116 T. Kiyota, Y.Tsuji, E.Kondo.New Multi-objective Fuzzy Optimization Method and Its Application. American Control Conference. 2000,6:4224~ 4228
    117 W. Lodwick, D.Samison, S.Russell.A Comparison of Fuzzy, Stochastic and Deterministic Methods in Linear Programming.Fuzzy Information Processing Society, NAFIPS.19th International Conference of the North American. 2000: 321~325

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700