氯盐环境钢绞线预应力混凝土结构的腐蚀效应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于力筋腐蚀的预应力混凝土结构耐久性问题日益突出,但相关的研究很少。为此,该论文针对氯盐环境钢绞线预应力混凝土结构的腐蚀效应这一迫切基础问题展开研究。
     试验研究表明,氯盐环境混凝土内钢绞线具有典型的坑蚀形态,蚀坑几何形状可抽象为棱锥形、椭球形及马鞍形3种;蚀坑几何尺寸统计表明,坑深和坑长的分布具有分形特性,并反映了浅、短、中宽型蚀坑分布较多的特点。
     基于材料微观结构特征的理论分析和模拟实际条件的长期试验研究表明,氯盐环境下混凝土内钢绞线对阳极溶解型应力腐蚀和氢致开裂型应力腐蚀都不敏感;腐蚀钢绞线钢丝的弯曲疲劳试验表明,其腐蚀疲劳断裂具有典型的各项异性特征。
     提出了混凝土中钢筋腐蚀机理的新见解:腐蚀的阴阳极过程均主要发生在活化区,腐蚀的主要阻力只是电极的极化阻力。因此,钢筋腐蚀的控制模式包括氧扩散控制和供水条件控制2种。
     基于腐蚀机理新见解,根据金属腐蚀极化理论和试验测试数据及文献氧扩散系数模型,分别建立了2种控制条件下混凝土内钢筋腐蚀速率的基本理论模型和实用模型。试验结果和模型算例共同表明,正常使用时预应力结构中钢绞线的腐蚀速率比零应力时提高27%左右。
     静力拉伸试验表明,蚀坑导致钢绞线的脆性增加,最大承拉力和极限平均应变降低;钢绞线钢丝可能出现劈裂式、杯锥式及铣刀式等3种基本断口形式以及它们的组合形式。根据微观电镜扫描和金属断口理论并结合材料微结构特征,提出了腐蚀钢绞线钢丝基于蚀坑处珠光体团位向的微观断裂机制。
     根据断裂机制提出以Mises总应变作为断裂参量的腐蚀钢绞线的断裂准则。通过拉伸试验配合有限元模拟和数理统计得到腐蚀钢绞线断裂抗力的分布规律及模型;通过对4段腐蚀钢绞线的有限元模拟及数理统计得到腐蚀钢绞线断裂效应的分布规律及模型。在此基础上,借助结构可靠度理论获得了腐蚀钢绞线基于腐蚀率的断裂失效概率模型。
     试验研究表明,在0~0.7mm的锈胀裂缝范围内,腐蚀钢绞线与混凝土之间的粘结性能未出现明显退化,其中极限粘结强度和粘结刚度还有所提高。
     试验研究表明,腐蚀预应力混凝土梁发生2种典型的受弯破坏方式,一是传统的适筋破坏,另一是本文提出的断丝破坏;在腐蚀率不大(小于2.87%)的情况下,腐蚀对梁的开裂弯矩、屈服弯矩、极限弯矩、开裂挠度、屈服挠度的影响都不显著,但对极限挠度却产生了明显的影响。
     提出以《规范》概率极限状态设计实用表达式为依据进行腐蚀钢绞线预应力混凝土梁承载力设计和评估的方法,其中考虑腐蚀引起钢绞线抗拉强度指标概率取值的变化;在前述断裂失效概率模型的基础上,结合混凝土结构裂缝理论推导得到了预应力混凝土梁内腐蚀钢绞线的抗拉强度标准值及设计值模型。
The problem of prestressed concrete structures durability based on corrosion of tendons is becoming increasingly remarkable, but the investigations are very poor. So, as the basic and instant problem, the corrosion effects of prestressed concrete structures with steel strands in chloride environment are studied in this dissertation.
     The experimental research shows that typical pitting forms appears on steel strands in concrete contaminated with chloride, and the configurations of pits include 3 modes as pyramid, spheroidicity and saddle. The statistics of geometrical size of pits shows a fractal characteristic in the distribution of pits depth and pits length, and there are many shallow and short and moderate wide pits.
     The theoretical analyse based on the microstructures of material and the long pe-riod experimental research by simulating actual conditions show that it is not susceptive to the stress corrosion cracking with both anodic dissolution and hydrogen induced cracking of steel strands in concrete contaminated with chloride. The tests indicate that the flexural fatigue fracture of steel wires of steel strands shows a typical anisotropic property.
     A new understanding about the corrosion mechanism of steel bars in concrete is put forward, namely, both the cathodic process and anodic process take place in active zones; polarizing resistance is the only dominant resistance of corrosion. Oxygen diffu-sion control and water supplying control are the only 2 control modes of steel bars cor-rosion.
     Based on the new understanding about the corrosion mechanism, the basic theo-retical models and the applied models of corrosion rate of steel bars in concrete under the 2 control conditions are derived with corrosion polarization theory and test data and oxygen diffusion coefficient from literature. Both the experimental results and the trial examples show that the corrosion rate of steel strands of prestressed structures in normal service state increases 27% than it in stress of 0.
     The static tension tests show that, to the steel strands with pits, the embrittlement increases and the ultimate tensile capacity and ultimate mean strain decline. The frac-tures of wires of steel strands include 3 basic modes and their combined modes, the 3 basic modes are cleavage-mode, fraise-mode and cup-mode. With SEM technique and metal fracture theory, and considering the microstructures characteristic, the mi-cro-fracture mechanism of corroded wires is put forward which based on the orientation of pearlite colonies in pits.
     The fracture criterion of corroded steel strands is put forward based on the fracture mechanism in which the Mises total strain is used as fracture parameter. The distribution regularities and models of fracture resistance of corroded steel strands are obtained by tensile testing cooperated with finite element simulation and mathematical statistics. The distribution regularities and models of fracture effect of corroded steel strands are obtained through finite element simulation and mathematical statistics of 4 corroded steel strands. Based on the above, the model of nonserviceable probability in fracture varying with corrosion rate is obtained through reliability theory of structures.
     The experimental research shows that, when corrosion cracks width is within the range of 0 to 0.7mm, the behaviors of bond between corroded steel strands and concrete do not appear significantly decreasing, and furthermore, the ultimate bond strength and stiffness increase a little.
     The experimental research shows that 2 typical failure modes are occurred in cor-roded prestressed concrete beams. The 2 typical failure modes include the traditional fit-reinforcement-failure mode and the wire-breakage failure mode put forward in this dissertation. Under the condition of low corrosion rate (less than 2.87%), the effects of corrosion are not remarkable to the cracking moment, the yielding moment, the ultimate moment, the cracking deflection, and the yielding deflection, but are remarkable to the ultimate deflection.
     It is put forward about a research idea that the design and evaluation of carrying capacity of prestressed concrete beams with corroded steel strands may be carried out in terms of the applied design expressions of probabilistic limit states used in the code, and in which the variation of probabilistic values of tensile strength indexes of steel strands caused by corrosion is considered. Based on the former model of nonserviceable prob-ability in fracture, the models of characteristic value and design value of tensile strength of corroded steel strands in prestressed concrete beams are derived by combining the crack theory of concrete structures.
引文
[1] Mehta P K. Concrete durability: fifty year’s progress[A]. Proceeding of International Confer-ence on Concrete Durability[C]. ACI SP126-1, 1991: 1-33
    [2] 罗福午. 建筑结构缺陷事故的分析及防治[M]. 北京: 清华大学出版社, 1996
    [3] Mehta P K. Durability-critical issues for the future[J]. Concrete International, 1997, 19: 27-33
    [4] 卢木. 混凝土耐久性研究现状和研究方向[J]. 工业建筑, 1997, 27(5): 1-6
    [5] 金伟良, 赵羽西. 混凝土结构耐久性研究的回顾与展望[J]. 浙江大学学报(工学版), 2002, 36(4): 371-374
    [6] 吕志涛, 孟少平. 现代预应力设计[M]. 北京: 中国建筑工业出版社, 1998
    [7] 熊学玉, 黄鼎业. 预应力工程设计施工手册[M]. 北京: 中国建筑工业出版社, 2003
    [8] 孟庆伶. 早期预应力混凝土梁的耐久性调查[J]. 铁道建筑, 2001(11): 20
    [9] Schupack M. A survey of the durability performance of post-tensioning tendons[J]. ACI Jour-nal, 1978, 75(10): 501-510
    [10] Schupack M, Suarez M G. Some recent corrosion embrittlement failures of prestressing sys-tems in the United States[J]. PCI Journal, 1982, 27(2): 38-55
    [11] Nurnberger U. Corrosion protection of prestressing steels[C]. FIP State-of-the-Art Report, Draft Report, FIP, London, 1986
    [12] Walter Podolny J. Corrosion of prestresing steels and Its mitigation[J]. PCI Journal, 1992(5):34-55
    [13] Vehovar L, Kuhar V, Vehovar A. Hydrogen-assisted stress-corrosion of prestressing wires in a motoway viaduct [J]. Engineering Failure Analysis, 1998, 5(1): 21-27
    [14] Valiente A. Stress corrosion failure of large diameter pressure pipelines of prestressed con-crete [J]. Engineering Failure Analysis, 2001, 8: 245-261
    [15] 刘椿, 朱尔玉, 朱晓伟. 受腐蚀预应力混凝土桥梁病因分析[J]. 铁道建筑, 2006 (1): 33-35
    [16] 中国土木工程学会. CCES 01-2004 混凝土结构耐久性设计与施工指南(2005 年修订版)[S]. 北京: 中国建筑工业出版社, 2005
    [17] 张宝胜, 干伟忠, 陈涛. 杭州湾跨海大桥混凝土结构耐久性解决方案[J]. 土木工程学报, 2006, 39 (6): 72-77
    [18] 袁迎曙, 章鑫森, 姬永生. 人工气候与恒电流通电法加速锈蚀钢筋混凝土梁的结构性能比较研究[J]. 土木工程学报, 2006, 39 (3): 42-46
    [19] 姬永生. 人工气候混凝土耐久性模拟试验研究[D]. 徐州: 中国矿业大学建筑工程学院, 2001
    [20] 耿欧, 袁迎曙, 李果. 钢筋混凝土耐久性人工气候加速退化试验的相关性研究[J]. 混凝土, 2004 (1): 29-31
    [21] 李果, 袁迎曙, 耿欧. 气候条件对混凝土碳化速率的影响[J]. 混凝土, 2004 (11): 49-53
    [22] 戴靠山, 袁迎曙, 杨广. 人工气候加速锈蚀后钢筋混凝土粘结性能试验研究[J]. 混凝土, 2004 (11): 45-48
    [23] 李果. 钢筋混凝土耐久性的环境行为与基本退化模型研究[D]. 徐州: 中国矿业大学建筑工程学院, 2004
    [24] 吴庆. 基于钢筋锈蚀的混凝土构件性能退化预计模型[D]. 徐州: 中国矿业大学建筑工程学院, 2007
    [25] 李云峰, 吴胜兴. 现代混凝土结构环境模拟试验室技术[J]. 中国工程科学, 2005, 7 (2): 81-85
    [26] Li C Q. Initation of chloride-induced reinforcement corrosion in concrete structural mem-bers-experimentation[J]. ACI Structural Journal, 2001, 98 (4): 502-510
    [27] 张伟平, 张誉, 刘亚芹. 混凝土中钢筋锈蚀的电化学检测方法[J]. 工业建筑, 1998, 28(12): 21-25
    [28] Pech Canul M A, Castro P. Corrosion measurements of steel reinforcement in concrete ex-posed to a tropical marine atmosphere[J]. Cement and Concrete Research, 2002, 32: 491-498
    [29] Andrade C, Alonso C. On-site measurement of corrosion rate of reinforcements[J]. Construc-tion and Building Materials, 2001, 15: 141-145
    [30] 孙跃, 胡津. 金属腐蚀与控制[M]. 哈尔滨: 哈尔滨工业大学出版社, 2003
    [31] 涂永明, 吕志涛. 预应力混凝土试件碳化试验及碳化深度预测模型研究[J]. 工业建筑, 2006, 36(1): 47-50
    [32] 涂永明, 吕志涛. 应力状态下混凝土结构的盐雾侵蚀试验研究[J]. 工业建筑, 2004, 34(5): 1-3
    [33] 袁迎曙, 贾福萍, 蔡跃. 锈蚀钢筋的力学性能退化研究[J]. 工业建筑, 2000, 30(1): 43-46
    [34] 牛荻涛. 混凝土结构耐久性与寿命预测[M]. 北京: 科学出版社, 2003
    [35] 耿欧, 袁迎曙, 李富民等.混凝土中变形与光圆钢筋腐蚀速率试验研究[J]. 中国矿业大学学报, 2006, 35(4): 488-491
    [36] 郑亚明, 欧阳平, 安琳. 锈蚀钢绞线力学性能的试验研究[J]. 现代交通技术, 2005, (6): 33-36
    [37] Darmawan M S, Stewart M G. Spatial time-dependent reliability analysis of corroding preten-sioned prestressed concrete bridge girders[J]. Structural Safety, 2007, 29: 16-31
    [38] 马亚丽, 张爱林. 氯离子环境下钢筋最大腐蚀深度与平均腐蚀深度比值的概率分布研究[J]. 工业建筑, 2005, 35(12): 11-14
    [39] 翁永基, 李相怡. 分维方法对碳钢土壤腐蚀行为的表征[J]. 石油化工高等学校学报, 2005, 18(2): 56-59
    [40] 翁永基, 许述剑, 边丽. 腐蚀和腐蚀模型研究中的分形方法[J]. 中国腐蚀与防护学报, 2006, 26(5): 315-320
    [41] Song P S, Shieh Y L. Fracture lifetime of hydrogen-charged AISI 4130 alloy steel under in-termittent sustained overloads[J]. Engineering Fracture Mechanics, 2004, 71: 1577-1584
    [42] Toribio J. Hydrogen embrittlement of prestressing steels: the concept of effective stress in design[J]. Materials & Design, 1997, 18: 81-85
    [43] Toribio J. Role of crack-tip residual stresses in stress corrosion behaviour of prestressing steel[J]. Construction and Building Materials, 1998, 12: 283-287
    [44] Schroeder R M, Müller I L. Stress corrosion cracking and hydrogen embrittlement suscepti-bility of an eutectoid steel employed in prestressed concrete[J]. Corrosion Science, 2003, 45: 1969-1983
    [45] 刘道新, 金石, 何家文. 300M 超高强度钢的应力腐蚀开裂[J]. 特殊钢, 1997, 18(6): 20-23
    [46] 刘道新, 金石, 何家文, 等. 带镀层 300M超高强度钢应力腐蚀行为与机理研究[J]. 西安交通大学学报, 1998, 32(6): 49-52
    [47] 杨宗放, 方先和. 现代预应力混凝土施工[M]. 北京: 中国建筑工业出版社, 1993
    [48] Klodt D T. Studies of electrochemical corrosion and brittle fracture susceptibility of prestress-ing steel in relation to prestressed concrete bridges[C]. Proceedings of 25th Conference of National Association of Corrosion Engineers. Houston, 1969: 78-87
    [49] Cherry B W, Price S M. Pitting, crevice and stress corrosion cracking studies of cold-drawn eutectoid steels[J]. Corrosion Science, 1980, 20: 1163-1184
    [50] Parkins R N, Elices M, Sanchez-Galvez V, et al. Environment sensitive cracking of pre-stressing steels[J]. Corrosion Science, 1982, 22: 392-405
    [51] Proverbio E, Longo P. Failure mechanisms of high strength steels in bicarbonate solutions under anodic polarization[J]. Corrosion Science, 2003, 45: 2017-2030
    [52] Toribio J, Lanchat A M. Overload retardation effects on stress corrosion behaviour of prestressing steel[J]. Construction and Building Materials, 1996, 10(7): 501-505
    [53] Toribio J, Ovejero E. Microstructure-based modelling of localized anodic dissolution in pear-litic steels[J]. Materials Science and Engineering, 2001, A319-321: 308-311
    [54] Toribio J, Ovejero E. Microstructure-based modeling of hydrogen assisted cracking in pear-litic steels[J]. Materials Science and Engineering, 2001, A319–321: 540-543
    [55] Toribio J, Ovejero E. Failure analysis of cold drawn prestressing steel wires subjected to stress corrosion cracking[J]. Engineering Failure Analysis, 2005, 12: 654-661
    [56] 左景伊. 应力腐蚀破裂[M]. 西安西安交通大学出版社, 1985
    [57] 杨广里等. 断裂力学及应用[M]. 北京: 中国铁道出版社, 1990
    [58] Galvele J R. A stress corrosion cracking mechanism based on surface mobility[J]. Corrosion Science, 1987, 27: 1-33
    [59] Magnin T. Chieragatti R, Oltra R. Mechanism of brittle fracture in a ductile 310 allay during stress corrosion[J]. Acta Metall Mater, 1990, 38: 1313-1319
    [60] Flanagan W F, Zhong L, Lichter B D. A mechanism for transgranular stress-corrosion crack-ing[J]. Metall Trans, 1993, 24A: 553-559
    [61] 谷飚, 高克玮, 黄一中, 等. 腐蚀促进位错的发出和运动导致应力腐蚀裂纹的形核[J]. 中国科学 E 辑, 1996, 26(6): 481-487
    [62] 宿彦京, 王燕斌, 褚武扬. 吸附促进位错发射、运动导致脆性裂纹形核[J]. 中国科学 E 辑, 1997, 27(5): 397-403
    [63] 李密丹, 张天成, 吕宏, 等. 氢促进位错发射、运动导致裂纹形核的研究[J]. 中国科学 E辑, 1997, 27(6): 481-487
    [64] 褚武扬, 乔利杰, 高克玮. 阳极溶解性应力腐蚀[J]. 科学通报, 2000, 45(24): 2581-2588
    [65] 宋晓冰, 刘西拉. 混凝土中钢筋腐蚀速度的过程控制[J]. 工业建筑, 2000, 30(6): 53-56
    [66] 阎培渝, 游轶, 崔路, 等. 高含氯混凝土中钢筋宏电池腐蚀速率控制因素[J]. 工业建筑, 2000, 30(5): 6-9
    [67] Glass G K, Page C L , Short N R. Factors affecting the corrosion rate of steel in carbonated mortars[J]. Corrosion Science, 1991, 32 (12):1283-1294
    [68] Hausman D A. Steel corrosion in concrete[J]. Materials Prot.1967, 6(11):19-23
    [69] 龚洛书, 柳春圃. 混凝土的耐久性及其防护修补[M]. 北京: 中国建筑工业出版社, 1990
    [70] Lambert P. Investigation of reinforcement corrosion 2, electorchemical monitoring of steel in chloride contaminated concrete[J]. Materials and Structure, 1991, 24(143): 351-358
    [71] Kayyali O A. The Cl-/OH- ratio in chloride-contaminated concrete-a most important crite-rion[J]. Magazine of Concrete Research, 1995, 47(172): 235-242
    [72] Balabanic G, Bicanic N, Durekovic A. The influence of w/c ratio, concrete cover thickness and degree of water saturation on the corrosion rate of reinforcing steel in concrete[J]. Cement and Concrete Research, 1996, 26(5): 761-769
    [73] Alonso C, Andrade C, Castellote M, et al. Chloride threshold values to depassivate reinforcing bars embedded in a standardized OPC mortar[J]. Cement and Concrete Research, 2000, 30: 1047-1055
    [74] Roberts M B, Atkins C, Hogg V. A proposed empirical corrosion model for reinforced con-crete[C]. Structures and Building Proceeding of the Institution of Civil Engineering, 2000: 1-11
    [75] Shamsad A. Reinforcement corrosion in concrete structures, its monitoring and service life prediction-a review[J]. Cement & Concrete Composites, 2003, 25: 459-471
    [76] 淡丹辉, 何广汉. 钢筋混凝土构件均匀锈蚀与应力的耦合效应分析[J]. 西南交通大学学报, 2001, 36(2): 181-184
    [77] 姬永生, 袁迎曙. 恒定气候混凝土内钢筋锈蚀速率的时变特征与机理[J]. 中国矿业大学学报, 2007, 36(2): 153-158
    [78] Bazant Z P. Physical model for steel corrosion in concrete sea structures-theory[J]. ASCE Jounal of Structural Division, 1977, 105(6): 1137-1153
    [79] Bazant Z P. Physical model for steel corrosion in concrete sea structures-application[J]. ASCE Jounal of Structural Division, 1977, 105(6): 1155-1166
    [80] 牛荻涛, 王庆霖, 王林科. 锈蚀开裂前混凝土中钢筋腐蚀量的预测模型[J]. 工业建筑, 1996, 26(4): 8-10
    [81] 牛荻涛, 王庆霖, 王林科. 锈蚀开裂后混凝土中钢筋腐蚀量的预测[J]. 工业建筑, 1996, 26(4): 11-13
    [82] Morinaga S. Prediction of service life of reinforced concrete buildings based on the corrosion rate of reinforcing steel[C]. Durability of building materials and components, Proceedings of the 5th international conference. Brighton, UK, 1990
    [83] 惠云玲. 混凝土结构中钢筋锈蚀程度评估和预测试验研究[J]. 工业建筑, 1997, 27(6): 6-9
    [84] 刘西拉, 苗澎柯. 混凝土结构中钢筋腐蚀及其耐久性计算[J]. 土木工程学报, 1990, 23(4): 69-78
    [85] 肖从真. 混凝土中钢筋腐蚀的机理研究及数论模拟方法[D]. 北京: 清华大学土木工程系, 1995
    [86] 邸小坛, 周燕. 大气环境下钢筋腐蚀规律的研究[C]. 第四届全国混凝土耐久性学术交流会论文集. 苏州, 1996
    [87] 张伟平. 混凝土结构的钢筋锈蚀损伤预测及其耐久性评估[D]. 上海: 同济大学博士学位论文, 1999
    [88] Song Xiao-bing, Liu Xi-la. Experiment research on corrosion of reinforcement in concrete through cathode-to-anode area ratio[J], ACI Materials Journal, 2000, 97(2): 148-155
    [89] 金伟良, 赵羽习. 混凝土结构耐久性[M]. 北京: 科学出版社, 2002
    [90] Maslehuddin M, Ibrahim IM, AL-Sulaimani GJ, et al. Effect of rusting of reinforcing steel on its mechanical properties and bond with concrete[J]. ACI Material Journal, 1990,87(6): 496-502
    [91] 张平生, 卢梅, 李晓燕. 锈损钢筋的力学性能[J]. 工业建筑, 1995, 25(9): 41-44
    [92] 惠云玲, 林志伸, 李荣. 锈蚀钢筋性能试验研究分析[J]. 工业建筑, 1997, 27(6): 10-13
    [93] 黄振国, 李健美, 郭乐工, 等. 受腐蚀钢筋混凝土材料基本性能与受弯构件的试验研究[J].建筑结构, 1998, 28(12): 18-20
    [94] 马良喆, 陈慧娟, 白常举. 钢筋锈蚀后力学性能的试验研究[J]. 施工技术, 2000, 29(12): 43-44
    [95] 张伟平, 王晓刚, 顾祥林, 等. 加速锈蚀与自然锈蚀钢筋混凝土梁受力性能比较分析[J].东南大学学报(自然科学版), 2006, 36(supII): 139-144
    [96] 戴品强, 何则荣, 毛志远. 珠光体裂纹萌生与扩展的 TEM 原位观察[J]. 材料热处理学报, 2003, 24(2): 41-45
    [97] Toribio J, Ayaso F J. Anisotropic fracture behaviour of cold drawn steel: a materials science approach[J]. Materials Science and Engineering A, 2003, 34(3): 265-272
    [98] Toribio J, Valiente A. Failure analysis of cold drawn eutectoid steel wires for prestressed con-crete[J]. Engineering Failure Analysis, 2006, 13: 301-311
    [99] Al-Sulaimani G J, Kaleemullah M, Basunbul I A, et al. Influence of corrosion and cracking on bond behaviour and strength of reinforced concrete members[J]. ACI Structural Journal, 1990; 87(2): 220-231
    [100] 王林科, 陶峰, 王庆霖, 等. 锈后钢筋混凝土粘结锚固的试验研究[J]. 工业建筑, 1996, 26(4): 14-16
    [101] 袁迎曙, 余索, 贾福萍. 锈蚀钢筋混凝土的粘结性能退化的试验研究[J]. 工业建筑, 1999, 29(11): 47-50
    [102] 范颖芳, 黄振国, 李健美, 等. 受腐蚀钢筋混凝土构件中钢筋与混凝土粘结性能研究[J]. 工业建筑, 1999, 29(8): 49-51
    [103] Stanish K, Hooton RD, Pantazopoulou SJ. Corrosion effects on bond strength in reinforced concrete[J]. ACI Structural Journal, 1999, 96(6): 915-921
    [104] 潘振华, 牛荻涛, 王庆霖. 锈蚀率与极限粘结强度关系的试验研究[J]. 工业建筑, 2000, 30(5): 10-12
    [105] Cao Jingyao, Chung D D L. Degradation of the bond between concrete and steel under cyclic shear loading, monitored by contact electrical resistance measurement[J]. Cement and Con-crete Research, 2001, 31: 669–671
    [106] 李斌, 何鲜峰, 罗志敏. 锈蚀对钢筋混凝土粘结力的影响[J]. 工业建筑, 2001, 31(5): 12-13
    [107] 赵羽习, 金伟良. 锈蚀钢筋与混凝土粘结性能的试验研究[J]. 浙江大学学报, 2002, 36(4): 352-356
    [108] Lee Han-Seung, Noguchi T, Tomosawa F. Evaluation of the bond properties between concrete and reinforcement as a function of the degree of reinforcement corrosion[J]. Cement and Concrete Research, 2002, 32: 1313–1318
    [109] Fang Cong-qi, Lundgren K, Chen Liu-guo, et al. Corrosion influence on bond in reinforced concrete [J]. Cement and Concrete Research, 2004, 34: 2159–2167
    [110] 王英, 郑文忠, 卫纪德, 等. 预应力钢绞线(束)粘结锚固性能初探[J]. 工业建筑, 1994, 24(3): 19-23
    [111] 徐有邻, 宇秉训, 姜红, 等. 三股钢绞线基本性能的试验研究[J]. 工业建筑, 1998, 28(9): 31-36
    [112] 李方元, 赵人达. 高强混凝土与钢绞线的粘结滑移试验研究[J]. 四川建筑科学研究, 2003, 29(4): 4-6
    [113] Okada K, Kobayashi K, Miyagawa T. Influence of longitudinal cracking due to reinforcement corrosion on characteristics of reinforced concrete members[J]. ACI Structural Journal, 1988, 85(2):134-140
    [114] Shuenn-Chern Ting, Andrzej S Nowak. Effect of reinforcing steel area loss on flexural behav-ior of renforced concrete beams[J]. ACI Structural Journal, 1991, 88(3): 309-314
    [115] 陶峰, 王林科, 王庆霖, 等. 服役钢筋混凝土构件承载力的实验研究[J]. 工业建筑, 1996, 26(4): 17-20
    [116] 惠卓, 王庆霖. 受损构件承载力的计算机模拟[J]. 西安建筑科技大学学报, 1997, 29(4): 431-434
    [117] 惠云玲, 李荣, 林志伸, 等. 混凝土基本构件钢筋锈蚀前后性能的实验研究[J]. 工业建筑, 1997, 27(6): 14-18
    [118] 袁迎曙, 余索. 锈蚀钢筋混凝土梁的结构性能退化[J]. 建筑结构学报, 1997, 18(4): 41-45
    [119] Pritpal S. Mangat and Mahmoud S. Elgarf. Flexural Strength of Concrete Beams with Corrod-ing Reinforcement[J]. ACI Structural Journal, 1999, 96(1): 149-158
    [120] 牛荻涛, 翟彬, 王林科, 等. 锈蚀钢筋混凝土梁的承载力分析[J]. 建筑结构, 1999, 29(8): 23-25
    [121] 王庆霖, 池永亮, 牛荻涛. 锈后无粘结钢筋混凝土梁的模拟试验与分析[J]. 建筑结构, 2001, 31(4): 51-53
    [122] 金伟良, 赵羽习. 锈蚀钢筋混凝土梁抗弯强度的试验研究[J]. 工业建筑, 2001, 31(5): 9-11
    [123] 袁迎曙, 贾福萍, 蔡跃. 锈蚀钢筋混凝土梁的结构性能退化模型[J]. 土木工程学报, 2001, 34(3): 47-52
    [124] Ballim Y, Reid J C, Kemp A R. Deflection of RC beams under simultaneous load and steel corrosion[J]. Magazine of Concrete Research, 2001, 53(3): 171-181
    [125] 牛荻涛, 卢梅, 王庆霖. 锈蚀钢筋混凝土梁承载力计算方法研究[J]. 建筑结构, 2002, 32(10): 14-17
    [126] 朱尔玉, 刘椿, 何立, 等. 预应力混凝土桥梁腐蚀后的受力性能分析[J]. 中国安全科学学报, 2006, 16(2): 36-140
    [127] 李清富, 赵国藩. 结构概率寿命估计[J]. 工业建筑, 1995, 25(8): 8-10
    [128] 高丹盈, 张保和. 混凝土碳化速度系数概率模型的研究[J]. 工业建筑, 1992, 22(5): 35-38
    [129] 牛荻涛, 石玉汊, 雷怡生. 混凝土碳化的概率模型及碳化可靠性分析[J]. 西安建筑科技大学学报, 1995, 27(3): 252-255
    [130] 金伟良, 鄢飞. 混凝土碳化指数的概率模型[J]. 混凝土, 2000(1): 35-37
    [131] Engelund S. Sorensen J D. A probabilistic model for chloride-ingress and initiation of corro-sion in reinforced concrete structures[J]. Structural Safety, 1998, 20: 69-89
    [132] Enright M P, Frangopol D M. Probabilistic analysis of resistance degradation of reinforced concrete bridge beams under corrosion[J]. Engineering Structures, 1998, 20(11): 960-971
    [133] Thoft-Christensen P. Modeling of the deterioration of reinforced concrete structures[C], pro-ceedings of IFIP conference on reliability and optimization of structural systems. Ann Arbor, Michigan, 2000
    [134] 牛荻涛, 王庆霖, 董振平. 服役结构的抗力的概率模型及其统计参数[J]. 西安建筑科技大学学报, 1997, 29(4): 355-359
    [135] 贡金鑫, 赵国藩, 赵尚传. 大气环境下锈蚀对钢筋混凝土结构可靠度的影响[J]. 大连理工大学学报, 2000, 40(2): 210-213
    [136] 贡金鑫, 赵国藩. 腐蚀环境下钢筋混凝土结构疲劳可靠度的分析方法[J]. 土木工程学报, 2000, 33(6): 51-56
    [137] 李田, 刘西拉. 钢筋锈蚀和混凝土冻融破坏的可靠性分析及防范措施[J]. 建筑结构学报, 1995, 16(2): 43-50
    [138] Mori Y, Ellinwood B R. Reliability-based service-life assessment of aging concrete struc-tures[J]. Journal of Structural Engineering, 1992, 119(5): 1600-1621
    [139] Chan H Y, Melchers R E. Tome-dependent resistance deterioration in probabilistic structural systems[J]. Civil Engineering System, 1995, 12:115-132
    [140] Cheung M S, Kyle B R. Service life prediction of concrete structures by reliability analysis[J]. Construction and Building Materials, 1996, 10(1): 45-55
    [141] Monica Prezzi. Reliability approach to service life prediction of concrete exposed to marine environment[J]. ACI Material Journal, 1996, 93(6): 544-552
    [142] Frangopol D M, Kai Yung Lin, Estes A C. Reliability of reinforced concrete girders under cor-rosion attack[J]. Journal of Structural Engineering, 1997, 123(3): 286-297
    [143] Val D V, Melchers R E. Reliability of Deteriorating RC slab bridges[J]. Journal of Structural Engineering, 1997, 123(12): 1638-1644
    [144] Enright M P, Frangopol D M. Service-life prediction of deteriorating concrete bridgrs[J]. Jour-nal of Structural Engineering, 1998, 124(3): 309-317
    [145] Val D V, Stewart M G, Melchers R E. Effect of reinforcement corrosion on reliability of high-way bridges[J]. Engineering Structures, 1998, 20(11): 1010-1019
    [146] Enright M P, Frangopol D M. Failure time prediction of deteriorating fail-safe strucrures[J]. Journal of Structural Engineering, 1998, 124(12): 1448-1457
    [147] 李田, 刘西拉. 混凝土结构耐久性设计的研究[J]. 建筑结构学报, 1998, 19(4): 23-26
    [148] 中华人民共和国国家标准. 建筑结构可靠度设计统一标准(GB50068-2001)[S]. 北京: 中国建筑工业出版社, 2001
    [149] 洪定海. 混凝土中钢筋的腐蚀与保护[M]. 北京: 中国铁道出版社, 1998
    [150] 樊云昌, 曹兴国, 陈怀荣. 混凝土中钢筋腐蚀的防护与修复[M]. 北京: 中国铁道出版社, 2001
    [151] Byung H O, Soo W C, Bong S J, et al. Development of high-performance concrete having high resistance to chloride penetration[J]. Nuclear Engineering and Design, 2002, 212: 221-231
    [152] Sousa-Coutinho J. The combined benefits of CPF and RHA in improving the durability of con-crete structures[J]. Cement & Concrete Composites, 2003, 25: 51-59
    [153] Dotto J M R, De-Abreu A G, Dal-Molin D C C, et al. Influence of silica fume addition on con-cretes physical properties and on corrosion behaviour of reinforcement bars[J]. Cement & Concrete Composites, 2004, 26:31-39
    [154] Corinaldesi V, Moriconi G. Durable fiber reinforced self-compacting concrete[J]. Cement and Concrete Research, 2004, 34: 249-254
    [155] 邸小坛, 周燕. 混凝土结构耐久性设计法[J]. 建筑科学, 1997, 13(1): 16-20
    [156] 李田, 刘西拉. 混凝土结构耐久性分析与设计[M]. 北京: 科学出版社, 1999
    [157] Ben-Haim Y. A non-probabilistic concept of reliability[J]. Structural Safety, 1994, 16(4): 227-245
    [158] Ben-Haim Y. A non-probabilistic measure of reliability of linear systems based on expansion of convex models[J]. Structural Safety, 1995, 17(2): 91-109
    [159] Ben-Haim Y. Robust Reliability in the Mechanical Sciences[M]. Berlin: Springer-Verlag, 1996
    [160] 邱志平, 顾元宪. 结构静力位移的非概率凸集合模型的摄动数值算法[J]. 固体力学学报, 1997, 18(1): 86-89
    [161] 邱志平, 顾元宪. 有界不确定参数结构位移范围的区间摄动法[J]. 应用力学学报, 1999, 16(1): 1-9
    [162] 褚武扬, 乔利杰, 陈奇志 等. 断裂与环境断裂[M]. 北京: 科学出版社, 2000
    [163] 古特曼 Э М. 金属力学化学与腐蚀防护[M]. 北京: 科学出版社, 1989
    [164] 李富民, 袁迎曙. 氯盐环境下混凝土内钢绞线的锈蚀特性试验研究[J]. 铁道科学与工程学报, 2006, 3(4): 23-28
    [165] 朱日彰. 金属腐蚀学[M]. 北京: 冶金工业出版社, 1989: 71, 70, 70.
    [166] 中华人民共和国国家标准. 预应力混凝土用钢绞线(GB/T 5224-2003)[S]. 北京: 中国标准出版社, 2003
    [167] 中华人民共和国国家标准. 预应力钢丝及钢绞线用热轧盘条(YB/T 146-1998)[S]. 北京: 中国标准出版社, 1998
    [168] 丁建生. 金属学与热处理[M]. 北京: 机械工业出版社, 2004
    [169] 重庆大学工程材料精品课程组. 铁碳合金相图[EB/OL]. (2005-04-19)[2007-03-15]. http//www.jpkc.cq.edu.cn/ChongQ_2005_gccl/kj/kj044.htm
    [170] 杨兰香.预应力混凝土钢丝及钢绞线生产综述[J]. 四川冶金, 1994(3): 69-71
    [171] 张伟君, 孙金茂. 国产预应力钢绞线的生产与试用[J]. 金属制品, 1996, 22(3): 14-17
    [172] Gil Sevillano J. Temperature plastic deformation of pearlitic cementite[J].Science and Engi-neering, 1975,( 21) :221-225
    [173] Languillaume J, Kapelski G, Baudelet B.Cementite dissolution in heavily cold drawn pearlitic steel wires[J]. Acta. Mater.,1997, 45:1201-1212
    [174] Toribio J.Relationship between microstructure and strength in eutectoid steels [J].Materials Science and Engineering, 2004, 387-389A: 227-230
    [175] Fu Wantang, Xiong Yi, Zhao Jun, et al. Microstructural evolution of pearlite in eutectoid Fe-C alloys during severe cold rolling[J]. Materials Science and Technology, 2005,( 21) :25-27
    [176] 汪鹰. 缓蚀剂对钢筋腐蚀的抑制及其机理的研究[D]. 南京: 南京化工大学, 1997
    [177] Codaro E N, Nakazato R Z, Horovistiz A L, et al. An image processing method for morphol-ogy characterization and pitting corrosion evaluation[J]. Materials Science and Engineering, 2002, A334: 298-306
    [178] Melchers R E. Mathematical modeling of the diffusion controlled phase in marine immersion corrosion of mild steel[J]. Corrosion Science, 2003, 45 :923-940
    [179] Bian L, Weng Y J, Li X Y. Observation of micro-droplets on metal surface in early atmos-pheric corrosion [ J ]. Electrochemical Communication, 2005, 7: 1033-1038
    [180] Mandelbrot B B. Fractals: from, chance and dimension[M]. San Francisco, Freeman, 1977
    [181] Mandelbrot B B. The fractal geometry of nature[M]. New York, Freeman, 1982
    [182] 张济忠. 分形[M]. 北京: 清华大学出版社, 1995
    [183] 肖纪美. 应力作用下的金属腐蚀[M]. 北京: 化学工业出版社, 1990
    [184] 孙跃, 胡津. 金属腐蚀与控制[M]. 哈尔滨: 哈尔滨工业大学出版社, 2003
    [185] 郑文龙, 于青. 钢的环境敏感断裂[M]. 北京: 化学工业出版社, 1988
    [186] 刘玉兰, 吴初平. 桥梁竖向预应力施工质量控制[J]. 中外公路, 2006, 26(2): 134-136
    [187] Libby J R. Modern prestressed concrete: design principles and construction methods[M]. New York: Chapman and Hall, 1990
    [188] Thoft Christensen P. Advanced bridge management systems[J]. Structural Engineering Review, 1995, 7(3): 51-63
    [189] 柳州欧维姆机械股份有限公司. 竖向预应力锚具. 中国专利: 200320104538.4[P]. 2004.11.24
    [190] 张雷, 白源流, 祝德孝. 钢绞线预应力微损失张拉锚具. 中国专利: 200520128224.7[P]. 2006.12.27
    [191] 中国矿业大学. 一种补张拉撑脚装置. 中国专利: 200720035651.X [P]. 2008.02.20
    [192] 王海超. 钢筋混凝土构件腐蚀疲劳试验研究与理论分析[D]. 大连: 大连理工大学, 2004
    [193] 彭修宁. 锈损后钢筋混凝土疲劳耐久性若干问题的研究[D]. 南宁: 广西大学, 2004
    [194] Apostolopoulos C A. Mechanical behavior of corroded reinforcing steel bars S500s tempcore under low cycle fatigue[J]. Construction and Building Materials, 2006, 20: 1-10
    [195] Apostolopoulos C A, Papadopoulos M P. Tensile and low cycle fatigue behavior of corroded reinforcing steel bars S400[J]. Construction and Building Materials, 2007, 21: 855-864
    [196] 崔约贤, 王长利. 金属断口分析[M]. 哈尔滨: 哈尔滨工业大学出版社, 1998
    [197] Liu Y, Weyers R E. Modeling the dynamic corrosion process in chloride contaminated con-crete structures[J]. Cement and Concrete Research, 1998, 28(3): 365-379
    [198] 朱日彰. 金属腐蚀学[M]. 北京: 冶金工业出版社, 1989
    [199] 冯仰婕. 应用物理化学[M]. 上海: 华东化工学院出版社, 1991
    [200] 蔡文娟. 物理化学(第 2 版)[M]. 北京: 冶金工业出版社, 1997
    [201] 古特曼 Э М. 金属力学化学与腐蚀防护[M]. 北京: 科学出版社, 1989
    [202] 李华昌, 符斌. 实用化学手册[M]. 北京: 化学工业出版社, 2006
    [203] 牛荻涛, 王林科, 王庆霖. 氧气在混凝土中扩散系数的确定[J]. 西安建筑科技大学学报, 1996, 28(1): 10-13
    [204] Papadakis V G, Vayenas C G. Physical and chemical characteristics affecting the durability of concrete[J]. ACI Materials Journal, 1991,8(2): 186-196
    [205] 耿欧, 袁迎曙, 朱辉, 等. 混凝土氧气扩散系数试验研究[J]. 东南大学学报, 2006, 36, Sup(Ⅱ): 191-194
    [206] Arya C, Newman J B. An assessment of four methods of determining the free chloride content of concrete[J]. Materials and Structures, 1990, 23(137): 319-330
    [207] Mangat P S, Molloy B T. Prediction of long term chloride concentration in concrete[J]. Mate-rials and Structures, 1994, 27(2): 338-346
    [208] Saito M, Ishimori H. Chloride permeability of concrete under static and repeated compressive loading[J]. Cement and Concrete Research, 1995, 25(4): 803-808
    [209] Mejlbro L. The complete solution of Fick’s second law of diffusion with time-dependent diffu-sion coefficient and surface concentration[C]. Durability of Concrete in Saline Environment. Danderyd Cement AB, 1996: 127-158
    [210] Maage M, Helland S, Poulsen E, et al. Service life prediction of existing concrete structures exposed to marine environment[J]. ACI Materials Journal, 1996, 93(6): 602-608
    [211] Amey S L, Johnson D A, Miltenberger M A, et al. Predicting the service life of concrete ma-rine structures: an environmental methodology[J]. ACI Structural Journal, 1998, 95(1): 27-36
    [212] Gowripalan N, Sirivivatnanon V, Lim C C. Chloride diffusivity of concrete cracked in flex-ure[J]. Cement and Concrete Research, 2000, 30(5): 725-730
    [213] Martin Perez B, Zibara H, Hooton R D, et al. A study of the effect of chloride binding on ser-vice life predictions[J]. Cement and Concrete Research, 2000, 30(8): 1215-1223
    [214] Lim C C, Gowripalan N, Sirivivatnanon V. Microcracking and chloride permeability of con-crete under niaxial compression[J]. Cement and Concrete Composites, 2000, 22(5): 353-360
    [215] Kassir M K, Ghosn M. Chloride-induced corrosion of reinforced concrete bridge decks[J]. Cement and Concrete Research, 2002, 32(1): 139-143
    [216] Mohammed T U, Hamada H. Relationship between free chloride and total chloride contents in concrete[J]. Cement and Concrete Research, 2003, 33(9): 1487-1490
    [217] 孙训方, 方孝淑, 关来泰. 材料力学(第二版)[M]. 北京: 高等教育出版社, 1990
    [218] 李庆芬, 胡胜海, 朱世范. 断裂力学及其工程应用[M]. 哈尔滨: 哈尔滨工业大学出版社, 1998
    [219] 余寿文, 冯西桥. 损伤力学[M]. 北京: 清华大学出版社, 1997
    [220] 熊祝华. 塑性力学基础知识[M]. 北京: 高等教育出版社, 1986
    [221] 董聪. 现代结构系统可靠性理论及其应用[M]. 北京: 科学出版社, 2001
    [222] Moses F. New directions and research needs in system reliability research[J]. Structural Safety, 1990, 7: 93-100
    [223] Lam H F, Ko J M, Wong C W. Localization of damaged structural connections based on ex-perimental modal and sensitivity analysis[J]. Sound and Vibration, 1998, 210(1): 91-115
    [224] Messina A, Williams E J, Contursi T. Structure damage detection by a sensitivity and statisti-cal-based method[J]. Sound and Vibration, 1998, 210(5): 791-808
    [225] 周润兰, 喻胜华. 应用概率统计[M]. 北京: 科学出版社, 2000
    [226] 赵国藩, 金伟良, 贡金鑫. 结构可靠度理论[M]. 北京: 中国建筑工业出版社, 2000
    [227] 中华人民共和国国家标准. 混凝土结构设计规范(GB50010-2002)[S]. 北京: 中国建筑工业出版社, 2002
    [228] 向伟. 钢筋混凝土梁锈蚀主筋与混凝土粘结性能退化规律与预计模型研究[D]. 徐州: 中国矿业大学建筑工程学院, 2007
    [229] 赵国藩, 金伟良, 贡金鑫. 结构可靠度理论[M]. 北京: 中国建筑工业出版社, 2000
    [230] 中华人民共和国国家标准. 工程结构可靠度设计统一标准(GB50153-92)[S]. 北京: 中国建筑工业出版社, 1992
    [231] 中华人民共和国国家标准. 建筑结构可靠度设计统一标准(GB50068-2001)[S]. 北京: 中国建筑工业出版社, 2001
    [232] 江见鲸, 李杰, 金伟良. 高等混凝土结构理论[M]. 北京: 中国建筑工业出版社, 2007

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700