急慢性应激对小鼠自发行为和空间学习记忆功能的影响及其机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究分别采用单因素急性应激动物模型(足底电击)和多因素慢性不可预知应激动物模型(拥挤、冷/热刺激、白噪声、高台、足底电击,28天),研究了急、慢性应激条件下小鼠自发行为和空间学习记忆能力的变化及其脑内c-fos表达的变化情况。旨在探讨不同应激条件对小鼠自发行为和空间学习记忆能力的影响及其作用机制。以开场实验检测小鼠新异环境下的自发行为;采用Morris水迷宫测试小鼠的空间学习记忆能力;以酶联免疫法测定小鼠血清皮质酮含量,通过HE染色观察小鼠海马、前脑皮层及下丘脑室旁核神经元的形态学变化;并运用免疫组织化学方法检测小鼠海马、前脑皮层和下丘脑室旁核的c-fos表达。
     研究结果如下:
     1.急性应激后,与对照组小鼠比较,应激组小鼠的水平穿越格数、直立次数、粪便粒数均明显减少,中央格停留时间显著延长,但修饰次数无显著变化;慢性应激后,与对照组小鼠比较,应激组小鼠的水平穿越格数、直立次数、修饰次数均明显减少,中央格停留时间显著延长,粪便粒数明显增多。
     2.急性应激后,与对照组小鼠比较,应激组小鼠寻找平台的逃避潜伏期明显缩短,且在空间搜索实验中,其在目标象限停留时间明显延长;慢性应激后,与对照组小鼠比较,应激组小鼠寻找平台的逃避潜伏期明显延长,且在空间搜索实验中,其在目标象限停留时间明显缩短。
     3.急、慢性应激后,与对照组小鼠比较,应激组小鼠血清皮质酮含量均明显增加,但急性应激增加的程度更强。
     4.急性应激后,与对照组小鼠比较,应激组小鼠的神经元形态结构没有明显变化;慢性应激后,与对照组小鼠比较,应激组小鼠海马、前脑皮层及下丘脑室旁核神经元数量明显减少,细胞萎缩变性,呈现不同程度的损伤现象。
     5.急性应激后,与对照组小鼠比较,应激组小鼠海马、前脑皮层及下丘脑室旁核c-fos阳性细胞数明显增多,平均目标灰度值明显降低;慢性应激后,与对照组小鼠比较,应激组小鼠海马、前脑皮层及下丘脑室旁核c-fos阳性细胞数明显减少,平均目标灰度值明显增高。
     研究结论如下:
     1.急、慢性应激均减少小鼠的开场行为活动,但在慢性应激条件下更为明显。
     2.急性应激明显增强小鼠的空间学习记忆能力;慢性应激则明显损害小鼠的空间学习记忆能力。
     3.急性应激对小鼠神经元形态结构无明显影响;慢性应激则导致小鼠海马、前脑皮层和下丘脑室旁核神经元发生明显的形态学变化。
     4.急性应激可使小鼠海马、前脑皮层及下丘脑室旁核c-fos表达明显上调;慢性应激则使小鼠海马区、前脑皮层及下丘脑室旁核神经元中c-fos表达明显下调。
     研究结果表明,急性应激导致小鼠自发行为和空间学习记忆能力的变化可能与与血清皮质酮的急剧上升及脑海马、前脑皮层和下丘脑室旁核c-fos的大量表达有关;而慢性应激导致小鼠自发行为抑制和空间学习记忆能力受损亦可能与长期高水平皮质酮,脑海马、前脑皮层和下丘脑室旁核神经元的损害及c-fos表达的明显下调密切相关。
This study using animal model of single-factor acute stress (foot shock) and multivariate chronic unpredictable stress (crowding, cold/hot stimulation, flat noise, hathpace, foot shock, 28days), we examined the spontaneous behavior and the changes of spatial learning memory ability in mice, and the changes of the expression of c-fos in the brain. This study aims to investigate the effects of acute and chronic stress on the spontaneous behavior and ability of spatial learning-memory in mice and its mechanism. In the present study, we examined the spontaneous behavior of mice in new environment using open field test, and the ability of spatial learning memory of mice using Morris water maze; The corticosterone levels in blood serum of mice were measured using ELISA. the morphologic changes in hippocampus (HP)、prefrontal cortex (PFC) and Hypothalamic paraventricular nucleus (PVN) of brain were observed using HE dye, and the expression of c-fos in HP、PFC and PVN of mice brain were examined using immunohistochemical method.
     The results of this study are as follows:
     1. After acute stress, compared with the control group mice, the square crossing, rearing and defecation of the stress mice were remarkably decreased, and the central cell residence time was significantly increased; after chronic stress, compared with the control group mice, the square crossing, rearing and grooming of the stress mice were remarkably decreased, the central cell residence time and defecation were significantly increased.
     2. After acute stress, compared with the control group mice, the escape latency to find platform of the stress group mice were markedly decreased, and in the space exploration test, the resident time in target quadrant remarkable increased in the stress group mice. After the chronic stress, compared with the control group mice, the escape latency to find platform of the stress group mice were significantly increased, and in the space exploration test, the swimming time in target quadrant remarkably decreased.
     3. After acute and chronic stress, compared with the control group mice, the corticosterone levels of the stress group were remarkably increased, and that the corticosterone levels in acute stress mice the increased was stronger.
     4. After acute stress, compared with the control group mice, there was no remarkable change in the neuron morphology of the stress group mice. After chronic stress, compared with the control group mice, the number of neurons in HP、PFC and hypothalamic PVN of the stress group mice brain were observably decreased, and cells shrivel and degeneration in theirs, showed varying degrees of damage.
     5. After acute stress, compared with the control group mice, the number of positive cells in HP、PFC and hypothalamic PVN of the stress group mice brain were remarkably increased, and the average target gray value was significantly decreased. After chronic stress, compared with the control group mice, the number of positive cells in HP、PFC and hypothalamic PVN of the stress group mice brain were remarkably decreased, and the average target gray value was remarkably increased.
     Conclusion:
     1. The acute and chronic stress different treatments reduced the spontaneous behavior of mice in open field test, and it is more evident under conditions of chronic stress.
     2. The acute stress treatments can prominently enhance the spatial learning-memory ability of mice; and the chronic stress can significantly damage the spatial learning-memory ability of mice.
     3. The acute stress treatments has no significant effect on neuronal morphology of mice; and the chronic stress cause obvious morphological changes of neurons in HP、PFC and hypothalamic PVN of mice brain.
     4. The acute stress treatments cause obvious increase of c-fos expression in HP、PFC and hypothalamic PVN of mice brain. The chronic stress induce obvious reduction of c-fos expression in HP、PFC and hypothalamic PVN of mice brain.
     In the present study, the results suggested that the decrease of the spontaneous behavior and the increase of the spatial learning-memory ability of mice caused by acute stress, and it may be related to the rapid rise of the serum corticosterone and a large number of c-fos expression in HP、PFC and hypothalamic PVN of mice brain. The spontaneous behavioral inhibition and the spatial learning and memory impairment caused by chronic stress may be related to the damage of HP、PFC and hypothalamic PVN neurons in long-time high level corticosterone and the obvious reduction of c-fos expression.
引文
[1]de Quervain DJ, Roozendaal B, MeGaugh JL.Stress and glucocorticoids impair retrieval of long-term Spatial memory[J]. Nature,1998,394:787-790.
    [2]Wolf OT. HPA axis and memory[J]. Best.Pract.Res. Clin.Endocrinol.Metab,2003,17:287-99
    [3]Wittner M, Riha P.Transient Hypobaric hypoxia improves spatial orientation in young rats[J]. Physiol Res,2005,54:335-340.
    [4]Chrousos GP.stressors,stress,and neuroendocrine integration of the adaptive Response[J].Ann NY Acad Sci,1998,851:311-332.
    [5]程世斌,卢光启.迷走神经背核的研究进展[J].生理科学进展.1996,27:13-18.
    [6]Zimmermann M.Ethical considerations in relation to pain in animal experimentation[J].Acta Physiol Scand Suppl.1986,554:221-233.
    [7]DemetrikoPoulos MK, Keller SE, Sehleifer J. Stress effeets on immune function in rodents [M].In:Sehedlowski M, Tewes U, eds. Psyehoneuroimmunology. NewYork:Kluwer Academic/Plenum Publishers,1999.259-275.
    [8]Twes U. Concept in psychology [M]. In:Sehedlowski M, Tewes U, eds. Psyehoneuroimmunology. NewYork:Kluwer Academie/Plenum Publishers,1999.93-111.
    [9]Yin D, Tuthill D, Mufson RA, et al. Chronic restraint stress promotes lymphocyte apoptosis by modulating CD95 expression[J]. J ExP Med,2000,191:1423-1428.
    [10]Vyas A, Mitra R, Shankaranarayana Rao B S, et al. Chronic stress induces contrasting patterns of dendritic remodeling in hippocampal and amygdaloid neurons [J]. The Journal of Neuroscience,2002; 22(15):6810-6818.
    [11]Zelena D, Haller J, Halasz J, et al. Social stress of variable intensity:physiological and behavioral consequences[J]. Brain Research. Bulletin,1999,3:297-302.
    [12]Blanchard R J, McKittrick C R, Blanchard D C. Animalmodels of social stress:effects on behavior and brain neurochemical systems [J]. Physiology &Behavior,2001,73:261-271.
    [13]马虹,田若平,陈起盛等.不同应激强度对小鼠衰老进程影响差异的研究[J].中国行为医学科学,1998,7:11.
    [14]Alberts SC,Sapolsky RM,Altmann J. Behavioral,endocrine,and immunological correlate of immigration by an aggressive male into a natural primate group [J]. Hormones and Behavior,1992,26:167-178.
    [15]王天芳,张翠珍,王琳等.慢性疲劳综合症的中西医病理机制及其研究思路[J].北京中医药大学学报.1999;22:19-23.
    [16]Lipkind D,Sakov A,Kalkafi N,et al. New replicable anxiety-related measures of wall vs.center behavior of mice in the open field [J].J Appl Physiol,2004,97:347-359.
    [17]嵇志红,高伟.应激对动物行为和学习记忆能力的影响[J].大连大学学报,2002,23:81-84.
    [18]Pijlman FTA, van Ree JM. Physical but not emotional stress induces a delay in behavioral coping responses in rats[J]. Behavioural Brain Research,2002,136:365-373.
    [19]Pijlman FTA, Herremans AHJ, Kieft J. Behavioural changes after different stress paradigms: prepulse inhibition increased after physica,l but not emotional stress[J]. European Neuropsychopharmacology,2003,13:369-380.
    [20]李欢欢,林文娟,李俊发.急性生理应激对大鼠的行为及脑神经颗粒素磷酸化水平的影响[J].心理学报,2007,39:648-655.
    [21]Morris RGM.Spatial localition dose not require the presence of local cues[J]. Learningand Motivation,l 981,12:239-260.
    [22]MeNamara RK,Skelton RW.The neuropharmacological and neurochemical basis of place learning in the Morris water maze[J]. Brain Res Brain Res Rev,1993,18:33-49.
    [23]Lucassen PJ, Fuchs E, Czeh B.Antidepressant treatment with tianeptine reduces apoptosis in the hippocampal dentate gyrus and temporal cortex[J]. Biol Psychiatry.2004; 55:789-796.
    [24]陈耀明,郑刚,张雪平等.急性恐惧应激对大鼠激素水平、空间学习记忆行为的影响[J].第四军医大学学报,2007,28:183-185.
    [25]孙秀兰,田苏平,陈启盛等.适宜应激延缓衰老的机制的研究[J].中国行为医学科学,2001,10:81-83.
    [26]Yehuda R, Sapolsky RM. Stress and glucocorticoid [J]. Science,1997,275:1662-1663.
    [27]Droste SK, Gesing A, Ulbricht S, Marianne BM, Astrid CE, Linthorst, Johannes MH. Effects of Long-Term Voluntary Exercise on the Mouse Hypothalamic-Pituitary-Adrenocortical Axis [J]. Endocrinology,2003,144:3012.
    [28]林文娟.心理神经免疫学的研究及其思路问题[J].心理学报,1997,29:301-305.
    [29]Ransone LJ, Verma IM. Nuclear proto-oncogene fos and jun [J]. Annual Review of Cell Biology,1990,6:539-540.
    [30]Abraham IM, Kovacs KJ. Postnatal handling alters the activation of stress-related neuronal circuitries [J].European Journal of Neuroscience,2000,12:3003-3014.
    [31]Emmert EH,Herman JP. Differential forebrain c-f osmRNA induction by ether inhalation and novelty:evidence for distinctive stress path ways [J]. Brain Research,1999,845: 60-67.
    [32]Sawchenko P E, Brown E R, Chan RK, et al. The paraventricular nucleus of the hypothalamus and the functional neuroanatomy of visceromotor responses to stress [J]. Progress in Brain Research,1996,107:201-222.
    [33]Sawchenko P, Li H, Ericcson A. Circuits and mechanisms governing hypothalamic responses to stress:a tale of two paradigms [J]. Progress in Brain Research,2000,122: 61-78.
    [34]Thrivikraman KV, Nemeroff CB, Plot sky PM. Sensitivity to glucocorticoid-mediated fast-feedback regulation of the hypothalamicpituitary-adrenal axis is dependent upon stressor specific neurocircuitry [J].Brain Research,2000,870:87-101.
    [35]Bruijnzee AW,Stam R,Compaan JC, et al. Long-term sensitization of fos-responsively in the rat central nervous system after a single stressful experience [J]. Brain Res,1999, 819:15-22.
    [36]He J, Kiyofum Y,Toshitaka N. A role of Fos expression in the CA3 region of the Hippoecampus in spatial memory formation in rats[J]. Neuropsyech-opharmacology, 2002,26:259.
    [37]Cory-Slechta DA.Relationships between lead-induced learning impairments and changes in dopaminergic、 cholinergic、and glutamatergic neurotransmitter system[J].Annu Rev Pharmacol Toxiclol.1995,35:391-415.
    [38]Relia K R, Ryabinin AE, Corodimas KP,et al.Hippocampal—dependent learning and Experience-dependent activation of hippocampus are prefrerentially disrupt by Ethanol[J]. Neuroscience,1996,74(2):313-322.
    [39]Kandel ER. Principles of neural science[M].Elsevier,1991:136-139.
    [40]红岸.老年大鼠学习记忆减退的神经基础[J].生理科学进展,26:261-264.
    [41]Alnsten AF, Steere JC, Hunt RD. The contribution of alpha 2-noradrenergic mechanisms of prefrontal cortialcognitive function.Potential significance for attention-deficit hyperactivity disorder [J]. Arch Gen Psychiatry.1996,53:448-455.
    [42]Hunt RD, Arnsten AF,Asbell MD. An open trial of guanfacine in the trearment of attention-deficit hyperactivity disorder[J]. J Am Acad Child Adolesc Psychiatry.1995;34:50-54.
    [43]Haynes CE, Griffiths MR, Hyde RE, et al. Dexamethasone induces timited apoptosis and extensive sublethal damage to specific subregions of the striaturm and hippocampus: implications for mood disorders[J]. Neuro Seience,2001,104:57-69.
    [44]Manikandan S, Padma MK, Srikumar R, et al. Effeets of chronic noise stress on spatial memory of rats in relation to neuronal dendritic alteration and free radieal-imbalance in hippocampus and medial prefrontal cortex[J].Neurosci Lett,2006,399:17-22.
    [45]Radley JJ, Sisti HM, Hao J, et al. Chronic behavioral stress induces apical dendritic reorganization in pyramidal neurons of the medial prefrontal cortex[J]. Neuro seience, 2004,125:1-6.
    [46]马强,王静,杨志华等.慢性应激对大鼠学习记忆能力和海马的影响[J].中国行为医学科学,2000,16:318-320.
    [47]徐芸,孔宏,宋倩等.慢性应激对小鼠空间学习记忆功能及海马和前额叶皮层BDNF表达的影响[J].曲阜师范大学学报,2009,35:85-89.
    [48]Sheng M, Greenberg ME. The regulation and fuction of c-fos and other immediate early genes in the nervous system[J].Neuron,1990,4:477-485.
    [49]付春荣,吴若秋,任儒学.大鼠脑挫伤后下丘脑c-fos蛋白的表达与局部脑血流变化的相关性[J].中华创伤杂志,2006,22:51-53.
    [50]王磊.早期即刻基因与老年痴呆[J].国外医学神经病学神经外科学册,2002,29:277-278.
    [51]何庆伟,周志刚,梅月志,易来龙.长期应激对大鼠学习与记忆及纹状体边缘区c-Fos、 c-Jun表达的影响[J].实用临床医学,2005,6:1-3.
    [52]Seligman ME, Maier SF. Failure to escape traumatic shock[J]. Exp Psychol,1967,74:1-9.
    [53]Weiss JM. Effects of coping responses on stress[J]. Comp Physiol Psychol,1968,65: 251-60.
    [54]Weiss JM., Bailey WH, Goodman PA,et al. A model for neurochemical study of depression, in Behavioral Models and the Analysis of Drug Action[M] Edited by Spiegelstein MY,Levy A. Amsterdam,Elsevier,1982,195-223.
    [55]Vollmayr B, Bachteler D, Vengeliene V,et al, Rats with congenital learned helplessness respond less to sucrose but show no deficits in activity or learning[J].Behav Brain Res,2004,150:217-21.
    [56]Raseniek MM, Chaney KA, Chen J, et al. G Protein-mediated signal transduection as atarget of antidepressant and antibipolar drug action:evidenece from model systems[J]. J Clin Psyehiatry,1996,57:49-55.
    [57]Kannel WB, Kannel C, Paffenbarger RS, Cupples LA. Heart rate and cardiovascular mortality:the Framingham study[J]. Am Heart J,1987,113:1489-1494.
    [58]Hu Y, Gursoy E. Biological effects of single and reperted swimming stress in male rats: beneficial effects of glucocorticoids [J].Endocrine.2000;13:123-129.
    [59]Magarinos AM, McEwen BS. Stress-induced atrophy of apical dendrites of hippocampal CA3c neurons:Involvement of glucocorticoid secretion and excitatory amino acid receptors [J]. Neuroscience.1995; 69:89-98.
    [60]Angrini M, Leslie JC, Shephard RA. Effects of propranolol, buspirone, pCPA, reaerpine, and chlordiazepoxide on open-field behavior [J]. Pharmacology, Biochemistry and Behavior. 1998; 59:387-397.
    [61]Archer J. Test for emotionality in rats and mice:a review[J]. Anim Behav,1973;21:205-235.
    [62]Wolf OT. HPA axis and memory[J]. Best. Pract.Res.Clin.Endocrinol.Metab.2003; 17:287-99.
    [63]Wright RL, Conrad CD. Chronic stress leaves novelty-seeking behavior intact while impairing spatial recognition memory in the Y-maze[J]. Stress.2005;8:151-154.
    [64]Beck KD, Luine VN. Sex differences in behavioral and neurochemical profiles after chronic stress:role of housing conditions[J]. Physiol Behav.2002; 75:661-673.
    [65]Sousa N, Lukoyanoc NV, Madeira MD, Almeida OFX, Paula-Barbosa MM. Reorganization of the morphology of hippocampal neuritis and synapses after stress-induced damage correlates with behavioral improvement[J]. Neuroscience.2000; 97:253-266.
    [66]Angela M, Gouirand, Leslie Matuszewich. The effects of chronic unpredictable stress on male rats in the water maze[J]. Physiology& Behavior.2005; 86:21-31.
    [67]Haynes CE, Griffiths MR, Hyde RE, et al. Dexamethasone induces timited apoptosis and extensive sublethal damage to specific subregions of the striaturm and hippocampus: implications for mood disorders[J].Neuro Science.2001; 104:57-69.
    [68]MeEwen BS. Effects of adverse experiences for brain structure and function[J J Biol Psychiatry.2000; 48:721-731.
    [69]Sousa N, Lukoyanov NV, Madeira MD, et al. Reorgnization of the morphology of hippocampal neuritis and synapses after stress-induced damage correlates with behavioral improvement[J]. Neuro Science,2000,97:253-266.
    [70]Cook SC, Wellman CL. Chronic stress alters dendritic morphology in rat medial prefrontal cortex[J].J Neurobiol.2004;2:236-248.
    [71]Cullinan WE, Herman JP, Battaglia DF, et al. Pattern and time course of immediate early gene expression in rat brain following acute stress[J]. Neuroscience.1995;64,477-505.
    [72]Kollack-Walker S, Watson SJ, Akil H. Social stress in hamsters.defeat activates specific neurocircuits within the brain[J]. J Neurosci.1997;17:8842-55.
    [73]Duncan GE, Knapp DJ, Breese GR. Neuroanatomical characterization of Fos induction in rat behavioral models of anxiety[J]. Brain Res.1996; 713:79-91.
    [74]Kempermann G. Regulation of adult hippocampal neurogenesis-implica-tions for novel theories of major depression[J]. Bipolar Disord.2002;4:17-33.
    [75]路翠艳,潘芳.应激反应中HPA轴的中枢调控和免疫调节[J].中国行为医学科学,2003,12:353-355.
    [1]Chrousos GP,Gold PW.The concepts of stress and stress system disorders overviewof physical and behavioral home ostasis[J].JAMA,1992,267:1244-1252
    [2]Mizoguchi K, Yuzurihara M, Ishige A, et al. Chronic stress differentially regulates glucocorticoid negative feedback response in rats [J]. Psychoneuroendocrinology, 2001,26:443-459.
    [3]Wheatley D, FrcPsych MD. Stress Medicine[M],1997;13:173-177
    [4]嵇志红,高伟.应激对动物行为和学习记忆能力的影响[J].大连大学学报,2002,23:81-84
    [5]Tafet GE, Bernardini R. Psychoneuroendocrinological links between chronic stress and depression [J]. Prog Neuro-psychopharmacol Biol Psychiatry,2003,27:893-903.
    [6]McEwen BS. Protective and damaging effects of stress mediators:central role of the brain [J]. Dialogues Clin Neurosci,2006,8:367-381.
    [7]丁峻.梦与情感障碍的脑PLRB(系统)异态相源发生机理[J].科学(中文版),1996,217:3-7.
    [8]Birnbaum S, Gobeske KT, Auerbach J, Taylor JR, Arnsten AF. A role for norepinephrine in stress-induced cognitive deficits:alpha-1-adrenoceptor mediation in the prefrontal cortex[J].Biol Psychiatry 1999;46:1266-1274.
    [9]Jacobson L, Sapolsky R. The role of the hippocampus in feedback regulation of the hypothalamic-pituitary-adrenocortical axis[J]Endocr Rev.1991,12:118.
    [10]McEwen B S. Glucocorticoids, depression, and mood disorders:structural remodeling in the brain [J]. Metabolism,2005,54 (Supplement 2):20-23.
    [11]McEwen B S. Protection and damage from acute and chronic stress:allostasis and allostatic overload and relevance to the pathophysiology of psychiatric disorders [J]. Annals of the New York Academy of Sciences,2004,1032:1-7.
    [12]Metz GA. S, Schwab M E, Welzl H. The effects of acute and chronic stress on motor and sensory performance in male Lewis rats [J].Physiology & Behavior,2001,72:29-35.
    [13]Rosa M L, Guimaraes F S, de Oliveira R M, et al. Restraint stress induces beta-amyloid precursor protein mRNA expression in the rat basolateral amygdala [J]. Brain Research Bulletin,2005,65:69-75.
    [14]Magarinos A M, Verdugo J M, McEwen B S. Chronic stress alters synaptic terminal structure in hippocampus [J]. Proc Natl Acad Sci USA,1997,94:14002-14008.
    [15]Stein-Behrens B, Mattson M P, Chang I, et al. Stress exacerbates neuron loss and cytoskeletal pathology in the hippocampus[J]. J Neurosci,1994,14:5373-5380.
    [16]McIntosh L J, Sapolsky R M. Glucocorticoids may enhance oxygen radical-mediated neurotoxicity[J]. Neurotoxicology,1996,17:873-882.
    [17]Venero C, Borrell J. Rapid glucocorticoid effects on excitatory amino acid levels in the hippocampus:a microdialysis study in freely moving rats[J]. Eur J Neurosci,1999,11: 2465-2473.
    [18]James J, Murtagh Jr, Joel Moss, et al. Alternative splicing of the guanine nucleotide-binding regulatory protein Go a generates four distinct mRNAs[J]. Nucleic Acids Research,1994, 22:842-849.
    [19]Bonini N M, Giasson B I. Snaring the function of a-Synuclein[J]. Cell,2005,123:359-373.
    [20]Kovacs K J, Foldes A, Sawchenko P E.Glucocorticoid negative feedback selectively targets vasopressin transcription in parvocellular neurosecretory neurons [J] J Neurosceice. 2000,20(10):3843-3852.
    [21]寿天德主编..神经生物学[M].北京:高等教育出版社.2001.
    [22]Joseph, R.Enviromental influences on neural plastiesty, the Limbic system, emotional development and attachment:a Review[J].Clild-Psyciatry-Houm,1999,29:189-208.
    [23]梅镇彤.学习记忆的神经生物学[M].上海:科技教育出版社,1997:12.
    [24]Leggio MG, Mandolesi L, Federico F, et al.Environmental enrichment promotes improved spatial abilities and enhanced dendritic growth in the rat [J]. Behav Brain Res,2005,163: 78-90.
    [25]O'Malley A, O'Connell C, Murphy KJ,et al.Transient spine density increases in the mid-molecular layer of hippocampal dentate gyrus accompany consolidation of a spatial learning task in the rodent [J]. Neuro-science,2000,99:229-232.
    [26]Knafo S, AriavG, BarkaiE, et al.Olfactory learning-induced increase in spine density along the apical dendrites ofCAl hippocampal neurons [J]. Hippocampus,2004,14:819-825.
    [27]Martin SJ, Morris RG. Cortical plasticity:it's all the range [J]. Curr Bio,l 2001,11:57-59.
    [28]Goosens KA, Maren S. Long term potention as a substrate for memory:evidence from studies of amygdaloid plasticity and Pavlovian fear conditioning [J]. Hippocampus,2002, 12:529-599.
    [29]库宝善.加压素与学习记忆[J].生理科学进展,1981,12:79.
    [30]Moss M, Mahut H, Zola-Morgan S. Concurrent discrimination learning of monkeys after hippocampal, entorhinal, fornix lesions[J].J neurosci,1981,1:227-240.
    [31]Morris RGM, Garrud P, Rawlins JNP, ea al. Place nevigation impaired in rats with hippocampal lesions[J]. Nature,1982,297:681-683.
    [32]O'Keefe J,Conway DH. Hippocampal place units in the freely moving rats:Why they fire where they fire[J]. Exp Brain Res,1978,31:573-590.
    [33]Berger TW,Thompaon RF.Identification of pyramidal cells as critical elements in hippocampal neuronal plasticity during learning[J]. Proc Natl Acad Sci USA,1978, 75:1572-1576.
    [34]Gaffan D.Scene-specific menmory for objects:a model of episodic memory impairment in moneys with fonix transaction[J]. J Cog Neurosci,1994,6:305-320.
    [35]Petrides M. Monitoring of selections of visual stimuli and the primate frontal cortex[J]. Proc.R.Soc.lond.B.Biol.1.Sci,1991,246:293-298.
    [36]朱长庚.神经解剖学[M].北京:人民卫生出版社,2002:725.
    [37]王福顺,冯鉴强,郭瑞鲜,王艳,叶美红,Vineent Walsh.前额叶皮层在学习记忆中的作用[J].心理科学,2003,26:468-470.
    [38]Shu SY, Bao XM, Li SX, et al. A new subdivision of mammalian neostriatum with functional implications to learning and memory[J]. J Neurosci Res,1999,58:242-253.
    [39]舒斯云,包新民,李胜修,牛东滨,李耀宇,张运周,吴永明.脑内一个和学习记忆有关的新区的发现和研究[J].中国基础科学,2001,1:10~16.
    [40]Donley MP, Schulkin J, Rosen JB. Glucocorticoid receptor antagonism in the basolateral amygdala and ventral hippocampus interferes with long-term memory of contextualfear[J]. Behav Brain Res,2005,164:197-205.
    [41]McEwen BS.The brain is an important target of adrenal steroid actions. A comparison of synthetic and natural steroids[J].Ann N Y Acad Sci,1997,823:201.
    [42]Newcomer JW, Selke G, Melson AK, et al. Decreased memory performance in healthy humans induced by stress-level cortisol treatment[J]. Archives General Psy-chiatry,1999,56: 527.
    [43]Tanaka K, Wada N, Ogawa N. Chronic cerebral hypoperfusion induces transient eversible monoam inegic changes in the rat brain[J]. Neurochem Res,2000,25:313-319.
    [44]Tanaka K, Hori K, Wada-Tanaka N, FK506 amelioratea the discrimination learning impairment due to preventing the rare-faction of white matter induced by chronic cerebral hypoperfusion in rats[J]. Brain Research,2000,906:184-189.
    [45]YuAC, LeeYL, Fu WY, et al.Gene expression in astrocytes during and after ischemia[J]. PROG BrainRes,1995,105:245-253.
    [46]Campeau, S, Hyward M D, Hope B T, et al. Induction of t he c-fos proto-oncogene in rat amygdal a during unconditioned and conditioned fear [J]. Brain Res earch,1991,565: 349-352.
    [47]韩济生.神经科学纲要[M].北京:北京医科大学中国协和医科大学联合出版社第一版.1993:273-282
    [48]Sagar SM,Sharp FR and curran T. Expression of c-fos protein in brain:Metabolic mapping at the celular level[J]. Science.1988,240:1328.
    [49]Morgan J I, Curan T. Stimulus transcription coupling in neurons:Role of cellular immediate-early genes [J].Trends in Neurosciences,1989,12:459-462.
    [50]钱忠明,肖德生,徐斌.c-fos表达与心理应激脑机制的研究[J].生理科学进展,1997,26:52-54.
    [51]Tishmeyer W, Grimm R. Activation of immediate early genes and memory formation[J].Cell Mol Life Sci,1999,55:564-574.
    [52]Kaczmarek I, Nikolajerv E. c-fos protoongene expression and neuronal plasticity [J]. Acta Neurobiol Exp,1990,50:173-179.
    [53]刘志勇.即刻早基因c-fos和c-jun与学习记忆[J].实用临床医学,2004,5:121-125.
    [54]Tischmeyer W, Kaczmarek L, Strauss M, et al. Accumutation of c-fos mRNA in rat hippocampus during acquisition of a brightness dis-crimination[J]. Behav Neu Bial,1990,54:160-171.
    [55]Nikolaev E, Kaminsks B, Tischmeyer W, et al. Induction of expres-sion of gene encoding transcription factors in rat brain elicited by behavioral training[J]. Brain Res Bull,1992, 128:479-484.
    [56]Nikolaev E, Werka T, Kaczmarek L. c-fos protooncogene expression in rat brain after long term training of two-way active avoidance reaction[J]. Behav Brain Res,1992,148:91-94.
    [57]王虹,舒斯云,包新民,等.学习记忆过程中即刻早期基因c-fosc-jun.在纹状体边缘区的表达[J].第一军医大学学报,2002,22:9-12.
    [58]Goelet P, Castellucci VF, Schacher S, et al.The long and the short of long term memory a molecular framework[J]. Nature,1986,322:419-422.
    [59]何庆伟,周志刚,梅月志,易来龙.长期应激对大鼠学习与记忆及纹状体边缘区c-Fos、 c-Jun表达的影响[J].实用临床医学,2005,6:1-3.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700