CVD金刚石薄膜材料与辐射探测器件的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
CVD金刚石膜具有优异的电学、光学和机械性能,能够耐高温、耐腐蚀和抗强辐射,已成为当前苛刻环境下工作的辐射探测器首选材料。探测器级CVD金刚石薄膜的制备和核探测器件的研制已经成为国际前沿课题。
     本文通过对金刚石膜光学和电学性能的表征优化了金刚石膜的工艺参数,获得了沉积金刚石膜的最佳工艺条件:衬底温度750℃,碳源浓度0.9%和压强4.0 kPa。成功制备出探测器级(100)定向CVD金刚石膜。与其它取向膜相比,(100)取向金刚石膜具有最平整的表面和最高的质量。使用激光与热化学抛光相结合的复合抛光技术对CVD金刚石膜进行了抛光,使薄膜粗糙度有效降低。
     采用红外椭圆偏振光谱仪研究了不同取向CVD金刚石膜的光学特性,(100)取向金刚石膜折射率为2.391,分析了影响薄膜光学性能的因素。采用Keithley4200半导体表征系统研究了不同取向金刚石膜的电学特性,分析了退火工艺对薄膜电阻率的影响。采用霍尔效应测试系统研究了金刚石膜载流子浓度和迁移率随温度的变化趋势,分析了影响薄膜霍尔效应的各种因素。室温下(100)取向金刚石膜的电阻率、载流子浓度和迁移率分别为1.9x10~(12)Ω·cm,4.28×10~4cm~(-3)和76.9 cm~2/V·s。研究了薄膜制备过程中氢等离子体处理对金刚石膜光电特性的影响,发现氢等离子体处理可以有效提高薄膜的质量及光电性能,归因于薄膜制备过程中氢离子可消除石墨等非金刚石碳。
     成功研制了电极条宽25μm间距50μm的金刚石一维列阵粒子探测器,填补了国内研究空白。研究了金刚石与金属的接触特性,分析了金刚石与金属形成欧姆接触的机理,并获得了沉积Cr/Au作为欧姆接触的最佳工艺。研究了金刚石的抗辐照特性,利用5.5 MeV ~(241)Amα粒子研究了金刚石探测器的性能。在1 V/μm电场时金刚石探测器的典型性能为:暗电流19.25 pA,净光电流138.07 pA,信噪比7.18,能量分辨率4.65%,电荷收集效率39.27%、电荷收集距离78.54μm。经β粒子预辐照使探测器处于“priming”态,钝化了金刚石膜中的俘获陷阱,使电学特性提高,金刚石探测器的电荷收集效率和工作稳定性得到明显改善,使α粒子电荷收集效率从37.07%提高到了39.27%。首次成功测得了多晶(100)取向金刚石膜的载流子寿命为10.21ns。
     利用~(252)Cf中子源研究了CVD金刚石的中子辐照损伤,经中子辐照后金刚石膜的电学和α粒子响应特性明显提高,使α粒子电荷收集效率从38%提高到41.2%,验证了中子也可以使金刚石发生“priming”效应。在获得性能优异金刚石α粒子探测器的基础上,通过在金刚石α粒子探测器点电极面蒸镀一层合适厚度的硼(~(10)B)转换层,成功研制了金刚石中子探测器。与没有硼(~(10)B)转换层相比,镀硼之后探测器对中子有明显的能谱响应,在1 V/μm电场时,对中子的探测效率可达1.67%。同时研究了电场强度和硼(~(10)B)转换层厚度对探测效率的影响。
The outstanding optical and electrical properties of diamond film make it an ideal material for radiation detectors in future especially at high temperature, high radiation and corrosion environments. It has been the international interesting subjects that the fabrication of 'detector grade' CVD diamond films and their applications for detectors.
     In this paper, the process parameters of CVD diamond film deposition were optimized via measuring optical and electrical properties of diamond films. The optimized process parameters of diamond film deposition of substrate temperature, carbon concentration and chamber pressure are 750℃, 0.9% and 4.0 kPa, respectively. 'Detector grade' (100)-oriented diamond films were successfully grown on Si substrates. (100)-oriented films have the smoothest surface and fewer concentrations of defects, thus showing better crystal quality than (111) or randomly oriented diamond films. The smooth surface of CVD diamond film was obtained by a composite technique of laser polishing and hot chemical polishing.
     Optical properties of variously textured diamond films were measured using infrared spectrometric ellipsometery in the wavelength range of 2.5~12.5μm. Refractive index of (100)-oriented diamond film is 2.391. The influence of diamond films microstructure on optical properties was analyzed in detail. Electrical properties of variously textured diamond films had been measured using Keithley4200 semiconductor characterization system and Accent 5500PC Hall effect measurement system. The influence of annealing processing and temperature on resistivity and Hall Effect of diamond films were analyzed in detail. The resistivity, carrier concentration and mobility of (100)-oriented diamond film in room temperature were 1.9×10~(12)Ω.cm, 4.28×10~4 cm~(-3) and 76.9 cm~2/V·s, respectively. The quality and electrical properties of diamond films were increased observably by hydrogen plasma etching, which attributed to the non-diamond phase in films etched off during the process of deposition.
     CVD diamond micro-strip detector with strips of 25μm in width and 50μm between strips was successfully fabricated for the first time at home. Electrode contact properties and mechanisms between diamond and metals were investigated. The optimal process of Cr/Au deposition as ohmic contact was obtained. 5.5 MeV ~(241)Amαparticles were used to measure the performance of diamond detector. At an applied electric field of 1 V/μm, many significant results were achieved, e.g. the dark-current is of 19.25 pA, the net-current of 138.07 pA, the signal-to-noise ratio of 7.18, the energy resolution of 4.65%, the charge collection efficiency of 39.27% and the charge collection distance of 78.54μm. By pre-irradiatation withβparticles, 'priming' effect was attributed to traps being filled and passivated. The charge collection efficiency was dramatically improved from 37.07% to 39.27% due to the 'priming' effect. The carrier life time of (100)-textured diamond with a value of 10.21 ns was measured for the first time.
     After ~(252)Cf neutron irradiation, electrical properties and response to a particle of diamond detector increased evidently, which confirmed 'priming' effect also may take place in diamond by neutron irradiation. The charge collection efficiency to a particle was improved from 38% to 41.2%. On the basis of outstanding properties of diamond particle detector, diamond neutron detector was successfully developed by evaporating a layer of ~(10)B converter with a proper thickness on the surface of diamond a particle detector. Compared with no converter, remarkable response to neutron of diamond detector with a ~(10)B converter was obtained. At an electric field of 1 V/μm, the detecting efficiency to neutron was 1.67%. The influences of electric field and converter thickness on detecting efficiency were also investigated.
引文
[1] Xia Yiben, Sekiguchi Takashi, Zhang Wenjun, Jiang Xin, Ju Jianhua, Wang Linjun, Yao Takafumi. Surfaces of undoped and boron doped polycrystalline diamond films influenced by negative DC bias voltage [J]. Diamond Relat. Mater., 2000, 9 (9-10): 1636-1639.
    [2] Wang Linjun, Xia Yiben, Shen Hujiang, Zhang Minglong, Yang Ying, Wang Lin. Infrared optical properties of diamond films and electrical properties of CVD diamond detectors [J]. J. Phys. D: AppL Phys., 2003, 36(20): 2548-2552.
    [3] J. Isberg, J. Hammersberg, E. Johansson, T. Wikstrom, D.J. Twitchen, A.J. Whitehead, S.E. Coe, G.A. Scarsbrook. High carrier mobility in single-crystal plasma-deposited diamond [J]. Science, 2002, 297(5587): 1670-1672.
    [4] M. Werner, R. Locher. Growth and application of undoped and doped diamond films [J]. Rep. Prog. Phys., 1998, 61(12): 1665-1710.
    [5] F.P. Bundy, H.T. Hall, H.M. Strong, R.J. Wentorf Jun. Man-made diamond [J]. Nature, 1955, 176 (4471): 51-54.
    [6] J.C. Angus, H.A. Will, W.S. Stanko. Growth of diamond seed crystals by vapor deposition [J]. J. Appl. Phys., 1968, 39(6): 2915-2922.
    [7] S. Matsumoto, Y. Sato, M. Kamo, N. Sekata. Vapor deposition of diamond particles from methane [J]. Japan. J. Appl. Phys., 1982, 21(4): L183-L185.
    [8] X. Jiang, C.-P. Klages, R. Zachai, M. Hartweg, H.-J. Fusser. Epitaxial diamond thin films on (001) silicon substrates [J]. Appl. Phys. Lett., 1993, 62(26): 3438-3440.
    [9] P.W. May. Diamond thin films: a 21st-century material [J]. Phil Trans. R. Soc. Lond. A, 2000, 358(1766): 473-495.
    [10] S. Koizumi, K. Watannabe, M. Hasegawa, H. Kanda. Ultraviolet emission from a diamond pn junction [J]. Science, 2001,292(5548): 1899-1901.
    [11] M. Bruzzi, D. Menichelli, S. Pini, M. Bucciolini, J. M61nar, A. Fenyvesi. Improvement of the dosimetric properties of chemical-vapor-deposited diamond films by neutron irradiation [J]. Appl. Phys. Lett., 2002, 81(2): 298-300.
    [12] Wang Linjun, Lou Yanyan, Su Qingfeng, Shi Weimin, Xia Yiben. CVD diamond alpha-particle detectors with different electrode geometry [J]. Optics Express, 2005, 13(21): 8612-8617.
    [13] Qingfeng Su, Jianmin Liu, Linjun Wang, Weimin Shi, Yiben Xia. Efficient CVD diamond films/alumina composite substrate for high density electronics packaging application [J]. DiamondRelat. Mater., 2006, 15(10): 1550-1554.
    [14] R. Sauer. Synthetic diamond-basic research and applications [J]. Cryst. Res. Technol., 1999, 34(2): 227-241.
    [15] K. Jagannadham. Multilayer diamond heat spreader for electronic power devices [J]. Solid-State Electron., 1998, 42(12): 2199-2208.
    [16] R.S. Sussmann, J.R. Brandon, G.A. Scarsbrook, C.G. Sweeney, T.J. Valentine, A.J. Whitehead, C.J.H. Wort. Properties of bulk polycrystalline CVD diamond [J]. Diamond Relat. Mater., 1994, 3(4-6): 303-312.
    [17] R.S. Sussmann, J.R. Brandon, S.E. Coe, C.S.J. Pickles, C.G. Sweeney, A.Wasenczuk, C.J.H. Wort, C.N. Dodge. CVD diamond: a new engineering material for thermal, dielectric and optical applications [J]. Industr. Diamond Rev., 1998, 58 (578): 69-77.
    [18] M.N. Yoder. Wide bandgap semiconductor materials and devices [J]. IEEE Trans. Elec. Dev., 1996, 43(10): 1633-1636.
    [19] M.W. Geis, J.A. Gregorty, B.B. Pate. Capacitance voltage measurements on metal-SiOz-diamond structures fabricated with (100)-and (111)-oriented substrates [J]. IEEE Trans. Elec. Dev., 1991, 38(3): 619-626.
    [20] M.J. Verstraetea, J.C. Charlier. Why is iridium the best substrate for single crystal diamond growth? [J]. Appl. Phys. Lett., 2005, 86(19): 191917.
    [21] Y. Sumikawa, To. Banno, K. Kobayashi, Y. ltoh, H. Umezawa, H. Kawarada. Memory effect of diamond in-plane-gated field-effect transistors [J]. Appl. Phys. Lett., 2004, 85(1): 139-141.
    [22] R. Haubner, B. Lux. Diamond growth by hot-filament chemical vapor deposition: state of the art [J]. Diamond Relat. Mater., 1993, 2(9): 1277-1294.
    [23] Su Qingfeng, Lu Jinfang, Wang Linjun, Liu Jianmin, Ruan Jianfeng, Cui Jiangtao, Shi Weimin, Xia Yiben. Electrical properties of [100]-oriented CVD diamond film [J]. Solid-State Electron., 2005, 49(6): 1044-1048.
    [24] X. Jiang, C.L. Jia. Diamond epitaxy on (001) silicon: An interface investigation [J]. Appl. Phys. Lett., 1995, 67 (9): 1197-1199.
    [25] X. Jiang, K. Schiffmann, C.-P. Klages. Nucleation and initial growth phase of diamond films on (100) silicon [J]. Phys. Rev. B, 1994, 50(12): 8402-8410.
    [26] G. Popovici, M.A. Prelas. Nucleation and selective deposition of diamond thin films [J]. Phys. Status SolidiA, 1992, 132(2): 233-252.
    [27] R.A. Bauer, W.E. Brower. Quantitative nucleation and growth studies of PACVD diamond film formation on (100) silicon [J]._J. Mater. Res., 1993, 8(11): 2858-2869.
    [28] Xia Yiben, Mo Yaowu, Wang Yu, Huang Xiaoqin, Chen Daming, Wang Hong. Nucleation mechanism of polycrystalline diamond film deposited on ceramic alumina by microwave plasma chemical vapor deposition [J]. Chin. Phys. Lett., 1996,13(7): 557-560.
    [29] Y. Lifshitz, Th. Kohler, Th. Frauenheim, I. Guzmann, A. Hoffman, R.Q. Zhang, X.T. Zhou, S.T. Lee. The mechanism of diamond nucleation from energetic species [J]. Science, 2002, 297(5586): 1531-1533.
    [30] S.T. Lee, H.Y. Peng, X.T. Zhou, N. Wang, C.S. Lee, I. Bello, Y. Lifshitz. A nucleation site and mechanism leading to epitaxial growth of diamond films [J]. Science, 2000, 287(5450): 104-106.
    [31] H.M. Liu, D.S. Dandy. Studies on nucleation process in diamond CVD: an overview of recent developments [J]. Diamond Relat. Mater., 1995, 4(10): 1173-1188.
    [32] W.J. Zhang, X. Jiang, C.-P. Klages. (001)-textured growth of diamond films on polycrystalline diamond substrates by bias-assisted chemical vapor deposition [J]. J. Cryst. Growth, 1997,171(3-4): 485-492.
    [33] L. Demuynck, J.C. Arnault, C. Speisser, R. Polini, F. Le Normand. Mechanisms of CVD diamond nucleation and growth on mechanically scratched and virgin Si (100) surfaces [J]. Diamond Relat. Mater., 1997, 6(2-4): 235-239.
    [34] Y. Shibuya, M. Takaya. Effects of substrate pretreatments on diamond synthesis for Si_3N_4 based ceramics [J]. Surf. Coat. Technol, 1998,106(1): 66-71.
    [35] Z.B. Ma, J.H. Wang, W.W. Zhang, A.H. He. Investigation of nucleation and adhesion of diamond films on mirrorsmooth glass substrates [J]. Surf. Coat. Technol., 2004,184(2-3): 307-310.
    [36] K.O. Schweitz, B.B. Schou-Jensen, S.S. Eskildsen. Ultrasonic pre-treatment for enhanced diamond nucleation [J]. Diamond Relat. Mater., 1996, 5(3-5): 206-210.
    [37] K.K. Hirakuri, M. Yoshii, G. Friedbacher, M. Grasserbauer. The effect of ultrasonic vibration on CVD diamond nucleation [J]. Diamond Relat. Mater., 1997, 6(8): 1031-1035.
    [38] O. Ternyak, R. Akhvlediani, A. Hoffman. Study on diamond films with ultra high nucleation density deposited onto alumina, sapphire and quartz [J]. Diamond Relat. Mater., 2005, 14(3-7): 323-327.
    [39] S. Yugo, T. Kanai, T. Kimura, T. Muto. Generation of diamond nuclei by electric field in plasma chemical vapor deposition [J]. Appl. Phys. Lett., 1991, 58(10): 1036-1038.
    [40] P.N. Barnes, R.L.C. Wu, Nucleation enhancement of diamond with amorphous films [J]. Appl. Phys. Lett., 1993, 62(1): 37-39.
    [41] P. Mahalingam, D.S. Dandy. A quasi-equilibrium model for the prediction of interlayer chemistry during diamond chemical vapor deposition [J]. Thin Solid Films, 1998,322(1-2): 108-116.
    [42] J. Yun, D.S. Dandy. A kinetic model of diamond nucleation and silicon carbide interlayer formation during chemical vapor deposition [J]. Diamond Relat. Mater., 2005,14(8): 1377-1388.
    [43] P.A. Dennig, D.A. Stevenson. Influence of substrate preparation upon the nucleation of diamond thin films [C]. In: R. Messier and J. T. Glass, (eds.). Proceedings of the Second International Conference on the New Diamond Science and Technology Special Conference Series Volume. Pittsburgh, Pennsylvania: Materials Research Society, 1991: 403-408.
    [44] K.L. Chuang, L. Chang, C.A. Lu. Diamond nucleation on Cu by using MPCVD with a biasing pretreatment [J]. Mater. Chem. Phys., 2001, 72(2): 176-180.
    [45] L.T. Sun, J.L. Gong, Z.Y. Zhu, D.Z. Zhu, S.X. He, Z.X. Wang, Y. Chen, G. Hu. Nanocrystalline diamond from carbon nanotubes [J].Appl. Phys. Lett., 2004, 84(15): 2901-2903.
    [46] M.D. Irwin, C.G. Pantano, P. Gluche, E. Kohn. Bias-enhanced nucleation of diamond on silicon dioxide [J]. Appl. Phys. Lett., 1997, 71(5): 716-718.
    [47] X. Jiang, W.J. Zhang, M. Paul, C.-P. Klages. Diamond film orientation by ion bombardment during deposition [J]. Appl. Phys. Lett., 1996, 65(14): 1927-1929.
    [48] W.J. Zhang, X. Jiang, Y.B. Xia. The selective etching with H+ ions and its effect on the oriented growth of diamond films [J]. J. Appl. Phys., 1997, 82(4): 1896-1899.
    [49] X. Jiang, W.J. Zhang, C.-P. Klages. Effects of ion bombardment on the nucleation and growth of diamond films [J]. Phys. Rev. B, 1998, 58(11): 7064-7075.
    [50] S. Bah'at, S. Saada, I. Dieguez, E. Bauer-Grosse. Diamond deposition by chemical vapor deposition process: Study of the bias enhanced nucleation step [J]. J. Appl. Phys., 1998, 84(4): 1870-1880.
    [51] X. Jiang, C.L. Jia. Direct local epitaxy of diamond on Si (100) and surface-roughening-induced crystal misorientation [J]. Phys. Rev. Lett., 2000, 84(16): 3658-3661.
    [52] X. Jiang, C.L. Jia. Structure and defects of vapor-phase-grown diamond nanocrystals [J]. Appl. Phys. Lett., 2002, 81)(13): 2269-2271.
    [53] S. Yugo, K. Semoto, T. Kimura. The cause of suppression of the diamond nucleation density [J]. Diamond Relat. Mater., 1996, 5(1): 25-28.
    [54] B.X. Yang, W. Zhu, J. Ahn, H.S. Tan. Carburization and bias effects on textured (100) diamond thin films by microwave plasma enhanced chemical vapor deposition [J]. J. Cryst. Growth, 1995, 151(3): 319-324.
    [55] Xia Yiben, Sekiguchi Takashi, Zhang Wenjun, Jiang Xin, Wu Wenhai, Yao Takafumi. Effects of hydrogen ion bombardment and boron doping on (001) polycrystalline diamond films [J]. J. Cryst. Growth, 2000, 213(3-4): 328-333.
    [56] Y.J. Baik, K.Y. Eun. Texture formation of diamond film synthesized in the C-H-O system [J]. Thin Solid Films, 1992, 214(2): 123-131.
    [57] C. Wild, R. Kohl, N. Herres, W. Miiller-Sebert, P. Koidl. Oriented CVD diamond films: twin formation, structure and morphology [J]. Diamond Relat. Mater., 1994, 3 (4-6): 373-381.
    [58] A.Van der Drift. Evolutionary selection, a principle governing growth orientation in vapour-deposited layers [J]. Philips Rea. Rep., 1967, 22: 267-270.
    [59] K.E. Spear. Diamond- Ceramic coating of the future [J]. J. Am. Ceram. Soc., 1989, 72(2): 171-191.
    [60] B.V. Deryagin, D.V. Fedseev. Growth of diamond and graphite from the gas phase, Diamond growth and films [M]. New York: Elsevier Applied Science, 1989: 7-130.
    [61] P.K. Bachmann. Diamond thin fihn technology I. Diamond deposition [J]. Adv. Mater., 1990, 2(4): 195-199.
    [62] C.M. Donnelly, R.W. McCullough, J. Geddes. Etching of graphite and diamond by thermal energy hydrogen atoms [J]. Diamond Relat. Mater., 1997, 6(5-7): 787-790.
    [63] J.C. Angus, C.C. Hayman. Low-pressure, metastable growth of diamond and "diamondlike" phases [J]. Science, 1988, 241(4868): 913-921.
    [64] N. Lee, A. Badzian. Effect of misorientation angles on the surface morphologies of (001) homoepitaxial diamond thin films [J]. Appl. Phys. Lett., 1995, 66 (17): 2203-2207.
    [65] J.Y. Shim, H.K. Balk. Effect of non-diamond carbon etching on the field emission property of highly sp2 bonded nanocrystalline diamond films [J]. Diamond Relat. Mater., 2001,11)(3-7): 847-851.
    [66] B. Koslowski, S. Strobel, M.J. Wenig, P. Ziemann. Roughness transitions of diamond (100) induced by hydrogen-plasma treatment [J]. Appl. Phys. A, 1998, 66:S1159-S1163.
    [67] J. Alvarez, J.P. Kleider, P. Bergonzo, D. Tromson, E. Snidero, C. Mer. Study of deep defects in polycrystalline CVD diamond from thermally stimulated current and below-gap photocurrent experiments [J]. Diamond Relat. Mater., 2003, 12(3-7): 546-549.
    [68] X. Jiang, C. Rickers. Defect examination of diamond crystals by surface hydrogen-plasma etching [J]. Appl. Phys. Lett., 1997, 75(25): 3905-3809.
    [69] X. Jiang, M. Fryda, C.L. Jia. High quality heteroepitaxial diamond films on silicon: recent progresses [J]. Diamond Relat. Mater., 2000, 9(9-10): 1640-1645.
    [70] X. Jiang, K. Schiffmann, C.-P. Klages, D. Wittorf, C. L. Jia, K. Urban, W. Jager. Coalescence and overgrowth of diamond grains for improved heteroepitaxy on silicon (001) [J]. J. Appl. Phys., 1998, 83(5): 2511-2518.
    [71] K.E. Spear, M. Frenklach. High temperature chemistry of CVD (chemical vapor deposition) diamond growth [J]. Pure Appl. Chem., 1994, 66(9): 1773-1782.
    [72] Linjun Wang, Yiben Xia, Jianhua Ju, Yimin Fan, Yaowu Mo, Weimin Shi. Efficient luminescence from CVD diamond film-coated porous silicon [J]. J. Phys.: Condens. Matter, 2000, 12(13): L257-L260.
    [73] I. Schmidt, C. Benndorf. Low temperature CVD diamond deposition using halogenated precursors deposition on low melting materials: A1, Zn and glass [J]. Diamond Relat. Mater., 2001, 10(3-7): 247-351,
    [74] J. Stiegler, T. Lang, M. Nygard-Ferguson, Y. Kaenel, E. Blank. Low temperature limits of diamond film growth by microwave plasma-assisted CVD [J]. Diamond Relat. Mater., 1996, 5(3-5): 226-230.
    [75] I. Sakaguchi, M. Nishitani-Gamo, K.P. Loh, S. Hishita, H. Haneda, T. Ando. Suppression of surface cracks on (111) homoepitaxial diamond through impurity limitation by oxygen addition [J]. Appl. Phys. Lett., 1998, 73(18): 2675-2677.
    [76] Y.S. Hart, Y.K. Kim, J.Y. Lee. Effects of argon and oxygen addition to the CH_4-H_2 feed gas on diamond synthesis by microwave plasma enhanced chemical vapor deposition [J]. Thin Solid Films, 1997, 31D(1-2): 39-46.
    [77] K. Bobrov, H. Shechter, A. Hoffman, M. Folman. Molecular oxygen adsorption and desorption from single crystal diamond (111) and (100) surfaces [J]. Appl. Surf Sci., 2002, 196(1-4): 173-180.
    [78] T. Yoshitake, T. Nishiyama, T. Hara, K. Nagayama. Consideration of growth process of diamond thin films in ambient oxygen by pulsed laser ablation of graphite [J]. Appl.Surf Sei., 2002, 197-198: 352-356.
    [79] M. Schreck, K.H. Thürer, C. Christensen, M. Müller, B. Stritzker. Effect of oxygen on the bias enhanced nucleation of diamond on silicon [J]. Diamond Relat. Mater., 1999, 8(2-5): 160-165.
    [80] M. Werner. Diamond metallization for device applications [J]. Semicond. Sci. Technol., 2003, 18 (3): S41-S46.
    [81] S. M. Sze. Semiconductor devices: Physics and Technology [M]. 2nd, ed. New York: J. Wiley, 2001: 226-228.
    [82] T. Tachibana, B.E. Williams, J.T. Glass. Correlation of the electrical properties of metal contacts on diamond films with the chemical nature of the metal-diamond interface. I. Gold contacts: A non-carbide-forming metal [J]. Phys. Rev. B, 1992, 45(20): 11968-11974.
    [83] K.L. Moazed, J.R. Zeidler, M.J. Taylor. A thermally activated solid state reaction process for fabricating ohmic contacts to semiconducting diamond [J]. J. Appl. Phys., 1990, 68(5): 2246-2254.
    [84] A.Y.C. Yu. Electron tunneling and contact resistance of metal-silicon contact barriers [J]. Solid-State Electron. 1970, 13(2): 239-247.
    [85] M. Werner, O. Dorsch, H.U. Baerwind, A. Ersoy, E. Obermeier, C. Johnston, S. Romani, RR. Chalker, V. Moore, I.M. Buckley-Golder. Very low resistivity A1-Si ohmic contacts to boron-doped polycrystalline diamond films [J]. Diamond Relat. Mater., 1994, 3(4-6): 983-985.
    [86] F. Fang, C.A. Hewett, M.G. Femandes, S.S. Lau. Ohmic contacts formed by ion mixing in the Si-Diamond System [J]. IEEE Tran. Elects'on Dev., 1989, 36(9): 1873-1876.
    [87] C.A. Mead, W.G. Spitzer. Fermi level position at metal-semiconductor interfaces [J]. Phys. Rev. A, 1964, 134(3): 713-716.
    [88] J. Nakanishi, A. Otsuki, T. Oku, O. Ishiwata, M. Murakami. Formation of ohmic contacts to P-type diamond using carbide forming metals [J]. J. Appl. Phys., 1994, 76(4): 2293-2298.
    [89] C. Gomez-Yanez, M. Alam. Structural and electrical characterization of gold/chemically vapor deposited diamond contact [J]. J. Appl. Phys., 1992, 71(5): 2303-2308.
    [90] M.Y. Liao, Y. Koide, J. Alvarez. Thermally stable visible-blind diamond photodiode using tungsten carbide Schottky contact [J]. Appl. Phys. Lett., 2005, 87(2): 022105.
    [91] M.Y. Liao, J. Alvarez, Y. Koide. Tungsten carbide Schottky contact to diamond toward thermally stable photodiode [J]. Diamond Relat. Mater., 2005, 14 (11-12): 2003-2006.
    [92] B.R. Huang, C.H. Wu, R.F. Sheu. The annealing effect on the electrical property of the Al/undoped diamond film [J]. Diamond Relat. Mater., 2000, 9 (1): 73-81.
    [93] G. Kawaguchi, J. Nakanishi, A. Otsuki, T. Oku, M. Murakami. Dependence of contact resistance on metal electronegativity for B-doped diamond films [J]. J. Appl. Phys., 1994, 75(10): 5165-5170.
    [94] M. Yokoba, Y. Koide, A. Otsuki, F. Ako, T. Oku, M. Murakami. Carrier transport mechanism of Ohmic contact to p-type diamond [J]. J. Appl. Phys., 1997, 81(10): 6815-6821.
    [95] V. Venkatesan, D.M. Malta, K. Das, A.M. Belu. Evaluation of ohmic contacts formed by B+ implantation and Ti-Au metallizatlon on diamond [J]. J. Appl. Phys., 1993, 74(2): 1179-1187.
    [96] H. Naseem, I. Meyyappan, C.S. Prasad, W.D. Brown. Au-based metallizafion on diamond substrates for multichip module applications [J]. Int. J. Microcircuits Electr. Packaging, 1993, 16(2): 257-269.
    [97] H.A. Hoff, G.L. Waytena, C.L. Vold, J.S. Suehle, I.P. Isaacson, M.L. Rebbert, D.I. Ma, K. Harris. Ohmic contacts to semiconducting diamond using a Ti/Pt/Au trilayer metallization scheme [J]. Diamond Relat. Mater., 1996, 5(12): 1450-1456.
    [98] Y.G. Chert, M. Ogura, S. Yamasaki, H. Okushi. Ohmic contacts on p-type homoepitaxial diamond and their thermal stability [J]. Semicond. Sci. Technol., 2005, 20(8): 860-863.
    [99] T. Tachibana, B.E. Williams, J. T. Glass. Correlation of the electrical properties of metal contacts on diamond films with the chemical nature of the metal-diamond interface. Ⅱ. Titanium contacts: A carbide-forming metal [J]. Phys. Rev. B, 1992, 45(20): 11975-11981.
    [100] T. Tachibana, J.T. Glass. Correlation of interface chemistry to electrical properties of metal contacts on diamond [J]. Diamond Relat. Mater., 1993, 2(5-7): 963-969.
    [101] K. Das, V. Venkatesan, K. Miyata, D.L. Dreifus, J.T. Glass. A review of the electrical characteristics of metal contacts on diamond [J]. Thin Solid Films, 1992, 212(1-2): 19-24.
    [102] C.A. Hewett, J.R. Zeidler. Issues in diamond device fabrication [J]. Diamond Relat. Mater., 1992, 1(5-6): 688-691.
    [103] J.F. Prins. Ion-implanted n-type diamond: electrical evidence [J]. Diamond Relat. Mater., 1995, 4(5-6): 580-585.
    [104] Y. Koide, M. Yokoba, A. Otsuki, F. Ako, T. Oku, M. Murakami. Carrier transport mechanisms through the metal/p-type diamond semiconductor interface [J]. Diamond Relat. Mater., 1997, 6(5-7): 847-851.
    [105] H.J. Looi, L.Y.S. Pang, M.D. Whitfield, J.S. Foord, R.B. Jackman. Engineering low resistance contacts on p-type hydrogenated diamond surfaces [J]. Diamond Relat. Mater., 2000, 9(3-6): 975-981.
    [106] Y.G. Chen, M. Ogura, S. Yamasaki, H. Okushi. Investigation of specific contact resistance of ohmic contacts to B-doped homoepitaxial diamond using transmission line model [J]. Diamond Relat. Mater., 2004, 13(3-6): 2121-2124.
    [107] K. Das, V. Venkatesan, T. P. Humphreys. Ohmic contacts on diamond by B ion implantation and TiC-Au and TaSiz-Au metallization [J]. J. Appl. Phys., 1994, 76(4): 2208-2212.
    [108] K. Nishimura, K. Das, J.T. Glass. Material and electrical characterization of polycrystalline boron-doped diamond films grown by microwave plasma chemical vapor deposition [J]. J. Appl. Phys., 1991, 69(5): 3142-3148.
    [109] M. Wemer, C. Johnston, P.R. Chalker, S. Romani, I.M. Buckley-Golder. Electrical characterization of A1/Si ohmic contacts to heavily boron doped polycrystalline diamond films [J]. J. Appl. Phys., 1996, 79(5): 2535-2541.
    [110] M. Werner, R. Job, A. Denisenko, A. Zaitsev, W.R. Fahmer, C. Johnston, P.R. Chalker, I.M. Buckley-Golder. How to fabricate low-resistance metal-diamond contacts [J]. Diamond Relat. Mater., 1996, 5(6-8): 723-727.
    [111] A. Aleksov, S.D. Wolter, J.T. Prater, Z. Sitar. Fabrication and thermal evaluation of silicon on diamond wafers [J]. J. Electron. Mater., 2005, 34(7): 1089-1093.
    [112] P.M. Fabis. Thermal engineering of electronics packages using CVD diamond [C]. In: C.P. Wong. IEEE Conference Proccedings 1999 International Symposium on Advanced Packaging Materials Processes, Properties and Interfaces. 1999: 125-132.
    [113] S.S. Dahlgren, H. T. Hall, Jr. Novatek. High-pressure polycrystalline diamond as a cost effective heat spreader [J]. Therm. Thermomechan. Phenom. Electron. Syst., 2000, 1: 298-303.
    [114] X.W. Zhu, D.M. Aslam, Y.X. Tang, B.H. Stark, K. Najafi. The fabrication of all-diamond packaging panels with build-in interconnects for wireless integrated microsystems [J]. J. Microelectromechan. Syst., 2004, 13(3): 1-10.
    [115] K.J. Gray. Effective thermal conductivity of a diamond coated heat spreader [J]. Diamond Relat. Mater., 2000, 9(2): 201-204.
    [116] Y. Mo, Y. Xia, W. Wu. A nucleation mechanism for diamond film deposited on alumina substrates by microwave plasma CVD [J]. J. Cryst. Growth, 1998, 191(3): 459-465.
    [117] Mo Yaowu, Xia Yiben, Huang Xiaoqin, Wang Hong. Dielectronic properties of diamond film/alumina composites [J]. Thin Solid Films, 1997, 305(1-2): 266-269.
    [118] E. Liu, B. Blanpain, J.-P. Celis. Fretting friction and wear of polycrystalline diamond coatings [J]. Diamond Relat. Mater., 1996, 5(6-8): 649-653.
    [119] Y. Sakamoto, M. Takaya. Preparation of diamond-coated tools and their cutting performance [J]. J. Mater. Proc. Technol., 2002, 127(2): 151-154.
    [120] T.P. Mollart, K.L. Lewis, C.S.J. Pickles, C.J.H. Wort. Factors affecting the optical performance of CVD diamond infrared optics [J]. Semicond. Sci. Technol., 2003, 18(3): S117-S124.
    [121] D.S. Lira, J.H. Kim. Erosion damage and optical transmittance of diamond films[J]. Thin Solid Films, 2000, 377-378: 217-221.
    [122] S.P. McGeoch, F. Placido, Z.Gou, C.J.H. Wort, J.A. Savage. Coatings for the protection of diamond in high-temperature environments [J]. Diamond Relat. Mater., 1999, 8(2-5): 916-919.
    [123] A.R. Davies, J.E. Field. The solid particle erosion of free-standing CVD diamond [J]. Wear, 2002, 252(1-2): 96-102
    [124] J.E. Gerbi, O. Auciello, J. Birrell, D.M. Gruen, B.W. Alphenaar, J.A. Carlisle. Electrical contacts to ultrananocrystalline diamond [J]. Appl. Phys. Lett., 2003, 83(10): 2001-2003.
    [125] E. Kohn, M. Adamschik, P. Schmid, A. Denisenko, A. Aleksov, W. Ebert. Prospects of diamond devices [J]. J. Phys. D: AppI. Phys., 2001, 34(16): R77-R85.
    [126] S.A. Catledgel, Y.K. Vohral, P.B. Mirkarimi. Low temperature growth of nanostructured diamond on quartz spheres [J]. J. Phys. D: Appl. Phys., 2005, 38(9): 1410-1414.
    [127] K. Meykens, K. Haenen, M. Nesláek, L.M. Stals, C.S.J. Pickles, R.S. Sussmann. Measurement and mapping of very low optical absorption of CVD diamond IR windows [J]. DiamondRelat. Mater., 2000, 9(3-6): 1021-1025.
    [128] H. Windischmann, G. F. Epps. Properties of diamond membranes for x-ray lithography [J]. J. Appl. Phys., 1990, 68(11): 5665-5673.
    [129] O. Etmazria, M.E. Hakiki, V. Mortet, B.M. Assouar, M. Nesladek, M. Vanecek, E Bergonzo, P. Alnot. Effect of diamond nucleation process on propagation losses of A1N/diamond SAW filter [J]. IEEE Trans. Ultraso., Ferroelect., Freq. Control., 2004, 51(12): 1704-1709.
    [130] V. Mortet, O. Elmazria, M. Nesladek, J. D'Haen, G. Vanhoyland, M. Elhakiki, A. Tajani, E. Bustarret, E. Gheeraert, M. D'Olieslaeger, P. Alnot. Study of aluminium nitride/freestanding diamond surface acoustic waves filters [J]. Diamond Relat. Mater., 2003, 12(3-7): 723-727.
    [131] V. Mortet, O. Elmazria, M. Nesladek, M.B. Assouar, G. Vanhoyland, J. D'Haen, M. D'Olieslaeger, P. Alnot. Surface acoustic wave propagation in aluminum nitride-unpolished freestanding diamond structures [J]. Appl. Phys. Lett., 2002, 81(9): 1720-1722.
    [132] M. Ishihara, T. Nakamura, F. Kokai, Y. Koga. Preparation of AlN and LiNbO_3 thin films on diamond substrates by sputtering method [J]. Diamond Relat. Mater., 2002, 11(3-6): 408-412.
    [133] H. Nakahata, S. Fujii, K. Higaki, A. Hachigo, H. Kitabayashi, S. Shikata, N. Fujimori. Diamond-based surface acoustic wave devices [J]. Semicond. Sci. Technol., 2003, 18(3): S96-S104.
    [134] T. Lamara, M. Belmahi, O. Elmazria, L. Le Brizoual, J. Bougdira, M. Rémy, P. Alnot. Freestanding CVD diamond elaborated by pulsed-microwave-plasma for ZnO/diamond SAW devices [J]. Diamond Relat. Mater., 2004, 13(4-8): 581-584.
    [135] M.D. Whitfield, B. Audic, C.M. Flannery, L.P. Kehoe, G.M. Crean, R.B. Jackman. Acoustic wave propagation in free standing CVD diamond: Influence of film quality and temperature [J]. Diamond Relat. Mater., 1999, 8(2-5): 732-737.
    [136] C.M. Flannery, M.D. Whitfield, R.B. Jackman. Acoustic wave properties of CVD diamond [J]. Semicond. Sci. Technol., 2003, 18(3): S86-S95.
    [137] P.J. Boudreaux, R.C. Eden. Thermal analysis of spray cooled 3-D interconnected diamond substrate MCMs: comparison with experimental measurements [J]. IEEE Trans. Dev. Mater. Reliab., 2004, 4(4): 594-604.
    [138] R.C. Eden. Application of diamond substrates for advanced high density packaging [J]. Diamond Relat. Mater., 1993, 2(5-7): 1051-1058.
    [139] I. Amato. Fanning the Hope for Flat Diamond [J]. Science, 1991, 252(5004): 375.
    [140] A. Aleksov, M. Kubovic, N. Kaeb, U. Spitzberg, A. Bergmaier, G. Dollinger, Th. Bauer, M. Schreck, B. Stritzker, E. Kohn. Diamond field effect transistors-concepts and challenges [J]. Diamond Relat. Mater., 2003, 12(3-7): 391-398.
    [141] T. Banno, M. Tachiki, K. Nakazawa, Y. Sumikawa, H. Umezawa, H. Kawarada. Fabrication of diamond in-plane-gated field effect transistors using oxygen plasma etching [J]. Diamond Relat. Mater., 2003, 12(3-7): 408-412.
    [142] H.J. Looi, L.Y.S. Pang, M.D. Whitfield, J.S. Foord, R.B. Jackman. Progress towards high power thin film diamond transistors [J]. Diamond Relat. Mater., 1999, 8(2-5): 966-971.
    [143] A. Hokazono, K. Tsugawa, H. Umezana, K. Kitatani, H. Kawarada. Surface p-channel metal-oxide-semiconductor field effect transistors fabricated on hydrogen terminated (001) surfaces of diamond [J]. Solid-State Electron., 1999, 43(8): 1465-1471.
    [144] Y. Gurbuz, O. Esame, I. Tekin, W.P. Kang, J.L. Davidson. Diamond semiconductor technology for RF device applications [J]. Solid-State Electron., 2005, 49(7): 1055-1070.
    [145] H. Umezawa, H. Taniuchi, T. Arima, M. Tachiki, H Kawarada. Potential applications of surface channel diamond field-effect transistors [J]. Diamond Relat. Mater., 2001, 10(9-10): 1743-1748.
    [146] A. Aleksov, A. Denisenko, E. Kohn. Prospects of bipolar diamond devices [J]. Solid-State Electron., 2000, 44(2): 369-375.
    [147] K. Tsugawa, K. Kitatani, H. Noda, A. Hokazono, K. Hirose, M. Tajima, H. Kawarada. High performance diamond surface-channel field-effect transistors and their operation mechanism [J]. DiamondRelat. Mater., 1999, 8(2-5): 927-933.
    [148] W. Adam, et al. (RD42 Collaboration). Performance of irradiated CVD diamond micro-strip sensors [J]. Nucl. Instr. Meth. A, 2002, 476(3): 706-712.
    [149] W. Adam, et al. (RD42 Collaboration). Micro-strip sensors based on CVD diamond [J]. Nucl. Instr. Meth. A, 2000, 453(1-2): 141-148.
    [150] W. Adam, et al. (RD42 Collaboration). Review of the development of diamond radiation sensors [J]. Nucl. Instr. Meth. A, 1999, 434(1): 131-145.
    [151] M. Friedl, et al. (RD42 Collaboration). CVD diamond detectors for ionizing radiation [J]. Nucl. Instr. Meth. A, 1999, 435(1-2): 194-201.
    [152] R. Wedenig, et al. (RD42 Collaboration). CVD diamond pixel detectors for LHC experiments [J]. Nucl. Phys. B (Proc. Suppl.), 1999, 78(1-3): 497-504.
    [153] M. Krammer, et al. (RD42 Collaboration). Status of diamond particle detectors [J]. Nucl. Instr. Meth. A, 1998, 418(1): 196-202.
    [154] C. Bauer, et al. (RD42 Collaboration). Recent results from the RD42 diamond detector collaboration [J]. Nucl. Instr. Meth. A, 1996, 383(1): 64-74.
    [155] H. Kagan. Recent advances in diamond detector development [J]. Nucl. Instr. Meth. A, 2005, 541(1-2): 221-227.
    [156] D. Tromson, A. Brambilla, P. Bergonzo, A. Mas, C. Hordequin, C. Mer, F. Foulon. Influence of temperature on the response of diamond radiation detectors [J]. J. Appl. Phys., 2001, 90(3): 1608-1611.
    [157] A. Mainwood. Recent developments of diamond detectors for particles and UV radiation [J]. Semicond. Sci. Technol., 2000, 15(9): R55-R63.
    [158] E. Berdermann K. Blasche, P. Moritz, H. Stelzer, B. Voss. The use of CVD-diamond for heavy-ion detection [J]. Diamond Relat. Mater., 2001, 10(9-10): 1770-1777.
    [159] J.P. Negre, C. Rubbelynck. Application of fast CVD diamond photoconductor detectors to MeV X-ray metrology for the AIRIX flash radiographic facility [J]. Nucl. Instr. Meth. A, 2000, 451(3): 638-650.
    [160] G.J. Schmid, J.A. Koch, R.A. Lerche, M.J. Moran. A neutron sensor based on single crystal CVD diamond [J]. Nucl. Instr. Meth. A, 2004, 527(3): 554-561.
    [161] G. Hall. Semiconductor particle tracking detectors [J]. Rep. Prog. Phys., 1994, 57(7): 481-531.
    [162] M. Bruzzi. Radiation damage in silicon detectors for high-energy physics experiments [J]. IEEE Tran. Nucl. Sci., 2001, 48(4): 960-971.
    [163] M. Moll, E. Fretwurst, G. Lindstrom, Leakage current of hadron irradiated silicon detectors material dependence [J]. Nucl. Instr. Meth.A, 1999, 426(1): 87-93.
    [164] C.N. Taylor, et al. (RD2 Collaboration). Radiation induced bulk damage in silicon detectors [J]. Nucl. Instr. Meth. A, 1996, 383(1): 144-154.
    [165] C.R Beetz, B. Lincoln, D.R. Winn, K. Segall, M. Vasas, D. Wall. Diamond film optical, X-ray and particle detectors [J]. IEEE Tran. Nucl. Sci., 1991,38(2): 107-109.
    [166] W. Adam, et al. (RD42 Collaboration). The development of diamond tracking detectors for the LHC [J]. Nucl. Instr. Meth. A, 2003, 514(1-3): 79-86.
    [167] W. Adam, et al. (RD42 Collaboration). Status of the R&D activity on diamond particle detectors [J]. Nucl. Instr. Meth. A, 2003, 511(1-2): 124-131.
    [168] S. Wang, P. Sellin, A. Lohstroh. Alpha particle transient response of a polycrystalline diamond detector [J]. Carbon, 2005, 43(15): 3167-3171.
    [169] T. Tanaka, J. Kaneko, D. Takeuchi, H. Sumiya, M. Katagiri, T. Nishitani, H. Takeuchi, T. Iida, H. Ohkushi. Diamond radiation detector made of an ultrahigh-purity type Ⅱa diamond crystal grown by high-pressure and high-temperature synthesis [J]. Rev. Sci. Instr, 2001, 72(2): 1406-1410.
    [170] E. Klugmann, M. Polowczyk. Semiconducting diamond as material for high temperature thermistors [J]. Mater. Res. Innovat., 2000, 4(1): 45-48.
    [171] A. Mainwood. CVD diamond particle detectors [J]. Diamond Relat. Mater., 1998, 7(2-5): 504-509.
    [172] K.J. Gray, R M. FaNs. Design-to-implementation case studies of CVD diamond in r.f./ microwave package and detector applications [J]. Diamond Relat. Mater, 1997, 6(2-4): 191 - 195.
    [173] C.M. Butter, J. Conway, R. Meyfarth, G. Scarsbrook, P.J. Sellin, A. Whitehead. CVD diamond detectors as dosimeters for radiotherapy [J]. Nucl. Instr. Meth. A, 1997, 392(1-3): 281-284.
    [174] M. Krammer, et al. (RD42 Collaboration). CVD diamond sensors for charged particle detection [J]. Diamond Relat. Mater., 2001,111(9-10): 1778-1782.
    [175] Qingfeng. Su, Yiben Xia, Linjun Wang, Jianmin Liu, Jianfeng Ruan, Weimin Shi. Electrical properties of CVD diamond detector and detection for alpha particle [J]. Mod. Phys. Lett. A, 2005, 211 (38): 2949-2956.
    [176] C. Manfredotti, P. Polesello, M. Truccato, E. Vittone, A. Lo Giudiceb, F. Fizzottib. CVD diamond detectors [J]. Nucl. Instr. Meth. A, 1998, 4111(1): 96-99.
    [177] M. Bruzzi, M. Bucciolini, M. Casati, C. DeAngelis, S. Lagomarsino, I. Lφvik, S. Onori, S. Sciortino. CVD diamond particle detectors used as on-line dosimeters in clinical radiotherapy [J]. Nucl. Instr. Meth. A, 2004, 518(1-2): 421-422.
    [178] P. Gonon, S. Prawer, D. Jamieson, Thermally stimulated currents in polycrystalline diamond films: Application to radiation dosimetry [J]. Appl. Phys. Lett., 1997, 70(22): 2996-2998.
    [179] P.J. Sellin, M.B.H. Breese. Spectroscopic response of coplanar diamond alpha particle detectors [J]. IEEE Tran. Nucl. Sci., 2001, 48(6): 2307-2312.
    [180] T. Sugeta, T. Urisu. High-gain-metal-semiconductor-metal photodetectors for high-speed optoelectronic circuits [J]. IEEE Trans. Electr. Dev., 1979, ED-26: 1855.
    [181] F. Borchelt, W. Dulinski, K. K. Gan, et al. First measurements with a diamond microstrip detector [J]. Nucl. Instr. Meth. A, 1995,354(2-3): 318-327.
    [182] W. Adam, et al. (RD42 Collaboration). Recent results with CVD diamond trackers [J]. Nucl. Phys. B (Proc. Suppl.), 1999, 78(1-3): 329-334.
    [183] H. Kagan. Diamond radiation detectors may be forever! [J]. NucL Instr. Meth. A, 2005, 546(1-2): 222-227.
    [184] R. Stone, J. Doroshenko, T. Koeth, L. Perera, S. Schnetzer, S. Worm. CVD diamond pixel development [J]. IEEE Tran. Nucl. Sci., 2002, 49(3): 1059-1062.
    [185] D. Husson, et al. (RD42 Collaboration). Neutron irradiation of CVD diamond samples for tracking detectors [J]. NucL Instr. Meth. A, 1997, 388(3): 421-426.
    [186] C. Mer, M.Pomorski, P. Bergonzo, D.T romson, M. Rebisz, T. Domenech, J.-C. Vuillemin, F. Foulon, M. Nesladek, O.A. Williams, R.B. Jackman. An insight into neutron detection from potycrystalline CVD diamond films [J]. Diamond Relat. Mater., 2004, 13(4-8): 791-795.
    [187] M. Marinelli, E. Milania, M.E. Morgada, G. Pucell, G. Rodriguez, A. Yucciarone, G. Verona-Rinati, M. Angelone, M. Pillon. Separate measurement of electron and hole mean drift distance in CVD diamond [J]. Diamond Relat. Mater., 2004, 13(4-8): 929-933.
    [188] T. Behnke, A. Oh, A. Wagner, W. Zeuner, A. Bluhm, C.-P. Klages, M. Paul, L. Schafer. Development of diamond films for particle detector applications [J]. Diamond Relat. Mater., 1998, 7(10): 1553-1557.
    [189] K. Hecht. Mechanism of primary photoelectric current in insulating crystals [J]. Z. Phys., 1932, 77(3-4): 235-245.
    [190] H. Pernegger. High mobility diamonds and particle detectors [J]. Phys. Stat. Sol. A, 2006, 203(13): 3299-3314.
    [191] W. Adam, et al. (RD42 Collaboration). Radiation hard diamond sensors for future tracking applications [J], Nucl. Instr. Meth. A, 2006, 565(1): 278-283.
    [192] S. Mersia, E. Borchib, M. Bruzzib, R. D'Alessandroc, S. Lagomarsinob, S. Sciortino. A study of charge collection processes on polycrystalline diamond detectors [J]. Nucl. Instr. Meth. A, 2004, 530(1-2): 146-151.
    [193] B. Gudden, R. Pohl. Das quantenaquivalent bei der lichtelektrischen leitung [J]. Z. Phys., 1923, 17:331-346.
    [194] R. Robertson, J.J. Fox, A.E. Martin. Two types of diamond [J]. Phil. Trans. R. Soc. A, 1934, 232: 463-535.
    [195] S.F. Kozlov, R. Stuck, M. Hage-Ali, P. Siffert. Preparation and characteristics of natural diamond nuclear radiation detectors [J]. IEEE Trans. Nucl. Sci., 1975. NS-22(1): 160-170.
    [196] S.F. Kozlov, E.A. Konorova, Y.A. Kuznetsov, Y.A. Salikov, V.I. Redko, V.R. Grinberg, M.L. Meilman. Diamond dosimeter for x-ray and gamma-radiation [J]. IEEE Trans. Nucl. Sci., 1977, NS-24: 235-237.
    [197] P. Bergonzo, D. Yromson, C. Mer. Radiation detection devices made from CVD diamond [J]. Semicond. Sci. Technol., 2003, 18(3): S105-S112.
    [198] D.R. Kania, M.I. Landstrass, M.A. Plano, L.S. Pan, S. Han. Diamond radiation detectors [J]. Diamond Relat. Mater., 1993, 2(5-7): 1012-1019.
    [199] P. Bergonzo, A. Brambilla, D. Tromson, C. Mer, B. Guizard, R. D. Marshall, F. Foulon. CVD diamond for nuclear detection applications [J]. Nucl. Instr. Meth. A, 2002, 476(3): 694-700.
    [200] C. Jany, A. Tardieu, A. Gicquel, E Bergonzo, F. Foulon. Influence of the growth parameters on the electrical properties of thin polycrystalline CVD diamond films [J]. Diamond Relat. Mater., 2000, 9(3-6): 1086-1090.
    [201] M. Marinelli, E. Milani, A. Paoletti, A. Tucciarone, G. Verona Rinati, M. Angelone, M. Pillon. High collection efficiency in chemical vapor deposition diamond particle detectors [J]. DiamondRelat. Mater., 2000, 9(3-6): 998-1002.
    [202] S.G. Wang, Q. Zhang, S.F. Yoon, J. Ahn. Investigation on polycrystalline CVD diamond based alpha-particle detectors [J]. Mater. Res. Bull., 2002, 37(6): 1033-1040.
    [203] R.J. Keddy, T.L. Zam. Diamond radiation detectors [J]. Rad. Phys. Chem., 1993, 41(4-5): 767-773.
    [1] H.Yoneda. K.-I. Ueda, Y. Aikawa. K. Baba. N. Shohata. Photoconductive properties of chemical vapor deposited diamond switch under high electric field strength [J]. Appl. Phys. Lett., 1995, 66 (4): 460-462.
    [2] Linjun Wang, Yiben Xia, Minglong Zhang, Zhijun Fang, Weimin Shi. The influence of deposition conditions on the dielectric properties of diamond films [J]. Semicond. Sci. Technol., 2004, 19(3): L35-L38.
    [3] Linjun Wang, Yiben Xia, Jianhua Ju~ Wenguang Zhang. Electrical properties of chemical vapor deposition diamond films and electrical response to X-ray [J]. Diamond Relat. Mater., 2000, 9(9-10): 1617-1620.
    [4] J.J. Schermer, W.J.R van Enckevort, L.J. Giling. Flame deposition and characterization of large type IIa diamond single crystals [J]. Diamond Relat. Mater., 1994, 3(4-6): 408-416.
    [5] C.E. Nebel, Electronic properties of CVD diamond [J]. Semicond. Sci. Technol., 2003, 18(3): S1-S11.
    [6] E.-K. Souw, R.J. Meilunas, C. Szeles, N.M. Ravindra, F.-M. Tong. Photoconductivity of CVD diamond under bandgap and subbandgap irradiations [J]. Diamond Relat. Mater, 1997, 6(9): 1157-1171.
    [7] S.I. Shah, M.M. Waite. Effect of oxygen on the nucleation and growth of diamond thin films [J]. Appl. Phys. Lett., 1992, 61(26): 3113-3115.
    [8] 苏青峰.夏义本,王林军,张明龙,楼燕燕.顾蓓蓓,史伟民.(100)定向CVD金刚石薄膜的制备及其电学性能研究[J].半导体学报,2005,26(5):947-951.
    [9] 苏青峰,刘健敏,王林军,史伟民,夏义本.沉积工艺条件对金刚石薄膜红外椭偏光学性质的影响[J].物理学报,2006,55(10):5145-5149.
    [10] P.J. McMarr, K. Vedan, J. Narayan. Spectroscopic ellipsometry: A new tool for nondestructive depth profiling and characterization of interfaces [J]. J. Appl. Phys., 1986, 59(3): 694-701.
    [11] Y. Cong, R.W. Collins, G.F. Epps, H. Windischmann. Spectroellipsometry characterization of optical quality vapor-deposited diamond thin films [J]. Appl. Phys. Lett., 1991, 58(8): 819-821.
    [12] Linjun Wang, Yiben Xia, Hujiang Shen, Minglong Zhang, Qingfeng Su, Yanyan Lou, Beibei Gu. Fitting models of IRSE data for diamond films on silicon grown by MPCVD method [J]. J. Cryst. Growth, 2004, 270(1-2): 228-231.
    [13] LinjunWang, Yiben Xia, Minglong Zhang, Hujiang Shen, Qingfeng Su, Beibei Gu and Yanyan Lou. Spectroscopic ellipsometric study of CVD diamond films: modelling and optical properties in the energy range of 0.1-0.4 eV [J]. J. Phys. D: Appl. Phys., 2004, 37(14): 1976-1979.
    [14] D.A.G. Bruggeman. Berechnung verscheidener physicalischer Konstaten von heterogenen Substanzen [J]. Ann. Phys. Lpz., 1935, 24: 636-679.
    [15] J. Lee, R.W. Collins, V.S. Veerasamy, J. Robertson. Analysis of the ellipsometric spectra of amorphous carbon thin films for evaluation of the sp~3-bonded carbon content [J]. Diamond Relat. Mater., 1998, 7(7): 999-1099.
    [16] W. Kulisch, L. Ackermann, B. Sobisch. On the mechanisms of bias enhanced nucleation of diamond [J]. Phys. Stat. Sol. A, 1996, 154(1): 155-174.
    [17] Z. Yin, H.S. Tan, EW. Smith. Determination of the optical constants of diamond films with a rough growth surface [J]. Diamond Relat. Mater., 1996, 5(12): 1490-1496.
    [18] B.V. Spitsyn, L.L. Bouilov, B.V. Derjaguin. Vapor growth of diamond on diamond and other surfaces [J]. J. Cryst. Growth, 1981, 52(1): 219-226.
    [19] J.C. Angus, C.C. Hayman. Low-pressure, metastable growth of diamond and "diamondlike" phases [J]. Science, 1988, 241(4868): 913-921.
    [20] K.E. Spear. Diamond-ceramic coating of the future [J]. J. Am. Ceram. Soc., 1989, 72(2): 171-191.
    [21] M. Frenklach, H. Wang. Detailed surface and gas-phase chemical kinetics of diamond deposition [J]. Phys. Rev. B, 1991, 43(2): 1520-1545.
    [22] K. Kobashi, K. Nishimura, Y. Kawate, T. Horiuchi. Synthesis of diamonds by use of microwave plasma chemical-vapor deposition: Morphology and growth of diamond films [J]. Phys, Rev, B, 1988, 38(6): 4067-4084.
    [23] J.C. Angus, H.A. Will, W.S. Stanko. Growth of diamond seed crystals by vapor deposition [J]. J. Appl. Phys., 1968, 39(6): 2915-2922.
    [24] E.G. Rakov. Calculation of diamond chemical vapor deposition region in C-H-O phase diagram [J]. Appl. Phys. Lett., 1996, 69(16): 2370-2372.
    [25] I. Sakaguchi, M. Nishitani-Gamo, K. P. Loh, H. Haneda, T. Ando. Homoepitaxial growth and hydrogen incorporation on the chemical vapor deposited (111) diamond [J]. J. Appl. Phys., 1999, 86(3): 1306-1310.
    [26] H. Guo, M. Alan. Strain in CVD diamond films: effects of deposition variables [J]. Thin Solid Films, 1992, 212(1-2): 173-179.
    [27] J.J. Wang, F.X. Lu. Effect of Pressure on the nucleation of diamond with addition of oxygen in the microwave plasma chemical vapor deposition system [J]. Chin. Phys. Lett., 1996, 13(6): 473-476.
    [28] Qingfeng Su, Yiben Xia, Linjun Wang, Ling Ren, Minglong Zhang, Weimin Shi. Preparation and characterization of [100]-oriented diamond films by HFCVD [J]. Proc. of SPIE, 5774, 2004: 389-393.
    [29] 屠宁强,夏义本,王鸿.Si衬底上金刚石薄膜的成核和生长机理[J].应用科学学报,1993,11(3):258-264.
    [30] Y.J. Baik, K.Y. Eun. Texture formation of diamond film synthesized in the C-H-O system [J]. Thin Solid Films, 1992, 214(2):123-131.
    [31] A.Van der Drift. Evolutionary selection, a principle governing growth orientation in vapour deposited layers [J]. Philips Rea. Rep., 1967, 22: 267-270.
    [32] C. Wild, P. Koidl, W.M. Sebert, H. Walcher, R. Kohl, N. Herres, R. Locher, R. Samlenski, R.Brenn. Chemical vapour deposition and characterization of smooth {100}-faceted diamond films[J]. Diamond Relat. Mater., 1993, 2(2-4):158-168.
    [33] C.A. Wolden, Z. Sitar, R.F. Davis, J.T. Prater. Textured diamond growth by low pressure flat flame chemical vapor deposition [J]. Appl. Phys. Lett., 1996, 69(15): 2258-2260.
    [34] Z. Yu, A. Flodstr6m. Pressure dependence of growth mode of HFCVD diamond [J]. Diamond Relat. Mater., 1997, 6(1): 81-84.
    [35] D. Tromson, A. Brambilla, F. Foulon, C. Mer, B. Guizard, R. Barrett, P. Bergonzo. Geometrical non-uniformities in the sensitivity of polycrystalline diamond radiation detectors [J]. Diamond Relat. Mater., 2000, 9(11): 1850-1855.
    [36] R. Resch, T. Prohaska, G. Friedbacher, M. Grasserbauer, T. Kanniainen, S. Lindroos, M. Leskela, L. Niinisto, J.A.C. Broekaert. In-situ investigation of ZnS deposition on mica by successive ionic layer adsorption and reaction method as studied with atomic force microscopy [J]. Analy. Bioanaly. Chem., 1995, 353(5-8): 772-777.
    [37] G. Friedbacher, E. Bouveresse, G. Fuchs, M. Grasserbauer, D. Schwarzbach, R. Haubner, B. Lux. Pretreatment of silicon substrates for CVD diamond deposition studied by atomic force microscopy [J]. Appl. Surf. Sci., 1995, 84(2): 133-143.
    [38] B.R. Huang, W.Z. Ke. The surface properties on both sides of the isolated diamond film [J]. Mater. Sci. Eng. B, 1999, 64(3): 187-191.
    [39] Xuanxiong Zhang, Tiansheng Shi, Jianxin Wang, Xikang Zhang. Oriented growth of a diamond film on Si (100) by hot filament chemical vapor deposition [J]. J. Crysts.l Growth, 1995, 155(1-2): 66-69.
    [40] 唐壁玉.靳九成.李绍绿,周灵平.陈宗璋.CVD金刚石薄膜的应力研究[J].高压物理学报,1997,11(1):56-60.
    [41] S. Prawer, R.J. Nemanich. Raman spectroscopy of diamond and doped diamond [J]. Phil. Trans. R. Soc. Lond. A, 2004, 362(1824): 2537-2565.
    [42] 夏义本,王瑜.金刚石薄膜研究及应用[J].电子元件,1994,1:28-32.
    [43] J.C. Angus. Diamond and diamond-like films [J]. Thin Solid Films, 1992, 216(I): 126-133.
    [44] M.H. Grimsditch, E. Anastassakis, M. Cardona. Effect of uniaxial stress on the zone-center optical phonon of diamond [J]. Phys. Rev. B, 1978, 18(2): 901-904.
    [45] Qingfeng. Su, Yiben Xia, Linjun Wang, Jianmin Liu, Jianfeng Ruan, Weimin Shi. Electrical properties of CVD diamond detector and detection for alpha particle [J]. Mod. Phys. Lett. A, 2005, 20 (38): 2949-2956.
    [46] J. Mollá, A. Ibarra, C. Maffiotte. Dielectric losses of self-supporting chemically vapour deposited diamond materials [J]. Diamond Relat. Mater., 2000, 9(9-10): 1071-1075.
    [47] F.X. Lu, H.D. Zhang, Y.M. Tong, J.X. Yang, C.M. Li, G.C. Chen, W.Z. Tang. Dielectric property of thick freestanding diamond films by high power arcjet operating at gas recycling mode [J]. DiamondRelat. Mater., 2004, 13(9): 1714-1718.
    [48] G. Zhao, T. Stacy, E.J. Charlson, E.M. Charlson, C.H. Chao, M. Hajsaid, J. Meese, G. Popovici, M. Prelas. Silver on diamond Schottky diodes formed on boron doped hot-filament chemical vapor deposited polycrystalline diamond films [J]. Appl. Phys. Lett., 1992, 61(9): 1119-1121.
    [49] 苏青峰,夏义本,王林军,史伟民.复合抛光对CVD金刚石薄膜表面光洁度的改进研究[J].无机材料学报,2006,21(2):499-502.
    [50] A.P. Malshe, B.S. Park, W.D. Brown, H.A. Naseem. A review of techniques for polishing and planarizing chemically vapor-deposited (CVD) diamond films and substrates [J]. Diamond Relat. Mater., 1999, 8(7): 1198-1213.
    [51] V.N. Tokarev, J.I.B. Wilson, M.B. Jubber, P. John, D.K. Milne. Modelling of self-limiting laser ablation of rough surfaces: application to the polishing of diamond films [J]. Diamond Relat. Mater., 1995, 4(3): 169-176.
    [52] S.M. Pimenov, V.V. Kononenko, V.G. Ralchenko, V.I. Konov, S. Gloor, W. Lüthy, H.P. Weber, A.V. Khomich. Laser polishing of diamond plates [J]. Appl. Phys. A, 1999, 69(1): 81-88.
    [53] 蒋中伟,张竟敏,黄文浩.金刚石热化学抛光的机理研究[J].光学精密工程,2002,10(1):50-55.
    [1] Xia Yiben, Sekiguchi Takashi, Zhang Wenjun, Jiang Xin, Wu Wenhai, Yao Takafumi. Effects of hydrogen ion bombardment and boron doping on (001) polycrystalline diamond films [J]. J. Cryst. Growth. 2000, 213(3-4): 328-333.
    [2] XIA Yi-ben, JU Jian-hua, DAI Wen-qi, WANG Lin-jun, WANG Hong. [100]-Oriented textured growth of the diamond films and its infrared properties [J]. J. Synth. Cryst., 2000, 29(3): 229-233.
    [3] Linjun Wang, Jinfang Lu, Qingfeng Su, Nanchun Wu, Jianlnin Liu, Weimin Shi, Yiben Xia. [100]-textured growth of polycrystalline diamond films on alumina substrates by microwave plasma chemical vapor deposition [J]. Mater. Lett., 2006, 60(19): 2390-2394.
    [4] G. Bogdan, M. Nesládek, J.D'Haen, K. Haenen, M.D'Olieslaeger. Freestanding (100) homoepitaxial CVD diamond [J]. Diamond Relat. Mater., 2006. 15(4-8): 508 -512.
    [5] Y.J. Balk, K.Y. Eun. Texture formation of diamond film synthesized in the C-H-O system [J]. Thin Solid Films, 1992, 214(2): 123-131.
    [6] X. Jiang, M. Fryda, C.L. Jia. High quality heteroepitaxial diamond films on silicon: recent progresses [J]. Diamond Relat. Mater.. 2000, 9(9-10): 1640-1645.
    [7] H. Kato, S. Yamasaki, H. Okushi. n-type doping of (001)-oriented single-crystalline diamond by phosphorus [J]. Appl. Phys. Lett., 2005.86(222111): 1-3.
    [8] M. Mermoux, F. Jomard, C. Tavarés, F. Omnés, E. Bustarret. Raman characterization of boron doped {111} bomoepitaxial diamond layers [J], Diamond Relat. Mater., 2006, 15(4-8): 572-576.
    [9] S. Koizumi, K. Watanabe, M. Hasegawa, H. Kanda. Ultraviolet emission from a diamond pn junction [J]. Science, 2001,292(5523): 1899-1991.
    [10] A. Tajani, C. Tavares, M. Wade, C. Baron, E. Gheeraert, E, Bustarret, S. Koizumi, D. Araujo. Homoepitaxial {111}-oriented diamond pn junctions grown on B-doped Ib synthetic diamond [J]. Phys. Stat. Sol. A, 2004, 201(11): 2462-2466.
    [11] C. Tavares, A. Tajani, C. Baron, F. Jomard, S. Koizumi, E. Gheeraert, E. Bustarret. {111}-oriented diamond films and p/n junctions grown on B-doped type Ib substrates [J]. Diamond Relat. Mater., 2005, 14(3-7): 522-525.
    [12] S.A. Stuart, S. Prawer, ES. Weiser. Growth-sector dependence of fine structure in the first-order Raman diamond line from large isolated chemical-vapor-deposited diamond crystals [J]. Appl. Phys. Lett., 1993, 62(11): 1227-1229.
    [13] Qingfeng Su, Yiben Xia, Linjun Wang, Jianmin Liu, Weimin Shi. Optical and electrical properties of different oriented CVD diamond films [J]. Appl. Surf Sci., 2006, 252(23): 8239-8242.
    [14] Qingfeng Su, Yiben Xia, Linjun Wang, Jianmin, Liu, Weimin Shi. Influence of texture on optical and electrical properties of diamond films [J]. Vacuum, 2007, 81(5): 644-648.
    [15] 苏青峰,夏义本,王林军,刘健敏,史伟民.不同取向金刚石薄膜的红外椭圆偏振光谱特性研究[J].红外与毫米波学报,2006,25(2):86-89.
    [16] M.I. Landstrass, K.V. Ravi. Resistivity of chemical vapor deposited diamond films [J]. Appl. Phys. Lett., 1989, 55(10): 975-977.
    [17] Y. Muto, T. Sugino, J. Shirafuji, K. Kobashi. Electrical conduction in undoped diamond films prepared by chemical vapor deposition [J]. Appl. Phys. Lett., 1991, 59(7): 843-845.
    [18] K.J. Roe, J. Kolodzey, C.E Swarm, M.W. Tsao, J.F. Rabolt, J. Chen, G.R. Brandes. The electrical and optical properties of thin film diamond implanted with silicon [J]. Appl. Surf. Sci., 2001, 175-176: 468-473.
    [19] M. Adamschik, R. Müller, E Gluche, A. F16ter, W. Limmer, R. Sauer, E. Kohn. Analysis of piezoresistive properties of CVD-diamond films on silicon [J]. Diamond Relat. Mater., 2001, 10(9-10): 1670-1675.
    [20] C. Manfredotti, G. Apostolo, F. Fizzotti, A. Lo Giudice, M. Morando, R. Pignolo, P. Polesello, M. Truccato, E. Vittone, U. Nastasi. CVD diamond tips as X-ray detectors [J]. Diamond Relat. Mate., 1998, 7(2-5): 523-527.
    [21] P. Bergonzo, A. Brambilla, D. Tromson, R.D. Marshall, C. Jany, F. Foulon, C. Gauthier, V.A. Solé, A. Rogalev, J. Goulon. Semitransparent CVD diamond detectors for in situ synchrotron radiation beam monitoring [J]. Diamond Relat. Mater., 1999, 8(2-5): 920-926.
    [22] H. Yoneda, K. Tokuyama, R. Yamazaki, K. Ueda, H. Yamamoto, K. Baba. Effect of grain boundaries on carrier lifetime in chemical-vapor-deposited diamond film [J]. Appl. Phys. Lett., 2000, 77(10): 1425-1427.
    [23] G. Conte, M.C. Rossi, S. Salvatori, F. Tersigni, P. Ascarelli, E. Cappelli. Nonuniform current distribution in metal/diamond/metal vertical structures [J]. Appl. Phys. Lett., 2003, 82(25): 4459-4461.
    [24] I. Sakaguchi, M. Nishitani-Gamo, K.P. Lob, H. Haneda, T. Andoa. Homoepitaxial growth and hydrogen incorporation on the chemical vapor deposited (111) diamond [J]. J. Appl. Phys., 1999, 86(3): 1306-1310.
    [25] L.J. van der Pauw. A method of measuring specific resistivity and Hall effect of discs of arbitrary. shape [J]. Philips Res. Rep., 1958, 13: 1-9.
    [26] F. Maier, M. Riedel, B. Mantel, J. Ristein, L. Ley. Origin of surface conductivity in diamond [J]. Phys. Rev. Lett., 2000, 85(16): 3472-3475.
    [27] N. Jiang, T. Ito. Electrical properties of surface conductive layers of homoepitaxial diamond films [J]. J. Appl. Phys., 1999, 85(12): 8267-8273.
    [28] K. Hayashi, S. Yamanaka, H. Okushi, K. Kajimura. Study of the effect of hydrogen on transport properties in chemical vapor deposited diamond films by Hall measurements [J]. AppL Phys. Lett., 1996, 68 (3): 376-378.
    [29] H.J. Looi, R.B. Jackman, J.S. Foord. High carrier mobility in polycrystalline thin film diamond [J]. Appl. Phys. Lett., 1998, 72 (3): 353-355.
    [30] H.J. Looi, L.Y.S. Pang, A.B. Molloy, F. Jones, J.S. Foord, R.B. Jackman. An insight into the mechanism of surface conductivity in thin film diamond [J]. Diamond Relat. Mater., 1998, 7(2-5): 550-555.
    [31] O.A. Williams, M.D. Whitfield, R.B. Jackman. J,S. Foord, J.E, Butler, C.E. Nebel, Formation of shallow acceptor states in the surface region of thin film diamond [J]. Appl. Phys. Lett., 2001, 78(22): 3460-3462.
    [32] O.A. Williams, M.D. Whitfield, R.B. Jackman, J.S. Foord, J.E. Butler, C.E. Nebel. Carrier generation within the surface region of hydrogenated thin film polycrystalline diamond [J]. Diamond Relat. Mater., 200I, 10(3-7): 423-428.
    [33] C.E. Nebel, B. Rezek, A. Zrenner. 2D-hole accumulation layer in hydrogen terminated diamond [J]. Phys. Star. Sol. A, 2004, 201(11): 2432-2438.
    [34] S.G. Ri, D. Takeuchi, H. Kato, Ma. Ogura, T. Makino, S. Yamasaki, H. Okushi, B. Rezek, C.E. Nebel. Surface conductive layers on oxidized (111) diamonds [J]. Appl. Phys. Lett., 2005, 87(262107): 1-3.
    [35] O.A. Williams, R.B. Jackman, C. Nebel, J.S. Foord. High carrier mobilities in black diamond [J]. Semicond. Sci. Technol., 2003, 18(3): S77-S80.
    [36] C. Sauerer, F. Ertl, C.E. Nebel, M. Stutzmann, P. Bergonzo, O.A. Williams, R.A. Jackman. Low temperature surface conductivity of hydrogenated diamond [J]. Phys. Star. Sol. A, 2001, 186(2): 241-247.
    [37] J. Ristein. Electronic properties of diamond surfaces - blessing or curse for devices? [J]. Diamond Relat. Mater., 2000, 9(3-7): 1129-1137.
    [38] A. Denisenko, A. Aleksov, A. Pribil, P. Gluche, W. Ebert, E. Kohn. Hypothesis on the conductivity mechanism in hydrogen terminated diamond films [J]. Diamond Relat. Mater., 2000, 9(3-7): 1138-1142.
    [39] N.F. Mott, T.D. Twose. The theory of impurity conduction [J]. Adv. Phys., 1961, 10(38):107-163.
    [40] R.J. Molnar, T. Lei, T.D. Moustakas. Electron transport mechanism in gallium nitride [J]. Appl. Phys. Lett., 1993, 62(1):72-74.
    [41] D.C. Look, R.J. Molnar. Degenerate layer at GaN/sapphire interface: Influence on Hail-effect measurements [J]. Appl. Phys. Lett., 1997, 70(25):3377-2279.
    [42] O.A. Williams, R.B. Jackman, C. Nebel, J,S. Foord. Black diamond: a new material for active electronic devices [J]. Diamond Relat. Mater., 2002, 11(3-6): 396-399.
    [43] Qingfeng Su, Jianmin Liu. Linjun Wang, Weimin Shi, Yiben Xia. Effects of activated hydrogen etching on surface roughness and optical properties of diamond films [J]. Scripta Materialia, 2006, 54(11): 1871-1874.
    [44] Z. Yin, Z. Akkerman, B.X. Yang, F.W. Smith. Optical properties and microstructure of CVD diamond films [J]. DiamondRelat. Mater., 1997, 6(1): 153-158.
    [45] D. Mardare, P. Hones. Optical dispersion analysis of TiO2 thin films based on variable-angle spectroscopic ellipsometry measurements [J]. Mater. Sci. Eng. B, 1999, 68(1): 42-47.
    [46] J. Smolik, J. Walkowicz, T. Szubrycht. Ellipsometric characteristics of diamond-like a-C: H films obtained by the r.f. PACVD method [J]. Surf Coat. Technol., 2003, 174-175: 345-350.
    [47] R. Sharma, O.S. Panwar, S. Kumar, D. Sarangi, A. Goullet, E N. Dixit, R. Bhattacharyya. Effect of substrate bias on SE, XPS and XAES studies of diamond-like carbon films deposited by saddle field fast atom beam source [J]. Appl. Surf Sci., 2003, 220(1-4): 313-320.
    [1] A.J. Edwards, M. Bruinsma, R Burchat, H. Kagan, R. Kass, D. Kirkby, B.A. Petersen,T. Pulliam. Radiation monitoring with CVD diamonds in BABAR [J]. Nucl. Instr. Meth. A, 2005, 552(1-2): 176-182.
    [2] E. Pace, A. De Sio. Diamond detectors for space applications [J]. Nucl. Instr. Meth. A, 2003, 514(1-3): 93-99.
    [3] G.J. Schmid, R.L. Griffith, N. Izumi, J.A. Koch, R.A. Lerche, M.J. Moran, T.W. Phillips, R.E. Turner, V.Yu. Glebov, T.C. Sangster, C. Stoeckl. CVD diamond as a high bandwidth neutron detector for inertial confinement fusion diagnostics [J]. Rev. Sci. Instr., 2003, 74(3): 1828-1831.
    [4] C. White (Diamond Detector Collaboration). Diamond detectors for high energy physics [J]. Nucl. Instr. Meth. A, 1994, 351(1): 217-221.
    [5] M. Franklin, A. Fry, K.K. Gan, S. Han, H. Kagan, S. Kanda, D. Kania, R. Kass, S.K. Kim, R. Malchow, F. Morrow, S. Olsen, W. F. Palmer, L.S. Pan, E Sannes, S. Schnetzer, R. Stone, Y. Sugimoto, G.B. Thomson, C. White, S. Zhao. Development of diamond radiation detectors for SSC and LHC [J]. Nucl. Instr. Meth. A, 1992, 315(1-3): 39-42.
    [6] R. Stone. Diamond pixel detector development [J]. Nucl. Instr. Meth. A, 2001, 473(2-3): 136-139.
    [7] W. Trischuk. Semiconductor trackers for future particle physics detectors [J]. Nucl. Instr. Meth. A, 1998, 419(2-3): 251-258.
    [8] S. Lazanu, I. Lazanu. Si, GaAs and diamond damage in pion fields with application to LHC [J]. Nucl. Instr. Meth. A, 1998, 419(2-3): 570-576.
    [9] H. Pernegger, S. Roe, E Weilhammer, V. Eremin, H.F. K61bl, E. Griesmayer, H. Kagan, S. Schnetzer, R. Stone, W. Trischuk, D. Twitchen, A. Whitehead. Charge-carrier properties in synthetic single-crystal diamond measured with the transient-current technique [J]. J. Appl. Phys., 2005, 97(073704): 1-9.
    [10] P. Bergonzo, A. Brambilla, D. Tromson, C. Mer, B. Guizard, R. D. Marshall, F. Foulon. CVD diamond for nuclear detection applications [J]. Nucl. Instr. Meth. A, 2002, 476(13): 694-700.
    [11] C. Manfredotti, R Polesello, M. Truccato, E. Vittone, A. Lo Giudice, F. Fizzotti. CVD diamond detector [J]. Nucl. Instr. Meth. A, 1998, 410(1): 96-99.
    [12] C. Jany, A. Tardieu, A. Gicquel, R Bergonzo, F. Foulon. Influence of the growth parameters on the electrical properties of thin polycrystalline CVD diamond films [J]. Diamond Relat. Mater., 2000, 9(3-6): 1086-1090.
    [13] C. Jany, E Foulon, R Bergonzo, A. Brambilla, E Silva, A. Gicquel, T. Pochet. Influence of the crystalline structure on the electrical properties of CVD diamond films [J]. Diamond Relat. Mater., 1996, 5(6-8): 741-746.
    [14] M. Marinelli, E. Milani, A. Paoletti, A. Tucciarone, G.V. Rinati, M. Angelone, M. Pillon. High quality diamond grown by chemical-vapor deposition: Improved collection efficiency in a-particle detection [J]. Appl. Phys. Lett., 1999, 75(20): 3216-3218.
    [15] M. Marinelli, E. Milani, A. Paoletti, A. Tucciarone, G.V. Rinati, M. Angelone, M. Pillon. Systematic study of pre-irradiation effects in high efficiency CVD diamond nuclear particle detectors [J]. Nucl. Instr. Meth. A, 2002, 476(3): 701-705.
    [16] C. Manfredotti, E. Vittone, F. Fizzotti, A. Lo Giudice, C. Paolini. Effects of light on the 'primed' state of CVD diamond nuclear detectors [J]. Diamond Relat. Mater., 2002, 11(3-6): 446-450.
    [17] Su Qingfeng, Lu Jinfang, Wang Linjun, Liu Jianmin, Ruan Jianfeng, Cui Jiangtao, Shi Weimin, Xia Yiben. Electrical properties of [100]-oriented CVD diamond film [J]. Solid-State Electron., 2005, 49(6): 1044-1048.
    [18] Qingfeng Su, Yiben Xia, Linjun Wang, Jianmin Liu, Weimin Shi. Optical and electrical properties of different oriented CVD diamond films [J]. Appl. Sulf Sci., 2006, 252(23): 8239-8242.
    [19] S. M. Sze. Semiconductor devices: Physics and Technology [M]. 2rid, ed. New York: J. Wiley, 2001: 217-228.
    [20] 刘恩科,朱秉升,罗晋生.半导体物理[M].第4版.北京:国防工业出版社,1994:178-183.
    [21] Y.G. Chert, M. Ogura, S. Yamasaki, H. Okushi. Investigation of specific contact resistance of ohmic contacts to B-doped homoepitaxial diamond using transmission line model [J]. Diamond Relat. Mater., 2004, 13(3-6): 2121-2124.
    [22] T. Tachibana, B.E. Williams, J. T. Glass. Correlation of the electrical properties of metal contacts on diamond films with the chemical nature of the metal-diamond interface. Ⅰ. Gold contacts: A non-carbide-forming metal [J]. Phys. Rev. B, 1992, 45(20): 11968-11974.
    [23] K.L. Moazed, J.R. Zeidler, M.J. Taylor. A thermally activated solid state reaction process for fabricating ohmic contacts to semiconducting diamond [J]. J. Appl. Phys., 1990, 68(5): 2246-2254.
    [24] H. Naseem, I. Meyyappan, C.S. Prasad, W.D. Brown. Au-based metallizafion on diamond substrates for multichip module applications [J]. Int. J. Microcircuits Electr. Packaging, 1993, 16(2): 257-269.
    [25] LinjunWang, Yiben Xia, Hujiang Shen, Minglong Zhang, Ying Yang, LinWang. Infrared optical properties of diamond films and electrical properties of CVD diamond detectors [J]. J. Phys. D: Appl. Phys., 2003, 36(20): 2548-2552.
    [26] 陈光华,张兴旺,季亚英,严辉.金属和金刚石表面接触的电学特性研究[J].物理学报,1997,46(6):1188-1192.
    [27] F. Borchelt, et al. (RD42 Collaboration). First measurements with a diamond microstrip detector [J]. Nucl. Instr. Meth. A, 1995,354(2-3): 318-327.
    [28] P. Gonon, S. Prawer, D.N. Jamieson, K.W. Nugent. Radiation hardness of polycrystalline diamond [J]. Diamond Relat. Mater., 1997, 6(2-4): 314-319.
    [29] Y.Behnke, M. Doucet, N. Ghodbane, A. Imhof. Radiation hardness and linearity studies of CVD diamonds [J]. Nucl. Phys. B (Proc. Suppl.), 2003, 125: 263-266.
    [30] W. Adam, et al. (RD42 Collaboration). Radiation hard diamond sensors for future tracking applications [J]. Nucl. Instr. Meth. A, 2006, 565(1): 278-283
    [31] W. Adam, et al. (RD42 Collaboration). Pulse height distribution and radiation tolerance of CVD diamond detectors [J]. Nucl. Instr. Meth. A, 2000, 447(1-2): 244-250.
    [32] D. Meier, et al. (RD42 Collaboration). Proton irradiation of CVD diamond detectors high luminosity experiments at the LHC [J]. Nucl. Instr. Meth. A, 1999, 426(1): 173-180.
    [33] P. Steier, R. Golser, W. Kutschera, V. Liechtenstein, A. Priller, C. Vockenhuber, S. Winkler. First tests with a natural diamond detector (NDD) - a possibly powerful tool for AMS [J]. Nucl. Instr. Meth. B, 2004, 223-224: 205-208.
    [34] R.J. Tapper. Diamond detectors in particle physics [J]. Rep. Prog. Phys., 2000, 63(8): 1273-1316.
    [35] P.J. Fallon, T.L. Nam, R.J. Keddy. Trapping levels in pulse-counting synthetic diamond detectors [J]. Diamond Relat. Mater., 1992, 1(12): 1185-1189.
    [36] A. Brambilla, D. Tromson, N. Aboud, C. Mer, P. Bergonzo, F. Foulon. CVD diamond gamma dose rate monitor for harsh environment [J]. Nucl. Instr. Meth. A, 2001,458(1-2): 220-226.
    [37] W. Adam, et al. (RD42 Collaboration). Micro-strip sensors based on CVD diamond [J]. Nucl. Instr. Meth. A, 2000, 453(1-2): 141-148.
    [38] A. Fidanzio, L. Azario, P. Viola, P. Ascarelli, E. Cappelli, G. Conte, A. Piermattei. Photon and electron beam dosimetry with a CVD diamond detector [J]. Nucl. Instr. Meth. A, 2004, 524(1-3): 115-123.
    [39] Minglong Zhang, Yiben Xia, Linjun Wang, Beibei Gu. Effects of the film microstructures on CVD diamond radiation detectors [J]. J. Cryst. Growth, 2005, 277(1-4): 382-387.
    [40] E. Pace, R. Di Benedetto, S. Scuderi. Fast stable visible-blind and highly sensitive CVD diamond UV photodetectors for laboratory and space applications [J]. Diamond Relat. Mater., 2000, 9(3-6): 987-993.
    [41] E.K. Souw, R.J. Meilunas. Response of CVD diamond detectors to alpha radiation [J]. Nucl. Instr. Meth. A, 1997, 400(1): 69-86.
    [42] Qingfeng Su, Yiben Xia, Linjun Wang, Jianmin Liu, Jianfeng Ruan, Weimin Shi. Electrical properties of CVD diamond detector and detection for alpha particle [J]. Mod. Phys. Lett. A, 2005, 20(38): 2949-2956.
    [43] T. Kashiwagi, K. Hibino, H.Kitamura, K. Mori, S. Okuno, T. Takashima, Y. Uchihori, K.Yajima, M. Yokota, K. Yoshida. Investigation of basic characteristics of synthetic diamond radiation detectors [J]. IEEE Trans. Nucl. Sci., 2006, 53(2): 630-635.
    [44] J.H. Kaneko, T. Tanaka, T. Imai, Y. Tanimura, M. Katagiri, T. Nishitani, H. Takeuchi, T. Sawamura, T. Iida. Radiation detector made of a diamond single crystal grown by a chemical vapor deposition method [J]. Nucl. Instr. Meth. A, 2003, 505(1-2): 187-190.
    [45] S.K. Hart, M.T. McClure, C.A. Wolden, B. Vlahovic, A. Soldi, S.Sitar. Fabrication and testing of a microstrip particle detector based on highly oriented diamond films [J]. Diamond Relat. Mater., 2000, 9(3-6): 1008-1012.
    [46] M. Marinelli, E. Milani, A. Paoletti, A. Tucciarone, G. Verona-Rinati, M. Angelone, M. Pillon. Trapping and detrapping effects in high-quality chemical-vapor-deposition diamond films: Pulse shape analysis of diamond particle detectors [J]. Phys. Rev. B, 2001, 64(195205): 1-8.
    [47] A. Brambilla, D. Tromson, P. Bergonzo, C. Mer, F. Foulon. Thin CVD diamond detectors with high charge collection efficiency [J]. IEEE Trans. Nucl. Sci., 2002, 49(1): 277-280.
    [48] S. Wang, P. Sellin, A. Lohstroh. Alpha particle transient response of a polycrystalline diamond detector [J]. Carbon, 2005, 43(15):3167-3171.
    [49] T. Behnke, A. Oh, A. Wagner, W. Zeuner, A. Bluhm, C.-P. Klages, M. Paul, L. Schafer. Development of diamond films for particle detector applications [J]. Diamond Relat. Mater., 1998, 7(10): 1553-1557.
    [50] M. Marinelli, E. Milani, A. Paoletti, A. Tucciarone, G. Verona Rinati, M. Angelone, M. Pillon. High collection efficiency in chemical vapor deposited diamond particle detectors [J]. Diamond Relat. Mater., 2000, 9(3-6): 998-1002.
    [51] P. Weilhammer, et al. (RD42 Collaboration). Recent results on CVD diamond radiation sensors [J]. Nucl. Instr. Meth. A, 1998, 409(1-3): 264-270.
    [52] S. Zhao. Characterization of the electrical properties of polycrystalline diamond films [D], Ph.D. dissertation, Ohio State University, 1994, 94-114.
    [53] M.A. Plano, S. Zhao, C.F. Gardinier, M.I. Landstrass, D.R. Kania, H. Kagan, K.K. Gan, R. Kass, L.S. Pan, S. Hart, S. Schnetzer, R. Stone. Thickness dependence of the electrical characteristics of chemical vapor deposited diamond films [J]. Appl. Phys. Lett., 1994, 64(2): 193-195.
    [54] A. Owens, A.G. Kozorezov. Single carrier sensing techniques in compound semiconductor detectors [J]. Nucl. Instr. Meth. A, 2006, 563(1): 31-36.
    [55] S. Han. New developments in photoconductive detectors [J]. Rev. Sci. Instrum., 1997, 68 (1): 647-652.
    [56] A.V. Krasilnikov, V.N. Amosov, Yu.A. Kaschuck. Natural diamond detector as a high energy particle spectrometer [J]. IEEE Trans. Nucl. Sci., 1998, 45 (3): 385-389.
    [57] H. Pernegger, S. Roe, P. Weilhammer, V. Eremin, H. Frais-Kolbl, E. Griesmayer, H. Kagan, S. Schnetzer, R. Stone, W. Trischuk, D. Twitchen, A. Whitehead. Charge-carrier properties in synthetic single-crystal diamond measured with the transient-current technique [J]. J. Appl. Phys., 2005, 97(073704): 1-9.
    [58] P.J. Griffin, S.M. Luker, D.B. King, K.R. DePriest, R.J. Hohlfelder, A.J. Suo-Anttila. Diamond PCD for reactor active dosimetry applications [J]. IEEE Trans. Nucl. Sci., 2004, 51(6): 3631-3637.
    [1] J. Chadwick. Possible existence of a neutron [J]. Nature, 1932, 129(3252): 312.
    [2] A.J. Peurrung. Resent developments in neutron detection [J]. Nucl. Instr. Meth. A, 2000, 443(2-3): 400-415.
    [3] Yu.E. Bagdassarov. Safety of fast neutron reactor power unites under operation and design in Russia [J]. Nucl. Eng. Design, 1997, 173(1-3): 239-246.
    [4] 段绍节.实验核物理测量中的粒子分辨[M].北京:国防工业出版社,1999:31-36.
    [5] 刘圣康.中子物理[M].北京:原子能出版社,1986:63-77.
    [6] A. Mainwood. CVD diamond particle detectors [J]. Diamond Relat. Mater., 1998, 7(2-5): 504-509.
    [7] J. Schelten, M. Balzhauser, F.Hongesberg, R. Engels, R. Reinartz. A new neutron detector development based on silicon semiconductor and 6LiF converter [J]. Phys. B, 1997, 234-236: 1084-1086.
    [8] B. Yu, G.J. Mahler, N.A. Schaknowski, G.C. Smith. A position-sensitive ionization chamber for thermal neutrons [J]. IEEE Trans. Nucl. Sci., 2001, 48(3): 336-340.
    [9] T.M. Filho, M.M. Hamada, F. Shiraishi, C.H. Mesquita. Development of neutron detector using the surface barrier sensor with polyethylene (n, p) and ~(10)B (n, α) converters [J]. Nucl. Instr. Meth. A, 2001, 458(1-2): 441-447.
    [10] C.H. Mesquita, T.M. Filho, M.M. Hamada. Development of neutron detector using the PIN photodiode with polyethylene (n, p) converter [J]. IEEE Trans. Nucl. Sci., 2003, 50(4): 1170-1174.
    [11] J. Hassard, J.H. Liu, R. Mongkolnavin, D. Colling. CVD diamond film for neutron counting [J]. Nucl. Instr. Meth. A, 1998, 416(2-3): 539-542.
    [12] C. Petrillo, F. Sacchetti, O. Toker, N.J. Rhodes. Solid state neutron detectors [J]. Nucl. Instr. Meth. A, 1996, 375(3): 541-551.
    [13] D. Hussona, et al. (RD42 Collaboration). Neutron irradiation of CVD diamond samples for tracking detectors [J]. Nucl. Instr. Meth. A, 1997, 388(3): 421-426.
    [14] G.J. Schmid, R.L. Griffith, N. Izumi, J.A. Koch, R.A. Lerche, M.J. Moran, T.W. Phillips, R.E. Turner, V.Yu. Glebov, T.C. Sangster, C. Stoeckl. CVD diamond as a high bandwidth neutron detector for inertial confinement fusion diagnostics [J]. Rev. Sci. Instrum., 2003, 74(3): 1828-1831.
    [15] A.V. Krasilnikov, J. Kaneko, M. Isobe, F. Maekawa, Y. Nishitani. Fusion neutronic source deuterium-tritium neutron spectrum measurements using natural diamond detectors [J]. Rev. Sci. Instrum., 1997, 68(4): 1720-1724.
    [16] J. Kaneko, Y. Ikeda, T. Nishitani, M. Katagiri. Response function measurement of a synthetic diamond radiation detector for 14 MeV neutrons [J]. Rev. Sci. Instrum., 1999, 70(1): 1100-1103.
    [17] F. Foulon, E Bergonzo, V.N. Amosov, Yu. Kaschuck, V. Frunze, D. Tromson, A. Brambilla. Characterisation of CVD diamond detectors used for fast neutron flux monitoring [J]. Nucl. Instr. Meth. A, 2002, 476(1-2): 495-499.
    [18] S.F. Kozlov, E.A. Konorova, A.L. Barinov, V.P. Jarkov. Neutron spectrometry by diamond detector for nuclear radiation [J]. IEEE Trans. NucL Sci., 1975, NS-22: 171-172.
    [19] M. Pillon, M. Angelone, A.V. Krasilnikov. 14 MeV neutron spectra measurements with 4% energy resolution using a type Ⅱa diamond detector [J]. Nucl. Instr. Meth. B, 1995, 101(4): 473-483.
    [20] M. Isobe, T. Nishitani, A.V. Krasilnikov, J. Kaneko, M. Sasao. First measurements of triton burnup neutron spectra using a natural diamond detector on JT-60U [J]. Fusion Eng. Design, 1997, 34-35: 573-576.
    [21] A.V. Krasilnikov, V.N. Amosov, P.van Belle, O.N. Jarvis, G.J. Sadler. Study of d-t neutron energy spectra at JET using natural diamond detectors [J]. Nucl. Instr. Meth. A, 2002, 476(1-2): 500-505.
    [22] P. Bergonzo, A. Brambilla, D. Tromson, C. Mer, B. Guizard, R.D. Marshall, F. Foulon. CVD diamond for nuclear detection applications [J]. Nucl. Instr. Meth. A, 2002, 476(3): 694-700.
    [23] C. Mer, M. Pomorski, P. Bergonzo, D.Tromson, M. Rebisz, T. Domenech, J.C. Vuillemin, F. Foulon, M. Nesladek, O.A. Williams, R.B. Jackman. An insight into neutron detection from polycrystalline CVD diamond films [J]. Diamond Relat. Mater., 2004, 13(4-8): 791-795.
    [24] L. Allers, A.S. Howard, J.F. Hassard, A. Mainwood. Neutron damage of CVD diamond [J]. DiamondRelat. Mater., 1997, 6(2-4): 353-355.
    [25] W. Adam, et al. (RD42 Collaboration). Review of the development of diamond radiation sensors [J]. Nucl. Instr. Meth. A, 1999, 434(1): 131-145.
    [26] W. Adam, et al. (RD42 Collaboration). Pulse height distribution and radiation tolerance of CVD diamond detectors [J]. Nucl. Instr. Meth. A, 2000, 447(1-2): 244-250.
    [27] M. Krammer, et al. (RD42 Collaboration). CVD diamond sensors for charged particle detection [J]. Diamond Relat. Mater., 2001,111(9-10): 1778-1782.
    [28] J. Hassard. The neutron radiation hardness of diamond detectors for future particle physics experiments [J]. Nucl. Instr. Meth. A, 1995,368(1 ): 217-219.
    [29] D. Husson, et al. (RD42 Collaboration). Neutron irradiation of CVD diamond samples for tracking detectors [J]. Nucl. Inst. Meth. A, 1997, 388(3): 421-426.
    [30] A. Mainwood, L. Allers, A.T. Collins, J.F. Hassard, A.S. Howard, A.R. Mahon, H.L. Parsons, T.Sumner, J.L. Collins, G.A. Scarsbrook, R.S. Sussmann, A.J. Whitehead. Neutron damage of chemical vapour deposition diamond [J]. J. Phys. D: Appl. Phys., 1995, 28(6): 1279-1283.
    [31] M.M. Zoeller, et al. (RD42 Collaboration). Performance of CVD diamond microstrip detectors under particle irradiation [J]. IEEE Trans. Nucl. Sci., 1997, 44(3): 815-818.
    [32] P.J. Fallon, T.L. Nam, R.J. Keddy. Trapping levels in pulse-counting synthetic diamond detectors [J]. DiamondRelat. Mater., 1992, 1(12): 1185-1189.
    [33] H.B. Dyer, E Ferdinando. The optical absorption of electron-irradiated semiconducting diamond [J]. Br. J. Appl. Phys., 1966, 17(3): 419-420.
    [34] EB. Rodríguez, A.M. Sáchez, F.V. Tomé Experimental studies of self-absorption and backscattering in alpha-particle sources [J]. Appl. Radiat. Isot., 1997, 48(9): 1215-1220.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700