基于位置的气液伺服阻抗控制系统的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
实现机器人的柔顺性控制的方法主要有两种:力/位混合控制和阻抗控制。其中,阻抗控制得到了广泛的应用。本文所研究的就是阻抗控制,它是通过调节机器人末端的阻抗(包括刚度、阻尼和惯量)使力和位置满足期望的动力学关系。其中,按照目标阻抗的实现方式不同,阻抗控制可分为基于位置的阻抗控制和基于力的阻抗控制。本文是基于位置的阻抗控制系统的研究。
     本文在原有气液联控伺服控制系统基础上,模拟设计了气液联控机械手臂,引入负载气缸模拟变化的外界环境,购置了可变电阻式位移传感器,从而进行阻抗控制的研究。介绍了气液伺服阻抗控制系统的结构、原理和特点。对该阻抗控制系统进行了理论分析,建立了气液联控机械手臂的数学模型,分析了力跟踪的实现方法。为了实现精确的力跟踪,采用两种策略。一种是通过适当设计方法更新期望跟踪轨迹动力学模型;另一种是估计环境动力学模型(或阻抗)。本文针对以上两种策略研究了三种方法:离线环境参数估计法、在线环境参数估计法和基于神经网络阻抗控制法,并进行了计算机仿真。其中,离线环境参数估计法和在线环境参数估计法是针对第一种策略提出的,基于神经网络阻抗控制是针对第二种策略提出的。
     用一个弹簧和不计质量的薄板和负载气缸来模拟外界环境,购置了可变电阻式位移传感器,搭建了能够利用计算机进行数据采集和实时控制的气液伺服阻抗控制系统试验台,并开发了基于Windows操作系统具有存储功能的数据采集软件。通过大量试验研究,得到了力跟踪曲线和位置跟踪曲线,证明了基于位置的气液伺服阻抗控制系统实现的可能性。它能够在短时间内同时实现准确的力跟踪和位置跟踪,试验结果是满意的。
There are mainly two ways to meet the robot's compliance control: force /position mixed control and impedance control. Especially, impedance control, which has been widely used, is studied by adjusting the end of the robot impedance (including stiffness, damping and inertia) to make force and location meet the expectations of the dynamic relationship. In accordance with the different objectives, impedance control can be divided into location-based and force-based. This article is based on the location of the impedance control systems.
     Introduce a gas-liquid servo impedance control system structure, principles and characteristics. Analysis the impedance control system theory and the method of tracking of a Pneumatic Hydraulic Combination Control (PHCC) mathematical model for the dexterous hands. In order to achieve accurate tracking force, there are usually two types of strategies. One is appropriately to update expectations of the dynamics model tracking trajectory, the other is to build a dynamic model of the estimated environment (or impedance). In this paper, there are three methods: offline control, on-line control and impedance control based on neural network. Among them, offline and online control are in response for the first strategy, and impedance control based on neural network is for the second strategy.
     Design the test platform structures to use the computer for data acquisition and real-time control of the gas-liquid servo impedance control system with a spring and the plate and the load cylinder simulating the external environment. Get force tracking curve and position tracking curve by doing lots of experiments. It proves the possibility of the PHCC-Impedance Control servo system based on Location. Experimental results of the system are satisfactory.
引文
1许宏,吴盛林,赵克定.气液联动与气液联控.机械工程学报.2001,(7):93~95
    2徐秀芬.气液联控伺服系统的控制及其实验研究.哈尔滨工业学博士学位论文.2005
    3徐秀芬,赵克定,王洪艳.气液联控力伺服系统的控制性能及仿真研究.机床与液压.2006(6):97~100
    4许宏.气液联控位置伺服系统理论分析及其控制策略的研究.哈尔滨工业学博士学位论文.2001
    5邱志成,谈大龙.气压伺服及气液联动控制发展概况综述.液压与气动.1999,(4):3~6
    6杨志刚,阚君武,程光明.电~气比例/伺服技术现状及其发展.农业机械学报.2005,(6):126~128
    7徐秀芬,赵克定,许宏光,吴盛林.PWM控制的气液联控伺服系统的实现与试验研究.液压与气动.2004(1),9~12
    8 J. L. Shearer.Study of Pneumatic Process in the Cntinuous Control of Motion with Compressed Air-I.Trans of ASME.2005,(3):465~473
    9 C.R.Burrows, C.R.Webb . Simulation of an on/off Pneumatic Servomechanism.Pro. Inst. Mech. Engrs.2007,182(1):29
    10 L1iicho Miyata.Et al.Control of Pneumatic Drive System by Using PCM Valve.FLUCOME.ASME.2001:373~378
    11 Xu Yaoming,Song Wenjian,Li Baoren.Study on a Novel Digital Electro-Hydraulic Pressure Value with a Capillary Damping Tube Regulation Pressure.Journal of Harbin Institute of Technology.1994,(1):1~6
    12周洪.气动伺服定位技术及其应用.液压与气动.1999,(1):18~21
    13段运波,许耀铭.气动脉宽调制位置伺服系统工作原理的改进.液压与气动.1996,(1):3~5
    14 Oki Toshitaka,Tanaka Kanya,Yamamoto Toru,etc. A Design of Non-Linear Electro-Pneumatic Servo Systems by Using Neural-net Based Linearlizer with Off-line Learning Algorithm. Proceedings of the International Joint Conference on Neural Networks. 2002,(1):968~973
    15 Uchiyama Naoki,Esaki Shoji,Takagi Shoji. A design of Discrete-time Adaptive Servo System and Its Application to a Pneumatic Servo System. Transactions of the Japan Society of Mechanical Engineers,Part C. 2003,69(1):55~62
    16 T. Eun, Y. J. Cho.Stability and Positioning Accuracy of a Pneumatic On-off Servomechanism.Pro. of the American Control Conference.1982:1189~1194
    17李宝仁,朱玉泉,许耀铭.气动位置伺服系统的自适应控制研究.中国机械工程.1998(3):4~8
    18张强,王即武,王仁人.气动位置控制技术的发展.农业装备与车辆工程.2006,(1):6~9
    19姜明,袁哲俊.气动伺服控制系统的建模与控制研究.机械与电子.1998,(4):30~32
    20 Xie Zugang and Tao Guoliang. Study on Cylinders at Very low Velocities. Proceedings of the Fourth International Symposium on Fluid Power Transmission and Control (ISFP’2003):358~361
    21 A.Stephen,J.Murtaug.An Introduction to the Time-modulated Acceleration Switching Electro-hydraulic Servo mechanism Trans. ASME J.Basic.Eng.1959,(3):97~107
    22 Kenji KAWASHIMA , Toshinori FUJITA, Toshiharu KAGAWA . The Effect of Nonlinear Characteristics on Pneumatic Servo Systems.Pro.4th JHPS International Sysposium on Fluid Power, Tokyo. 1999
    23 Lee,S. G,Cho,H. S. On The Development of a PWM Control-Based Pneumatic Servo Mechanism. Pergamon Press. 1986: 59~66
    24 Hirohisa Tanaka.Electro-Hydraulic PCM Control.The journal of Fluid Control.1988,17(2):34~36
    25 Ming-Chang Shih,Chuen-guey Hwang. Fuzzy PWM Control of the Position of a Pneumatic Robot Cylinder Using High Speed Solenoid Valve. JSME. International Journal,Series C. 1997,40(3):469~475
    26杜巧连,陈旭辉,吴文山,金向平,倪兆荣. PWM高速开关阀的特性分析与应用研究.液压气动与密封. 2002,(3):10~11
    27 R. Johansson and A. Robertsson. Robotic Force Control using Observer-based Strict Positive Real Impedance Control. In Proc. Of the 2003 IEEE International Conference on Robotics and Automation, 2003 September:3686~3691
    28刘伊威,金明河. DLR/HIT仿人机器人灵巧手的设计.机械制造. 2006,(11): 32~35.
    29殷跃红,朱剑英,尉忠信.机器人力控制研究综述.南京航空航天大学学报. 1997, 29(2):220~230.
    30柳洪义,王磊,王菲.在未知环境下基于阻抗模型的受限机械手模糊力控制方法.东北大学学报(自然科学版). 2005(8):766~769
    31许宏,赵克定,吴盛林.对称式气液联控伺服系统动力机构特性分析.中国机械工程. 2001,(10): 25~28
    32 G. Belforate,N. D. Alfio and T. Rapareili.Experimental Analysis of Friction Forces in Pneumatic Cylinder.Journal of Fluid Control.1990,20(1):42~59
    33 Barth,Eric J,Goldfarb.Michael. A control Design Method for Switching Systems with Application to Pneumatic Servo Systems. American Society of Mechanical Engineers,Dynamic Systems and Control Division (Publication) DSC. 2002,(71): 463~469
    34徐丽娜.神经网络控制.哈尔滨工业大学出版社.1998
    35王宣银.气动伺服系统的神经网络辨识.组合机床与自动化加工技术.2001,(1):11~12
    36 Maples J.A, Becker J.J. Experiments in Force Control of Robotic Manipulators. Proc. IEEE Conf. on Robotics &Automat ion, 1996.
    37林锐,胡俐娟,明仁雄,方健家. PWM高速开关阀的研制与应用.阀门,2004(6):37~38
    38朱建公,文代明.高速开关法流量调节的计算机控制方法研究.液压与气动. 2005(4):52~53
    39 H. Liu, J. Butterfass, M. Grebenstein, G. Hirzinger. DLR Multisensory Articulated Hand I and II. Proceedings of the 2001 International Workshop on Bio-Robotics & Teleoperation, Beijing, China. 2001, 76~83.
    40杨磊.六维指尖力/力矩传感器的研究.哈尔滨工业大学硕士论文. 2001.
    41梁天才,梁磊,孔一忠.一种新型液压控制元件—高速电磁开关阀.山西机械. 2003,(4):27~29
    42江世明.脉宽调制控制技术中PWM波形程序设计方法.邵阳学院学报(自然科学版).2006,(12):45~47
    43张廷羽,张国贤.高速开关阀的性能分析及优化研究.机床与液压. 2006(9):139~142
    44许宏.气液联控位置伺服系统理论分析及其控制策略的研究.哈尔滨工业大学博士学位论文. 2001:26~57
    45林锐,胡俐娟,明仁雄,方健家. PWM高速开关阀的研制与应用.阀门. 2004,(6):9~11
    46石延平,张永忠.一种新型液压高速开关阀的设计与研究.机械科学与技术. 2004(1):71~73
    47 Wangq,J.Daw,N.Wu,Q. H. Identification of Pneumatic Cylinder Friction Parameters Using Genetic Algorithms. IEEE/ASME Transactions onMechatronics. 2004,(9):100~107
    48王宣银,朱世强,陶国良,丁凡.流体调制技术及其在流体伺服控制中的应用.机床与液压. 2000,(4):7~9
    49 Kairen Pai,Shih M C. Precision Control of a Pneumatic Cylinder Using Fuzzy Control and Velocity Compensateion Method. Fifth JFPS International Symposium. Japan,nara. 2002,3:631~636
    50谢宗武. HIT-1机器人灵巧手柔顺控制的研究.哈尔滨工业大学博士论文. 2003.
    51陈峰,费燕琼,赵锡芳.机器人的阻抗控制.控制与检测. 2005(12): 46~50.
    52李士勇.模糊控制和智能控制理论与应用.哈尔滨工业大学出版社,1990:120~230
    53 Iskarous,Moenes,Kawamura,Kazuhiko. Intelligent Control Using a Neuro-fuzzy Network. Poceedings of the 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems,Pittsbergh USA,1995:350~355
    54曹青松,周继惠.MATLAB在神经网络设计中的应用.华东交通大学学报.2004(8):86~88
    55温淑焕.机器人模糊神经网络阻抗控制.系统仿真学报,2004(11):2614~2617
    56许东,吴征.基于MATLAB6.X的系统分析与设计—神经网络.西安电子科技大学出版社,2002:60~80
    57曾军,方厚辉.神经元网络PID控制及其MATLAB仿真.现代电子技术,2004(2):51~52

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700