双作用式开关阀控气动阀门定位器控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文所研究的双作用式开关阀控气动阀门定位器,是石油、化工、电力、冶金等行业实现自动化控制,提高生产效率和降低生产成本的关键元部件之一。本定位器采用开关阀驱动双作用气缸,具有造价低、抗污染力强、安装维护方便等优点,但获得满意的定位精度和稳定的过渡过程则较为困难。本论文即针对该种定位器的控制进行研究,以获得满足性能指标要求的定位精度和过渡过程。具体包括以下几方面的内容:
     首先搭建双作用式开关阀控气动阀门定位器系统的试验平台,这其中主要有位移传感器电流信号到电压信号的转换,研华PCL-818L数据采集卡的使用,开关阀驱动电路的设计,以及对采集信号的硬件滤波处理等。
     其次利用机理建模方法,对双作用式开关阀控气动阀门定位器系统进行数学建模,包括气缸两腔内的压力微分方程、开关阀的质量流量方程和气缸运动的动力学方程,并依据上述方程分别建立气缸两腔内压力、开关阀质量流量和气缸运动动力学的SIMULINK仿真模型。
     再次对比了基于PID的PWM控制策略和Bang-Bang状态反馈控制策略。通过对比可知,基于PID的PWM控制策略,存在对系统摩擦力较为敏感,定位精度低和无法适应长管路等缺点,因此对于本系统是不适用的,而采用Bang-Bang状态反馈控制策略可使本系统获得满意的控制效果,并进一步定性分析了位移偏差区间划分和活塞运动速度区间划分对控制性能的影响,还定性分析了负载质量、气源压力和系统摩擦力对控制性能的影响,为以后的此类应用提供参考。
     最后,在试验平台上对Bang-Bang状态反馈控制策略进行了验证,通过实际物理系统的检验可知,采用Bang-Bang状态反馈控制策略,使本系统达到了定位精度为1%,过渡过程时间不超过10s的性能指标要求。
     综上,本课题所研究的基于Bang-Bang状态反馈控制策略的双作用式开关阀控气动阀门定位器取得了良好的控制效果,今后将在电厂等工业应用场合的使用中进一步完善。
The pneumatic valve position servo system is one of the most important component which is used in petrochemical industry , electric industry , metallurgy industry and so on in order to implement automatic control , increase producing efficiency and reduce producing cost . In this paper , a pneumatic valve position servo system is described , which is made of switching valve and double-acting air cylinder ,against to strong non-linearity and great frictional force when the velocity is slow and so on of the pneumatic servo system , which has the merits of low cost , self-protecting capacity against pollution .the experimental results show that the pneumatic valve position servo system has acceptability positioning accuracy and stabilizing transient. The paper is made up of the following part.
     Firstly, putting up an experimental platform for the double-acting pneumatic valve position servo system based on the switching valves. Including the changing current to voltage because the displacement sensor’s output is current while the PCL-818L data acquisitoner’s input is voltage. How to use PCL-818L data acquisitoner , switching valves’driving circuit designing and the signal processing with hardware wave filtering and so on. Having calculate switching valves’flow capacity and their specific type.
     Secondly, the pneumatic position system model is established by the method of mechanism model. Including the pressure differential equation of two chamber of pneumatic cylinder, mass abundance flow equation of the switching valves and dynamic equation of pneumatic cylinder movement, and putting up their SIMULINK model according to the there equations above.
     Thirdly, having compared to the PWM control method based on PID and the bang-bang state feedback control method. Because the PWM control method based on PID is Sensitive to systems friction force, setting positioning is low precision and cannot adapt to the change of pipe length, we don’t use it to control system. Using the bang-bang state feedback control method has acceptability positioning accuracy and stabilizing transient. moreover, having qualitative analysis some relative factors that effect the control result, including displacement deviation and piston speed different interval partition that effect the control result, also load mass, air source pressure and systems friction force and so on that effect the control result, in order to provide reference for this kind of application .
     At last, using the experimental platform to verify the bang-bang state feedback control method, from the result we can conclusion that using the bang-bang state feedback control method , the double-acting pneumatic valve position servo system based on the switching valves’setting positioning precision is less than 1% and transient is less than 10s.
     All the analysis shows that using the bang-bang state feedback control method to control the double-acting pneumatic valve position servo system based on the switching valves is applicable, we will further perfect this control method in the using of power station and other industrial applications.
引文
1涂俊杰.我国燃煤的污染现状及治理对策.环境污染与防治. 1999,21(3):61-69
    2杭志奇,张松林等.工业锅炉节能降耗的技改措施.中国能源. 2003(5):123-125
    3周红燕,薛心喜.关于阀门定位器的研究.实用测试技术. 2001(3): 18-19
    4翁维勤等.过程控制系统及工程.化学工业出版社. 1996:2-5
    5王爱广.过程控制原理.化学工业出版社. 2002:7-8
    6刘巨浪主编.过程控制仪表.化学工业出版社. 1998:2-3
    7金以慧,方崇智.过程控制.清华大学出版社. 1993:24-29
    8 Moto T, Yamasa H, Suamatsu Y. PWM-Digital Control of a Hydraulic Actuator Utilizing Two-way Solenoid Valves. The Journal of Fluid Power. 1988(18):129-134
    9 Hirohisa Tanaka. Electro-hydraulic PCM Control. The Journal of Fluid Power. 1986.(16):201-213
    10 Wang J H, Pu J S, Moore P. A practical control strategy for servo-pneumatic actuator systems. Control Engineering Practice. 1999,7(11): 1483-1488
    11 Shih M C, Tseng S I. Pneumatic servo-cylinder position control by PID-self-tuning controller. Int J of JSME. 1992, 37(3): 565-572
    12 Parnichkun M, Nagecharoenkul C. Hybrid of fuzzy and PID in kinematics control of a pneumatic system. Proc of the 26th IEEE Int Conf on Industrial Electronics, Control and Instrumentation. Nagoy, 2000: 1485-1491
    13 Li B R, Du J M, Zhang Q X. Research of vacuum servo system based on the single neural adaptive PID control strategy. Proc of the 4th Int Symposium on Fluid Power Transmission and Control. Wuhan, 2003: 209-214
    14王淑滨,包钢,杨庆俊.比例流量阀控气动伺服系统的反馈线性化控制.机床与液压. 2002,(3):39-40
    15陶国良,王宣银,路甬祥. 3自由度气动比例/伺服机械手连续轨迹控制的研究.机械工程学报. 2001,37 (3):65-69
    16 PascalB, KarimK, TonyW. Modified feedback linearization controller for pneumatic system withn non- negligible connection port restriction. Proc ofthe IEEE Int Conf on Systems, Man and Cybernetics. Yasmine Hammanet, 2002:227-231
    17 Lee H K, Choi G S, Choi G H. A study on tracking position control of pneumatic actuator. Mechatronics. 2002, 12(6): 813-831
    18 Kayihan A, Doyle F J. Local nonlinear control of a process actuator. Proc of the 14th World Congress of IFAC. Beijing, 1999: 145-150
    19山藤和男,小林泽武,石橋昌宏.空気圧シリンダの最適制御.日本機械学会論文集(C編). 1987, 53(487): 757-762 (Yamafuji K, Kobayashi Y, Ishibashi M. Optimalcontrol of a pneumatic cyclinder. Trans of the JapanSociety of Mechanical Engineers(Part C). 1987, 53(487): 757-762)
    20山藤和男,福島哲治.空気圧シリンダの鉛直方向位置および力の同制御.油圧と空気圧. 1988, 19(3): 226-233 (Yamafuji K, Fukushima T. Simultaneous control of vertical position and force of a pneumatic cylinder[J]. Jof the Japan Hydraulics and Pneumatics of Society. 1988, 19(3): 226-233)
    21周洪.电-气比例/伺服系统及其控制策略的研究.浙江大学博士学位论文. 1988:52-54
    22李宝仁,许耀铭.气动位置伺服系统的高精度控制研究.机床与液压. 1996, (3): 17-20
    23 Wang J, Wang J D, Liau V K. Energy efficient optimal control of pneumatic actuator systems.Systems Science. 2000, 26(3): 109-123
    24 Xu H G. Optimal control of a pneumatic cylinder with two proportional valves. Proc of the 3rd Int Conf on Fluid Power Transmission and Control. 1993: 363-365
    25 Russell J D, Kotwicki A J, Mattson K. Time optimal pneumatic valve control system. Proc of the American Control Conf. 1999: 227-231
    26則次俊郎,和田力,矢野坂雅巳.空気圧サ-ボの適サ制御.計測自動制御学会言俞文集. 1988, 24(11):1187-1194 (Noritsufu T, Wada T, Yanosaka M. Adaptive control of a pneumatic servo system. Trans of the Society of Instrument and Control Engineers. 1988, 24(11):1187-1194)
    27則次俊郎,和田力,西口登.適サ制御を用ぃた空気圧サ-ボ系の力制御.計測自動制御学会論文集. 1990, 26(2): 196-203 (Noritsufu T, Wada T, Nishiguchi N. Force control of a pneumatic servo system with adaptivecontrol. Trans of the Society of Instrument and Control Engineers. 1990, 26(2): 196-203)
    28 Tanaka K, Sakamoto M, Sakou T, et al. Improved design scheme of MRAC for electro-pneumatic servo system with additive external forces. Proc of the IEEE Symposium on Emerging Technologies and Factory Automation. 1996: 763-769
    29 Tanaka K, Yamada Y, Shimizu A, et al. Multi-rate adaptive pole-placement control for pneumatic servo system with additive external forces. Proc of the Int Workshop on Advanced Motion Control. 1996: 213-218
    30 Tanaka K, Yamada Y, Sakamoto M, et al. Model reference adaptive control with neural network for electro-pneumatic servo system. Proc of IEEE Conf on Control Applications. 1998: 1130-1134
    31吴振顺,滕序翎.时变参数气动系统自适应控制的仿真研究.哈尔滨工业大学学报. 1998, 30(6): 33-36
    32 Bobrow J E, Jabbari F. Adaptive pneumatic force sctuation and position control. ASME J of Dynamic Systems,Measurement and Control. 1991, 113(7):267-272
    33王鹏,彭光正,伍清河.自校正调节器在具有阻力负载的气动位置伺服系统中的研究.控制理论与应用. 2004, 20(5): 521-524
    34王宣银.气动位置伺服系统的线性二次高斯LQG自校正控制的研究.动力工程. 2001, 21(4): 1372-1375
    35许宏光.电-气伺服控制系统的研究.哈尔滨工业大学博士学位论文. 1992:63-66
    36 Tang J, Walker G. Variable structure control of a pneumatic actuator. J of Dynamic Systems,Measurement and Control. 1995, 117(1): 88-92
    37 Drakunov S, Hanchin G D, Su W C, et al. Nonlinear control of a rodless pneumatic servo actuator, or sliding modes versus coulomb friction. Automatica. 1997, 33(7): 1401-1408
    38 Bouri M, Thomasset D, Scavarda S. Integral sliding mode controller of a rotational servo drive. Proc of the 3rd JHPS Int Symposium on Fluid Power. 1996: 145-150
    39陆璐,李天石.基于H∞状态反馈的自学习控制器及其在气压伺服系统中的应用.计算技术与自动化. 1996, 15(4): 22-24
    40杨庆俊,王祖温,路建萍.基于反馈线性化的气压伺服系统非线性H∞控制.南京理工大学学报. 2002,26(1): 52-56
    41吴振顺,王成敏,罗绍雄.鲁棒自适应控制器在气动参数时变系统中的应用研究.机床与液压. 1998,(6): 25-28
    42王雄耀.近代气动机器人(气动机械手)的发展及应用.液压气动与密封. 1999(5):13-16
    43 Jihong Wang, Junsheng Pu, Philip Moore. Accurate position control of pneumatic actuator systems: an application to food packaging. Control Engineering Practice. 1999(7): 699-706
    44陶国良.多自由度电—气比例/伺服机械手的研究及其应用.浙江大学博士学位论文. 2000:32-35
    45杨庆俊.高性能气压位置伺服系统控制策略研究.哈尔滨工业大学博士学位论文. 2002:89-97
    46王其钰.基于DSP的气动伺服控制器的设计.哈尔滨工业大学硕士学位论文. 2003:26-27
    47 PC-LabCard User’s Manual PCL-818L High Performance, Low Cost Data Acquisition Card. Par No.20038180822th Edition.清华大学出版社. 2005,4:11-17
    48邱丽,曾贵娥,朱学峰.几种P ID控制器参数整定方法的比较研究.自动化技术与应用. 2005, 24 (11) : 28-31
    49张寅孩,张仲超.用Bang-Bang控制策略实现快速定位最优系统.电力电子技术. 2003年, 37(1):22-24
    50刘玫,曾毅,张承慧. Bang-Bang水位自动控制系统.中国能源. 1994(1):46-48
    51范影乐,杨胜天,李轶. MATLAB仿真应用详解.人民邮电出版社. 2001:297-324

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700