抗真菌乳酸菌的筛选及特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
天然防腐及生物防腐已成为现代食品科学和生物科学的前沿及热点,筛选具有抗菌活性的天然资源成为生物、食品研究的新趋势。乳酸菌用在食品和饲料中有着悠久的历史,它可以降低食品pH值并产生抑菌的代谢物质。近几年,许多研究发现乳酸菌对霉菌和酵母有一定的抑菌功能,将其应用到食品中具有重要的实际应用价值。本论文首先,采用琼脂扩散法对东北泡菜及传统乳制品中分离出的60株乳酸菌进行抗真菌活性初筛,筛选得到一株具有良好抗真菌效果的乳酸菌菌株;其次,对该乳酸菌的发酵特性及抑菌作用条件进行了研究;第三,对抑菌物质进行了初步的分离纯化;随后,将该菌株AST18作为辅助发酵剂添加到酸奶制作中,考察其防霉效果及对酸奶理化指标和感官指标的影响。主要研究结果如下:
     (1)通过牛津杯—琼脂扩散法对本实验室保藏及分离出的60株乳酸菌进行了抗真菌初筛。其中的7株显示出了良好的抗真菌性能。对显示出最强抑菌活性的乳酸菌菌株AST18进行16S r DNA鉴定,鉴定结果为Lactobacillus casei(干酪乳杆菌)。本实验所筛出的7株乳酸菌经HPLC检测,均可产生苯乳酸(PLA)。发酵液最高PLA产量为16.24 mg/L,最低为6.86 mg /L,但分析发现PLA产量和抑菌活性无相关关系。
     (2)研究不同培养时间、培养温度及通气状况对AST18生长及抑菌性能的影响,确定AST18最适生长温度37℃,在培养基初始pH6.0-7.0,摇床条件下菌株生长状况及抑菌活性较好。考察AST18发酵上清液对pH、热处理及蛋白酶处理的敏感度。研究表明,Lactobacillus caseiAST18发酵上清液在低pH范围内(2.0-4.0)抑菌活性高,耐热性较差,100℃以上加热失活,对胰蛋白酶、胃蛋白酶不敏感。本实验中分别用乙酸、乳酸和盐酸将MRS肉汤调节pH至3.88,未能观测到抑菌圈。
     (3)AST18上清发酵液中抑菌物质为小分子,分子量小于3000Da,在发酵液中,第2部分(4.5-7.5min)和第4部分(11.4-13.4min)出现相对较大抑菌圈。对第2部分进行初步分析,可推测其抑菌作用主要是由于高浓度的有机酸(主要是乳酸),由于其本身抑菌作用或对pH值的降低起到了抑菌效果。对第4部分进行GC-MS分析,分离出三种小分子有机化合物,包括环二肽ctclo-(Leu-Pro)、2,6-二苯基哌啶及小分子吡嗪类物质。
     (4)Lactobacillus casei AST18作为辅助发酵剂添加到酸奶中可提高酸奶中的乳杆菌数,降低酸奶中的乳链球菌数,2%AST18添加量中乳链球菌数同对照组相比降低1.0 Log(cfu/mL)。这可能是由于乳杆菌和乳链球菌的拮抗作用造成的。AST18的添加对酸奶黏度、持水力、及感官品质无显著影响且AST18后酸化水平较低,对酸奶pH值、滴定酸度无显著影响。因此,AST18作为辅助发酵剂在酸奶中的添加对其理化指标及感官品质影响较小,可作为辅助发酵剂在应用于酸奶产品的防腐剂。
     (5)4℃下,添加2%Lactobacillus caseiAST18的酸奶在21天货架期内可完全抑制霉菌和酵母的生长。28℃条件下,Lactobacillus caseiAST18的添加可延迟霉菌的生长,并抑制霉菌孢子生成。
The lactic acid bacteria that can reduce pH value and produce Antibacterial material had a long history in food and fodder field. The lactic bacteria that were applied in food had important pratical value, such as many studies have found that mould and yeast can be inhibited by it in recent years. In this paper , Agar-well diffusion method were used to select the antifungal LAB which came from 60 stains screened form Northeast kimchi and traditional dairy product . Then the antifungal properties of the screened LAB AST18 was studied, that including fermentation properties、physical and chemical properties of the antifungal material、the isolation and purification of the antifungal material and the applications in the yogurt production process as adjunct culture . when the AST18 was used as adjunct culture ,the Anti-fungal properties、physical and chemical and sensory evaluation of the yogurt were also studied. The main results are as follows:
     (1) Agar-well diffusion method was used to select the antifungal LAB which from 60 strains preserved in laboratory. There are 7 strains had better antifungal properties among 60 stain LAB. Of which the LAB of best antifungal activities was identified as Lactobacillus casei by 16S r DNA method. The 7 screened LABS all can produce PLA through HPLC detecting. Although the PLA from fermentation broth can reach highest content 16.24 mg l/L and the minimum content 6.86 mg l/L , the test result showed PLA content have no relations with antifungal activities. The MRS broth pH was adjusted to 3.88 by acetic acid、lactic acid and hydrochloric acid separately, but there is no inhibition zone. The further research about antibacterial material needs to be done to further identify antibacterial material.
     (2)The effects of different incubation time、incubation temperature and aeration condition on the growth and antibacterial properties of AST18 were studied, The optimum growth conditions and antibacterial activities was at 37°C and at the initial pH of 6.5-7.0 and by shaking culture . by studying the different sensitivity of culture supernatants of Lactobacillus casei AST18 with pH、heat treatment and protease treatment, the results showed the antibacterial activities of the culture supernatants of Lactobacillus casei AST18 was high at the pH of 2.0-4.0, it was vulnerable to heat treatment and even lost bioactivity by above 100℃heat treatment ,but it was not affected after treatment of trypsin and pepsin.
     (3)The part 2(4.5-7.5min)and part 4(11.4-13.4min)showed the biggest antifungal activities. Through the primary research, the high level of lactic acid was the main antifungal materials in part 2. Part 4 was analysed by GC-MS. There are three organic compounds departed: cyclic peptidesctclo-(Leu-Pro),2,6-diphenyl-piperidine and small molecular substances of pyrazine.
     (4)The physical and chemical properties and sensory properties were evaluated when the Lactobacillus casei AST18 as Secondary fermentation agent was used in yogurt. The result showed the addition of Lactobacillus caseiAST18 had little effection on viscosity、water-retaining capability and sensory evaluation of yogurt, and the weak acid yield ability, and little effection on pH value and titratable acidity of yogurt. The AST18 can be used as secondary fermentation and its addition had little effection on physical and chemical properities and sensory evaluation. At the same time, AST18 addition can increase the number of Lactobacillus in yogurt and reduce the number of Lactococcus, such as, Compared with the control group the 2% addition AST18 can reduce by 1.0 Log (cfu/mL) and other test groups reduce by 0.5 Log (cfu/mL). This may because of the Antagonism of Lactobacillus and Lactococcus.
     (5) The shelf life experiment and mouldproof accelerated testing were done at 4℃and 28℃. The test result showed, the mould growth situation can be totally inhibited by addition 2% Lactobacillus caseiAST18 in yogurt at shelf life experiment and mouldproof accelerated testing at 4℃; the mould growth situation can be delayed by addition 2% Lactobacillus caseiAST18 in yogurt at shelf life experiment and mouldproof accelerated testing at 28℃
引文
1.陈超,沐万孟,江波,张涛,李兴峰.苯乳酸发酵液脱色体系中活性炭吸附的研究[J].食品工业科,2008,29(3): 59-62
    2.方芳.产细菌素乳酸菌的筛选、细菌素的纯化及其特性研究.方芳硕士学位论文.呼和浩特:内蒙古农业大学,2008
    3.贺银凤.酸马奶酒中微生物的分离鉴定及抗菌因子的研究.贺银凤博士学位论文.呼和浩特:内蒙古农业大学,2008
    4.胡萍.乳链菌肽对搅拌型酸奶保质期的应用研究[J].中国乳业,2003, 9: 30-32.
    5.冀林立.传统乳制品中产γ-氨基丁酸乳酸菌的筛选、鉴定及发酵条件优化.冀林立硕士学位论文.呼和浩特:内蒙古农业大学,2008
    6.李国富,天然食品防腐剂的研究和开发[J].食品机械,1996,12:36-37
    7.李燕芸,尹振晏.食品防腐保鲜剂的现状和发展[J].北京石油化工学院学,2003,11(4):18-23
    8.李滢冰,陈孝荣,王琳,孟军.天然防腐剂的发展与应用[J].食品研究与开发,2000,21: 9-10
    9.李兆龙.国外新开发的几种天然食品防腐剂[J].食品科技动态,1989,16:8-1l
    10.刘凤丽.乳酸菌SK007生物合成苯乳酸的研究.刘凤丽硕士学位论文.无锡:江南大学,2008
    11.刘毅,宁正祥.天然食品防腐剂一抗菌肽[J].食品科学,1999,11:18-21
    12.刘云鹏.新疆传统酸马奶中乳杆菌降胆固醇特性的研究.刘云鹏硕士学位论文.呼和浩特:内蒙古农业大学,2008
    13.沐万孟,周宏敏,刘凤丽,李兴峰,陈超,罗昭锋,江波.苯乳酸的快速检测研究.食品与发酵工业,2008,34 (11) :135-138
    14.潘利华,夏云梯,朱克美.Nisin对酸奶品质的影响研究[J].合肥工业大,2002,25(4): 619-623
    15.彭冬英.保鲜菌HOLDBACK(TM)YM-C应用于延长酸奶货架期的研究.彭冬英硕士学位论文.南昌:南昌大学,2009
    16.乔长晟,王玲,朱晓红等.新型天然食品防腐剂的现状与发展趋势[J].宁夏农学院学报,2001, 22(4):60-64
    17.孙洁.乳酸菌发酵剂菌株的自溶特性及机理研究.孙洁博士学位论文.北京:中国农业科学院,2010
    18.王本旭.家蝇幼虫中耐高温DNA酶活性蛋白的提取纯化及其初步鉴定[D]. 2002
    19.王希春,何成华,刘海明,张海彬.真菌毒素的污染、危害及其检测技术[J].畜牧与兽医.2009,41(8):104-106
    20.魏小雁.产葡聚糖明串珠菌的特性及其葡聚糖合成条件研究.魏小雁硕士学位论文.呼和浩特:内蒙古农业大学,2008
    21.姚自奇,庄艳玲,温凯.纳他霉素在酸奶制品中的应用[J].中国食品添加剂开发应用,2007,1: 168-171
    22.易华西,张兰威,杜明,韩雪.乳酸菌细菌素抗菌潜力挖掘研究进展[J].中国食品添加剂,2010,1:73-76
    23.张百刚,张宝善.生物防腐剂在食品加工中的应用研究[J].食品研究与开发,2004,25(6): 127-128
    24.张书文.抗氧化乳酸菌的筛选及其特性研究.张书文硕士学位论文.呼和浩特:内蒙古农业大学,2009
    25. A Maroziene,C G Kruif. Interaction of pectin and casein micelles [J]. Food Hydrocolloids, 2000, 14: 391-394
    26. Axelsson, L. (1990). Lactobacillus reuteri, a member of the gut bacterial flora. PhD thesis, Swedish University of Agricultural Sciences, Uppsala, Sweden
    27. Bennett JW, Papa KE. The aflatoxigenic Aspergillus [J]. Adv Plant Patbol, 1988, 6:265-279.
    28. Broberg, A., Jacobsson, K., Str?m, K., Schnürer, J. Metabolite profiles of lactic acid bacteria in grass silage [J]. Applied and Environmental Microbiology, 2007, 73: 5547-5552
    29. Brul, S., Coote, P. Preservative agents in foods. Mode of action and microbial resistance mechanisms [J]. International Journal of Food Microbiology, 1999, 50, 1–17
    30. Bueno, D.J., Casale, C.H., Pizzolitto, R.P., Salano, M.A., Olivier, G. Physical Adsorption of Aflatoxin B1 by lactic acid bacteria and Saccharomyces cerevisiae: a theoretical model. Journal of Food Protection, 2006, 70: 2148-2154
    31. Cabo, M. L., Braber, A. F., Koenraad, P. M. Apparent antifungal activity of several lactic acid bacteria against Penicillium discolor is due to acetic acid in the medium[J]. Journal of Food Protection, 2002, 65: 1309–1316
    32. Cast. Mycotoxins: Econcomic and health riska[C]. Council for agricultural science and technology, 1989, 116
    33. Chung, T. C., Axelsson, L., Lindgren, S. E., & Dobrogosz, W. J. In vitro studies on reuterin synthesis by Lactobacillus reuteri [J]. Microbial Ecology in Health and Disease, 1989, 2: 137–144
    34. Claisse, O., Lonvaud-Funel, A. Assimilation of glycerol by a strain of Lactobacillus collinoides isolated from cider [J]. Food Microbiology, 2000, 17: 513–519
    35. Claisse, O., Lonvaud-Funel, A. Assimilation of glycerol by a strain of Lactobacillus collinoides isolated from cider [J]. Food Microbiology, 2000, 17: 513–519
    36. Condon, S. Responses of lactic acid bacteria to oxygen [J]. FEMS Microbiology Reviews, 1987, 46: 269–280
    37. Corsetti, A., Gobbetti, M., Rossi, J., Damiani, P. Antimould activity of sourdough lactic acid bacteria: identification of a mixture of organic acids produced by Lactobacillus sanfrancisco CB1 [J]. Applied Microbiology and Biotechnology, 1998, 50: 253–256
    38. Cotty PJ, Bhatnagar D. Variability among toxigenic Aspergillus flavus strains in ability to prevent aflatoxin contaminateon and production of aflatoxin biosynthetic pathway enzymes [J]. Appl Environ.Microbiol, 1994, 60: 2248-2251
    39. D.K.D. Dalié, A.M. Deschamps, F. Richard-Forget. Lactic acid bacteria: potential for control of 1 mould growth and mycotoxins: a review [J]. Food Control, 2010, 21: 370-380
    40. David W Everett. Rosalind E McLeod.Interactions of polysaccharide stabilisers with caseinaggregates in stirred skim–milk yoghurt[J]. International Dairy Journal,2005, 15: 1175-1183
    41. Davidson, M. P. Chemical preservatives and natural antimicrobial compounds. In M. P. Doyle, L. R. Beuchat, & T. J.Montville, Food microbiology: Fundamentals and frontiers, 2001, 593–627
    42. Dobrogosz, W., Casas, I., Karlsson. Lactobacillus reuteri and enterimicrobita [J]. Microbial Ecology and Hearth and Disease, 1989, 8: 124-131
    43. E.J. Yang, H.C. Chang. Purification of a new antifungal compound produced by Lactobacillus plantarum AF1 isolated from kimchi. International Journal of Food Microbiology 139: 56–63
    44. Eklund, T. Organic acids and esters. In G. W. Gould, Mechanisms of action of food preservation procedures, 1989: 161–200
    45. El-Nezami, H.S., Chrevatidis, A., Auriola, S., Salminen, S., Mykk?nen, H. Removal of common Fusarium toxins in vitro by strains of Lactobacillus and Propionibacterium [J]. Food Additives and Contaminants, 2002, 19: 680-686
    46. Emanuele Armaforte, Simone Carri, Giovanni Ferri, Maria Fiorenza Caboni. High-performance liquid chromatography determination of phenyllactic acid in MRS broth. Journal of Chromatography A , 2006, 1131: 281–284
    47. Farkas, J. Physical methods for food preservation. In M. P.Doyle, L. R. Beuchat, & T. J. Montville, Food microbiology: Fundamentals and frontiers, 2001, 567–592.
    48. Ffrance T, Mahanti N,Linz JE. Molecular biology of aflatoxin of biosynthesis [J]. Microbiology, 1995, 141: 755-765
    49. Filtenborg, O., Frisvad, J.C., & Thrane, U. Moulds in food spoilage [J]. International Journal of Food Microbiology, 1996, 33 (9): 85–102
    50. Freese, E., Sheu, C. W., Galliers, E. Function of lipophilic acids as antimicrobial food additives [J]. Nature, 1973, 241: 321–325
    51. G?nzle, M. G., H?ltzel, A., Walter, J., Jung, G., Hammes, W. P.(2000). Characterization of reuterocyclin produced by Lactobacillus reuteri LTH2584. Applied and Environmental Microbiology, 66: 4325–4333
    52. Gerez, L. C., Torino, I. M., Rollan, G., de Valdez, F. G. (2009) Prevention of bread mould spoilage by using lactic acid bacteria with antifungal properties. Food Control 20: 144–148
    53. Gild-Ad, N.L., Mayer, A.M. Evidence for rapid breakdown of hydrogen peroxide by Botrytis cinerea[J]. FEMS Microbiology Letters, 1999, 176: 455-461
    54. Gourama, H., Bullerman, L.B. Anti-aflatoxigenic activity of Lactobacillus casei pseudoplantarum. International Journal of Food Microbiology, 1997, 34: 131-143
    55. H?ltzel, A., G?nzle, M. G., Nicholson, G. J., Hammes, W. P., Jung, G. The first low molecular weight antibiotic fromlactic acid bacteria: reutericyclin, a new tetramic acid [J]. Angewandte Chemie International Edition, 39, 2000: 2766–2768
    56. Hunter, D. R., Segel, I. H. Effect of weak acids on amino acid transport by Penicillium chrysogenum: evidence for a proton or charge gradient as the driving force [J]. Journal of Bacteriology, 1973, 113: 1184–1192
    57. L.A.M. Ryan, F. Dal Bello, E.K. Arendt. The use of sourdough fermented by antifungal LAB to reduce the amount of calcium propionate in bread. International Journal of Food Microbiology, 2008, 125: 274–278
    58. Lavermicocca, P., Valerio, F., Evidente, A., Lazzaroni, S., Corsetti, A., Gobetti, M. Purification and characterization of novel antifungal compounds from soudourgh Lactobacillus plantarum strain 21 B[J]. Applied and Environmental Microbiology, 2000, 66: 4084-4090
    59. Loureiro, V., Querol, A. The prevalence and control of spoilage yeasts in foods and beverages [J]. Trends in Food Scienceand Technology,1999, 10, 356–365
    60. Magnusson, J., Schnürer, J. Lactobacillus coryniformis subsp. coryniformis strain Si3 produces a broad-spectrum proteinaceous antifungal compound [J]. Applied and Environmental Microbiology, 2001, 67: 1-5
    61. Magnusson, J., Str?m, K., Roos, S., Sj?gren, J., Schnürer, J. Broad and complex antifungal activity among environmental isolates of lactic acid bacteria [J]. FEMS Microbiology Letters, 2003, 219: 129–135
    62. Mandal, V., Sen, S.K., Mandal, N.C. Detection, isolation and partial charaterization of antifungal compound(s) produced by Pediococcus acidilactici LAB[J]. Natural Product Communications, 2007, 2: 671-674
    63. Nakanishi, K., Tokuda, H., Ando, T., Yajima, M., Nakajima, T., Tanaka, O., Ohmomo, S. Screening of lactic acid bacteria having the ability to produce reuterin [J]. Japanese Journal of Lactic Acid Bacteria, 2002, 13: 37–45
    64. Ponts, N., Pinson-Gadais, L., Verdal-Bonnin, M.N., Barreau, C., Richard-Forget, F(2006). Accumulation of deoxynivalenol and its 15-acetylated form is significantly modulated by oxidative stress in liquid cultures of Fusarium graminearum [J]. FEMS Microbiology Letters, 2006, 258: 102-107
    65. Robet EM, Townsend CA.Enzymology and molecular biology of aflatoxin biosynthesia [J]. Chem Rev, 1997, 97: 2537-2555
    66. Rouse, S., Harnett, D., Vaughan, A., van Sinderen, D. Lactic acid bacteria with potential to eliminate fungal spoilage in foods [J]. Journal of Applied Microbiology, 2008, 104: 915-923
    67. Roy, U., Batish, V. K., Grover, S., Neelakantan, S. Production of antifungal substance by Lactococcus lactis subsp. lactis CHD-28.3[J]. International Journal of Food Microbiology, 1996, 32: 27-34
    68. Schnürer, J., Magnusson, J. Antifungal lactic acid bacteria as biopreservatives [J]. Trends Food Sci Technol , 2005, 16: 70–78
    69. Schütz, H., Radler, F. (1984). Anaerobic reduction of glycerol to propanediol-1,3 by L. brevis and L. buchneri[J]. Systematic and Applied Microbiology, 1984, 5: 169–178
    70. Sj?gren, J., Magnusson, J., Broberg, A., Schnürer, J., Kenne, L. Antifungal 3-hydroxy fatty acids from Lactobacillus plantarum MiLAB 14[J]. Applied and Environmental Microbiology, 2003, 69: 7554–7557
    71. Slininger, P. J., Bothast, R. J., Smiley, K. L. Production of 3-hydroxypropionaldehyde from glycerol [J]. Applied and Environmental Microbiology, 1983, 46: 62–67
    72. Sobolov, M., Smiley, K. L. Metabolism of glycerol by an acrolein-forming Lactobacillus [J]. Journal of Bacteriology, 1960, 79: 261–266
    73. Stiles, J., Penkar, S., Plockova, N., Chumchalova, J., Bullerman, L. B. Antifungal activity of sodium acetate and Lactobacillus rhamnosus. Journal of Food Protection, 2002, 65: 1188–1191
    74. Str?m, K., Schnürer, J., Melin, P. Co-cultivation of antifungal Lactobacillus plantarum MiLAB 393 and Aspergillus nidulans, evaluation of effects on fungal growth and protein expression. FEMS Microbiol Lett, 2005, 246: 119–124
    75. Str?m, K., Sj?gren, J., Broberg, A., Schnürer, J. Lactobacillus plantarum MiLAB 393 produces the antifungal cyclic dipeptides cyclo (L-Phe-L-Pro) and cyclo (L-Phe25trans-4-OH-L-Pro) and phenyllactic acid [J]. Applied and Environmental Microbiology, 2002, 68: 4322-4327
    76. Talarico, T. L., Casas, I. A., Chung, T. C., Dobrogosz, W. J. Production and isolation of reuterin, a growth inhibitor produced by Lactobacillus reuteri[J]. Antimicrobial Agents and Chemotherapy, 1988, 32, 1854–1858
    77. Valerio F, Lavermicocca P, Pascale M,et a1.Production of phenyllactic acid by lactic acid bacteria; an approach to the selection of strains contributing to food quality and preservation[J].FEMS Microbiol Lett, 2004, 233: 289-295
    78. Venturini, M.E., Blanco, D., Oria, R. In vitro antifungal activity of several compounds against Penicillium expansum [J]. Journal of Food Protection, 2002, 65: 934-839
    79. Vermeulen N, Ganzle M G, Vogel R F.Influence of peptide supply and cosubstrates on phenylalanine metabolism of Lactobacillus sanfranciscensis DSM2045l(T) and Lactobacillus plantarum TMWl.468[J]. J Agric Food Chem, 2006, 54: 3 832-3839
    80. Woolford, M. K. The antimicrobial spectra of organic compounds with respect to their potential as hay preservatives [J]. Grass and Forage Science, 1984, 39: 75–79
    81. Xingfeng Li, Bo Jiang, Beilei Pan. Biotransformation of phenylpyruvic acid to phenyllactic acid by growing and resting cells of a Lactobacillus sp. Biotechnology Letters, 2007, 29: 593-597

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700