肝阳上亢证与肝阳化风证大鼠神经内分泌免疫网络的蛋白质组学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     1.复制具有病证结合特点的高血压肝阳上亢证与出血性中风肝阳化风证及缺血性中风肝阳化风证动物模型。
     2.研究肝阳上亢证与肝阳化风证垂体、肾上腺、甲状腺及脾淋巴细胞蛋白质的表达规律,从神经内分泌-免疫系统的蛋白质表达水平探讨二证本质内涵,为肝阳上亢证与肝阳化风证开辟新的研究领域。
     3.寻找肝阳上亢证与肝阳化风证相同与差异表达的蛋白,揭示同病异证和异病同证的本质内涵。
     方法:
     1.高血压肝阳上亢证动物模型的复制:75只SD大鼠随机分为正常组15只(自由饮水),高血压肝阳上亢证组60只,采用附子汤灌胃(附子汤的剂量为20 ml/kg·d),同时喂1.5%高渗盐水的方法,共6周,6周后从激惹程度、结膜充血情况、血压测定及旋转时间等方面进行模型评价。
     2.出血性中风肝阳化风证动物模型的复制:在成功复制高血压肝阳上亢证模型基础上,采用Ⅶ胶原酶脑内定位注射诱导大鼠脑出血复制成出血性中风肝阳化风证模型,从行为学与形态学观察评价模型成功与否。
     3.缺血性中风肝阳化风证动物模型的复制:在成功复制高血压肝阳上亢证模型基础上,用改良线栓法造成大鼠大脑中动脉阻塞(middle cerebral artery occlusion,MCAO),复制成缺血性中风肝阳化风证模型,从行为学与TTC染色评价模型成功与否。
     4.蛋白质组学检测及基因、蛋白质水平验证:应用双向凝胶电泳技术(two-dimensional gel electrophoresis,2DE)分别分离各组垂体、肾上腺、甲状腺及脾淋巴细胞蛋白质,改良的考马斯亮蓝染色使凝胶中的蛋白质点可视化;扫描凝胶成像,Pdquest图像分析软件进行图像分析并识别差异表达的蛋白质与共同表达的蛋白质;应用基质辅助激光解吸电离飞行时间质谱技术(matrix-assisted laser desorption/ionization time-of-flight mass spectrometry,MALDI-TOF-MS)得到相应的肽质量指纹图谱(peptide mass fingerprint,PMF),搜索数据库进行鉴定,运用RT-PCR与western blotting方法从基因与蛋白质两方面验证差异表达蛋白。
     结果:
     1.动物模型的复制:60只SD大鼠成功复制成高血压肝阳上亢证模型48只,模型成功率为80%;模型成功后随机分为高血压肝阳上亢组14只,出血性中风肝阳化风组17只(实验中死亡2只)和缺血性中风肝阳化风组17只(实验中死亡3只)。
     2.动物模型的评价:①高血压肝阳上亢证组大鼠出现不同程度的性情变化,表现为烦躁、易激惹、互相打斗,部分大鼠双眼结合膜颜色加深变红,与正常组比较差异有显著性(P<0.05);与正常组相比旋转时间明显缩短(P<0.05);随造模时间延长,血压逐步上升,至第6周达到高峰,与正常组比较差异有显著性(P<0.01);②造模术后12h出血性肝阳化风证组与缺血性肝阳化风证组大部份出现了结膜充血,且其易激惹程度进一步加重,表现为提尾时尖叫、惊跳,甚至咬人或同笼大鼠频繁打斗,与正常组、肝阳上亢组比较差异有显著性意义(P<0.05);旋转时间较术前更加缩短,且血压进一步上升,与正常组、肝阳上亢证组比较差异有显著性(均P<0.05);脑出血术后神经功能缺损评分>2分的为13只;脑缺血术后神经功能缺损评分>2分的为12只;出血性中风肝阳化风证HE染色示脑内形成直径3mm左右血肿,光镜下见出血灶内充满变性红细胞、大量中性粒细胞和吞噬细胞浸润,无正常结构,血肿周围神经细胞排列紊乱,缺血性中风肝阳化风证TTC染色示缺血区脑组织颜色苍白,其余部分染色为均匀红色,缺血的大鼠脑缺血体积百分比为(15-45%),正常组全脑染色为均匀红色。
     3.垂体、肾上腺、甲状腺组织及脾淋巴细胞双向凝胶电泳图谱的建立和图象分析:在相同条件下分别对垂体、肾上腺、甲状腺及脾淋巴细胞总蛋白质各进行了3次双向凝胶电泳分离,考染显色后得到肯景清晰、分辨率高、重复性好的2-DE图谱各3块,其总蛋白质的分布模式非常相似,使用PDQuest软件对凝胶图谱进行图像分析结果显示,垂体组织的2-DE图谱的蛋白质点约1100±32个;肾上腺的2-DE图谱的蛋白质点约800±56个;甲状腺的2-DE图谱的蛋白质点约500±17个;脾淋巴细胞的2-DE图谱约的蛋白质点约1200±24个,大多数蛋白质点在位置和丰度上是一致的,主要分布在pH4-8和Mr20-60kD的范围内。
     4.选取四组中差异表达和共同表达的蛋白质点作进一步的质谱鉴定,从匹配的蛋白质斑点中随机选取了61个分辨较清楚的点进行MALDI-TOF-MS分析,共有46个蛋白质点得到鉴定,根据NCBI、MSDB数据库中提供的的信息,这些差异蛋白质的功能涉及抗氧化应激、代谢相关酶、蛋白质合成与降解、细胞骨架相关蛋白、分子伴侣、出凝血相关等,其中类固醇激素合成急性调控蛋白(steroidogenicacute regulatory protein,STAR)、泛素C末端水解酶L1(Ubiquitincarboxyl-terminal hydrolase isozyme L1,UCH-L1)、二氢嘧啶酶相关蛋白2(Dihydropyrimidinase-related protein 2,DRP-2)、硫氧还蛋白过氧化物酶(Peroxiredoxin,PRDX)等可能与肝阳上亢证与肝阳化风证神经内分泌-免疫网络的相互作用有关。
     5.差异蛋白验证结果:
     (1)RT-PCR结果显示:STARmRNA、DRP-2mRNA及PRDX2mRNA在高血压肝阳上亢证、出血性中风肝阳化风证及缺血性中风肝阳化风证组表达均较正常组明显增强(p<0.01),而在出血性中风肝阳化风证及缺血性中风肝阳化风证组表达又较高血压肝阳上亢证组表达增强(P<0.05),出血性中风肝阳化风证及缺血性中风肝阳化风证两组间比较比较无明显差异(P>0.05);UCH-L1mRNA在高血压肝阳上亢证、出血性中风肝阳化风证及缺血性中风肝阳化风证组表达均较正常组明显减弱(p<0.01),而在出血性中风肝阳化风证及缺血性中风肝阳化风证组表达又较高血压肝阳上亢证组表达明显减弱(P<0.05),出血性中风肝阳化风证及缺血性中风肝阳化风证两组间比较无明显差异(P>0.05),且STARmRNA、DRP-2mRNA、PRDX2mRNA及UCH-L1mRNA在垂体与。肾上腺中的表达水平一致。
     (2)Western blotting结果显示:STAR在高血压肝阳上亢证、出血性中风肝阳化风证及缺血性中风肝阳化风证组表达均较正常组明显增强(p<0.01),而在出血性中风肝阳化风证及缺血性中风肝阳化风证组表达又较高血压肝阳上亢证组表达增强(P<0.05),出血性中风肝阳化风证及缺血性中风肝阳化风证组两组间比较无明显差异(P>0.05);UCH-L1在高血压肝阳上亢证、出血性中风肝阳化风证及缺血性中风肝阳化风证组表达均较正常组明显减弱(p<0.01),而在出血性中风肝阳化风证及缺血性中风肝阳化风证组表达又较高血压肝阳上亢证组表达明显减弱(P<0.01),出血性中风肝阳化风证及缺血性中风肝阳化风证组两组间比较无明显差异(P>0.05),结果与蛋白质组学及RT-PCR研究的结果一致。
     结论:
     1.成功复制了高血压肝阳上亢证、出血性中风肝阳化风证及缺血性中风肝阳化风证动物模型,具有病证结合的特点。
     2.肝阳上亢证与肝阳化风证的形成过程是一个多蛋白质参与的复杂病理过程,且神经内分泌系统与免疫系统的多个蛋白质表达发生了明显的改变,提示二证神经内分泌-免疫网络出现了明显的紊乱。
     3.肝阳上亢证与肝阳化风证既有相同的蛋白质表达又有差异的蛋白质表达,提示二证既有相同的物质基础又有不同的本质内涵,为肝阳上亢证与肝阳化风证本质研究提供了科学依据。
Objective:
     (1)To establish the model of hypertensive with Liver-Yang Hyperactivity Syndrome,hypertensive intracerebral hemorrhage(HICH) with Liver-Yang Forming Wind Syndrome and cerebral ischemia with Liver-Yang Forming Wind Syndrome which have the characteristic of combined Disease and Syndrome.
     (2)To investigate the protein profile in the rat pituitary,adrenal gland, thyroid gland and splenic lymphocyte using proteomics techniques, and to elucidate the nature of Liver-Yang Hyperactivity Syndrome and Liver-Yang Forming Wind Syndrome from the view of the neuroendocrine-immune system,which can be helpful to provide new field for approaching the nature of the two Syndromes.
     (3)To elucidate the essence of the "different syndrome complexes in the same disease" and "the same syndrome complex in different diseases" by analyzing the undifferential and differential expression proteins between Liver-Yang Hyperactivity Syndrome and Liver-Yang Forming Wind Syndrome.
     Methods:
     (1)Randomly selected 15 rats from 70 male SD rats as normal control group,and the remnant 60 rats as hypertensive with Liver-Yang Hyperactivity Syndrome which was made through pouring "Aconite Decoction" and drinking 1.5%hypertonic saline for six weeks. Observing the degree of irritation and conjunctiva hyperemia and measuring the blood pressure and rotation time after six weeks.
     (2)The model of hypertensive intracerebral hemorrhage(HICH) with Liver-Yang Forming Wind Syndrome was made through injecting TypeⅦcollagenase into the right globus pallidus(GP) of rats by stereotaxic method on the base of the model of hypertensive with Liver-Yang Hyperactivity Syndrome.Then,the brain tissues were made sections,stained by HE method,to evaluate the histological changes.Furthermore,neuropathological profile was observed at the same time.
     (3)The model of cerebral ischemia with Liver-Yang Forming Wind Syndrome was made through occluding the middle cerebral artery on the base of the model of hypertensive with Liver-Yang Hyperactivity Syndrome.Then,the brain tissues were made sections,stained by TTC method,to evaluate the histological changes.Furthermore, neuropathological profile was observed at the same time.
     (4) The total proteins of pituitary,adrenal gland,thyroid gland and splenic lymphocyte in the rats were separated by two-dimensional gel electrophoresis(2-DE) respectively.The gels of 4 groups were stained by Coomassie brilliant blue,scanned by ImageScanner and analyzed in PDQuest software.The undifferential and differential expression protein spots were identified by peptide mass fingerprint(PMF) based on matrix -assisted laser desorption/ionization time of flight mass spectrometry(MALDI- TOF-MS) and database searching,then some of them were validated by RT-PCR and western blotting.
     Results:
     (1)Copying rats model:Forty-eight rats were reproduced into a successful model of hypertensive with Liver-Yang hyperactivity Syndrome among 60 rats,with the incidence of 80.0%approximately. The 48 rats were randomly divided into three groups:hypertensive with Liver-Yang Hyperactivity Syndrome group including 14 rats, hypertensive intracerebral hemorrhage(HICH) with Liver-Yang Forming Wind Syndrome group including 17 rats and cerebral ischemia with Liver-Yang Forming Wind Syndrome group including 17 rats.
     (2)Evaluation of the models:①hypertensive with Liver-Yang hyperactivity Syndrome model group with high aggression and conjunctiva hyperemia and high blood pressure and shortened rotation time.Compared with the normal control group the difference was significant(P<0.05).②Affer operation,the majority of the hypertensive intracerebral hemorrhage(HICH) with Liver-Yang Forming Wind Syndrome and cerebral ischemia with Liver-Yang Forming Wind Syndrome rats showed up conjunctival congestion and the aggression degree further deepened.Compared with the normal control group and hypertensive with Liver-Yang hyperactivity Syndrome,the difference were significant(P<0.05).The rotation time of hypertensive intracerebral hemorrhage(HICH) with Liver-Yang Forming Wind Syndrome and cerebral ischemia with Liver-Yang Forming Wind Syndrome group shortened and blood pressure heightened.Compared with the normal control group and hypertensive with Liver-Yang hyperactivity Syndrome,the difference were significant(P<0.05).After injecting TypeⅦcollagenase,the neurological deficits score of 13 rats are more than 2 scores.After occluding the middle cerebral artery,the neurological deficits score of 12 rats are more than 2 score.Lymphocytes,other kinds of leukocytes, glial cells and lots of red blood cells were observed in the tissues of hematoma area after stained by HE in the hypertensive intracerebral hemorrhage(HICH) with Liver-Yang Forming Wind Syndrome group. Under staining with 0.1%TTC,the infarcted tissues caused by middle cerebral artery occlusion(MCAO) were white in color on the injured side,while the normal brain tissues on the non-injured side and the sham-operated controls were pink in color in cerebral ischemia with Liver-Yang Forming Wind Syndrome groups.
     (3) Establishment of 2-DE maps in the rat pituitary,adrenal gland,thyroid gland and splenic lymphocyte and image analysis:Well-resolved and reproducible 2-DE maps of rat pituitary,adrenal gland,thyroid gland and splenic lymphocyte from normal,hypertensive with Liver-Yang Hyperactivity Syndrome,hypertensive intracerebral hemorrhage (HICH) with Liver-Yang Forming Wind Syndrome and cerebral ischemia with Liver-Yang Forming Wind Syndrome group were acquired.As compared with the control 2-DE maps,the gels of the pituitary displayed approximately 1100±32 protein spots,the 2-DE maps of the adrenal gland displayed 800±56 spots,the 2-DE maps of the thyroid gland displayed 500±17 spots,and the 2-DE gels of the spleen lympholeukocytes displayed 1200±24 spots.The location and abundance of the majority of protein spots are consistent,mainly distributed in the pH4-8 and Mr20-60kD range.
     (4) Select the undifferential and differential expression proteins for further analysis by MALDI-TOF-MS.46 spots more than 2 folds differential expression protein spots were identified.The proteins were divided into seven groups based on their functions using information obtained from the Swiss-Prot and NCBInr websites:antioxidant,metabolic enzymes,protein biosynthesis and degradation,structural proteins, chaperone,thromboxane enzyme,and so on.Steroidogenic acute regulatory protein,ubiquitin carboxyl-terminal hydrolase isozyme L1, dihydropyrimidinase-related protein 2,peroxiredoxin may concerned with the neuroendocrine-immune network in Liver-Yang hyperactivity Syndrome and Liver-Yang Forming Wind Syndrome.
     (5)Viladation of differentially expressed protein:①The results of RT-PCR:STAR mRNA、DRP-2 mRNA and PRDX2 mRNA is stronger in hypertensive with Liver-Yang Hyperactivity Syndrome, hypertensive intracerebral hemorrhage(HICH) with Liver-Yang Forming Wind Syndrome and cerebral ischemia with Liver-Yang Forming Wind Syndrome group than the normal contral group(P<0.01) and it is also stronger in hypertensive intracerebral hemorrhage (HICH) with Liver-Yang Forming Wind Syndrome and cerebral ischemia with Liver-Yang Forming Wind Syndrome group than hypertensive with Liver-Yang Hyperactivity Syndrom group(P<0.05).It showed no significant difference between hypertensive intracerebral hemorrhage(HICH) with Liver-Yang Forming Wind Syndrome and cerebral ischemia with Liver-Yang Forming Wind Syndrome group(P>0.05).UCH-L1 mRNA is weaker in hypertensive with Liver-Yang Hyperactivity Syndrome,hypertensive intracerebral hemorrhage(HICH) with Liver-Yang Forming Wind Syndrome and cerebral ischemia with Liver-Yang Forming Wind Syndrome group than the normal contral group(P<0.05) and it is also weaker in hypertensive intracerebral hemorrhage(HICH) with Liver-Yang Forming Wind Syndrome and cerebral ischemia with Liver-Yang Forming Wind Syndrome group than hypertensive with Liver-Yang Hyperactivity Syndrom group(P<0.05).It showed no significant difference between hypertensive intracerebral hemorrhage(HICH) with Liver-Yang Forming Wind Syndrome and cerebral ischemia with Liver-Yang Forming Wind Syndrome group(P>0.05).The expression level of STAR mRNA、DRP-2 mRNA、UCH-L1 mRNA and PRDX2 mRNA in pituitary and adrenal gland are identical.②The results of Western blotting:STAR is stronger in hypertensive with Liver-Yang Hyperactivity Syndrome,hypertensive intracerebral hemorrhage (HICH) with Liver-Yang Forming Wind Syndrome and cerebral ischemia with Liver-Yang Forming Wind Syndrome group than the normal contral group(P<0.01) and it is stronger in hypertensive intracerebral hemorrhage(HICH) with Liver-Yang Forming Wind Syndrome and cerebral ischemia with Liver-Yang Forming Wind Syndrome group than hypertensive with Liver-Yang Hyperactivity Syndrom group(P<0.05).It showed no significant difference between hypertensive intracerebral hemorrhage(HICH) with Liver-Yang Forming Wind Syndrome and cerebral ischemia with Liver-Yang Forming Wind Syndrome group(P>0.05).UCH-L1 mRNA is weaker in hypertensive with Liver-Yang Hyperactivity Syndrome, hypertensive intracerebral hemorrhage(HICH) with Liver-Yang Forming Wind Syndrome and cerebral ischemia with Liver-Yang Forming Wind Syndrome group than the normal control group(P<0.05) and it is weaker in hypertensive intracerebral hemorrhage(HICH) with Liver-Yang Forming Wind Syndrome and cerebral ischemia with Liver-Yang Forming Wind Syndrome group than hypertensive with Liver-Yang Hyperactivity Syndrom group(P<0.05).It showed no significant difference between hypertensive intracerebral hemorrhage (HICH) with Liver-Yang Forming Wind Syndrome and cerebral ischemia with Liver-Yang Forming Wind Syndrome group(P>0.05). The results are consistent with the results of proteomics and RT-PCR.
     Conclusion:
     (1)Founded successfully animal models of hypertensive with Liver-Yang Hyperactivity Syndrome,hypertensive intracerebral hemorrhage with Liver-Yang Forming Wind Syndrome and cerebral ischemia with Liver-Yang Forming Wind Syndrome.The models have the characteristic of combined Disease and Syndrome.
     (2) The forming process of Liver-Yang Hyperactivity Syndrome and Liver-Yang Forming Wind Syndrome is a complex pathological process which many proteins involved in.The neuroendocrine-immune system was obviously changed,which suggest that the neuroendocrine - immune network of the two syndromes are obvious disturbed.
     (3) There are undifferential and differential proteins between Liver-Yang Hyperactivity Syndrome and Liver-Yang Forming Wind Syndrome which suggest that two syndrome have the same basic material and different nature connotations.
引文
[1]金敬善,王和天.胃十二指肠疾病的生化多指标同步观察.新消化病学杂志,1996,4(11):623-624.
    [2]陈小野,邹世洁.大鼠长期脾虚和热证造模的初步病理观察.成都中医药大学学报,1997,20(4):32-34,F003.
    [3]金敬善,赵子厚.慢性胃炎脾气虚证患者的临床和实验研究.中医杂志,1989,30(3):21-22.
    [4]陈泽奇,金益强.肝气郁结证血浆去甲肾上腺素和肾上腺素测定结果分析.中医药学报,1997,25(5):47-48.
    [5]沈自尹.从肾本质研究到证本质研究的思考与实践,上海中医药杂志,2000,34(4):4-7.
    [6]赵晓珍,李晖.基因组学对中医证的研究启示.中医药信息,2002,(03):1-2.
    [7]李杰芬.基因组学发展对中医证实质研究的启示--兼论中医基础理论研究发展的前景.上海中医药杂志,2001,(02):11-13.
    [8]张发宝,李欣梅,周逸平.基因芯片技术在中医药研究中的应用.安徽中医学院学报,2002,(03):57-59.
    [9]金光亮.证候基因组学和证候蛋白质组学浅论.中国医药学报,2003,(06):332-335+384.
    [10]金益强,黎杏群.肝风内动证三亚型的病理生理学基础研究.中国中西医结合杂志,1993,13(7):391-396.
    [11]金益强.肝脏象本质研究思路与方法的思考.山东中医药大学学报,2000,24(4):242-246.
    [12]金益强,黎杏群.肝风内动证三亚型的病理生理学基础研究.1993,13(7):391-396.
    [13]王光平,金益强,鄢东红.应用信使核糖核酸差异显示研究中医肝阳上亢、肝阳化风证的基因表达.湖南中医学院学报,2001,(01):6-8.
    [14]Besedovsky,H,Sorkin,E.Network of immune-neuroendocrine interactions.Clin Exp Immunol.27(1).ENGLAND,1977.1-12.
    [15]Haddad,JJ,Saade,NE,Safieh-Garabedian,B.Cytokines and neuro-immune-endocrine interactions:a role for the hypothalamic-pituitary-adrenal revolving axis.J Neuroimmunol.133(1-2).Netherlands,2002.1-19.
    [16]Besedovsky,HO,del,Rey AE,Sorkin,E.Immune-neuroendocrine interactions.J Immunol.135(2 Suppl).UNITED STATES,1985.750s-754s.
    [17]赵慧辉,王伟.病证结合证候模型研究基本思路.中华中医药杂志,2006,21(12):762-764.
    [18]黄文权,肖鸿.肝阳上亢证型实验动物模型研究初探.中国中医急症,1996,5(1):36-37.
    [19]肖纯,金益强.双肾双夹加灌附子汤法复制高血压肝阳上亢证大鼠模型.中国现代医学杂志,2000,10(9):20-22.
    [20]鄢东红,金益强.自发性高血压大鼠肝阳上亢证模型的复制.湖南中医学院学报,1999,19(4):35-38.
    [21]何纲,李桂英,刘新波.一种高血压脑出血肝阳上亢证大鼠模型的建立及其评价.中国中西医结合急救杂志,2005,(04):218-222.
    [22]曾昭华,RobertM.K.W.Lee,罗碧辉,等.一种新的高盐致高血压动物模型及其血管重构改变.中国临床药理学与治疗学,2005,10(1):24-28.
    [23]马建伟,邱丽颖,焦宏,等.自发性高血压大鼠与盐性高血压大鼠在心肌肥厚时ATP酶活性变化.张家口医学院学报,2003,20(5):21-22.
    [24]熊新贵,梁清华,陈疆,等.高血压性脑出血肝阳化风证大鼠模型的建立.湖南中医药大学学报,2007,27(6):11-14.
    [25]吕莉,邱丽颖,焦宏,等.高血压大鼠血管平滑肌钙调神经磷酸酶活性变化.高血压杂志,2004,12(1):62-65.
    [26]李春梅,钱艳芳.间接法与直接法测定大鼠动脉血压的比较研究.山西医科大学学报,2002,33(3):278-279.
    [27]曾锦旗,金益强.脑溢安颗粒剂治疗出血性中风大鼠的实验研究.湖南医科大学学报,1995,20(4):353-356.
    [28]Eisenhofer,G,Goldstein,DS,Stull,R,et al.Simultaneous liquid-chromatographic determination of 3,4-dihydroxyphenylglycol,catecholamines,and 3,4-dihydroxyphenylalanine in plasma,and their responses to inhibition of monoamine oxidase.Clin Chem,1986,32(11):2030-3.
    [29]Rosenberg,GA,Mun-Bryce,S,Wesley,M,et al.Collagenase-induced intracerebral hemorrhage in rats.Stroke JT - Stroke;a journal of cerebral circulation,1990,21(5):801-7.
    [30]Longa,EZ,Weinstein,PR,Carlson,S,et al.Reversible middle cerebral artery occlusion without craniectomy in rats.Stroke JT - Stroke;a journal of cerebral circulation,1989,20(1):84-91.
    [31]Bederson,JB,Pitts,LH,Tsuji,M,et al.Rat middle cerebral artery occlusion:evaluation of the model and development of a neurologic examination.Stroke JT - Stroke;a journal of cerebral circulation,1986,17(3):472-6.
    [32]胡随瑜,金益强,张翔,等.肝阳上亢证实验诊断指标研究.中医杂志,1998,(11):680-682+644.
    [33]朱虹,王晓玲.肝阳上亢证植物神经功能及其递质的实验研究.1993,20(3):3-5.
    [34]李红玲,吴红然,郭艳苏,等.胶原酶诱导的脑出血大鼠模型及其行为学改变.中国康复医学杂志,2006,(11):977-979+1057.
    [35]龚彪,李长清,黄剑.SD大鼠线栓法局灶性脑缺血/再灌注模型的改进.重庆医学,2006,(04):313-315.
    [36]Candiano,G,Bruschi,M,Musante,L,et al.Blue silver:a very sensitive colloidal Coomassie G-250 staining for proteome analysis.Electrophoresis.25(9).Germany,2004.1327-33.
    [37]Rabilloud,T,Adessi,C,Giraudel,A,et al.Improvement of the solubilization of proteins in two-dimensional electrophoresis with immobilized pH gradients.Electrophoresis JT - Electrophoresis,1997,18(3-4):307-16.
    [38]Wilkins,MR,Gasteiger,E,Bairoch,A,et al.Protein identification and analysis tools in the ExPASy server.Methods Mol Biol JT - Methods in molecular biology(Clifton,N.J.),1999,112:531-52.
    [39]Clauser,KR,Baker,P,Burlingame,AL.Role of accurate mass measurement (+/- 10 ppm) in protein identification strategies employing MS or MS/MS and database searching.Anal Chem JT - Analytical chemistry,1999,71(14):2871-82.
    [40]Perkins,DN,Pappin,DJ,Creasy,DM,et al.Probability-based protein identification by searching sequence databases using mass spectrometry data.Electrophoresis JT - Electrophoresis,1999,20(18):3551-67.
    [41]Zhang,W,Chait,BT.ProFound:an expert system for protein identification using mass spectrometric peptide mapping information.Anal Chem JT Analytical chemistry,2000,72(11):2482-9.
    [42]Ding,Q,Xiao,L,Xiong,S,et al.Unmatched masses in peptide mass fingerprints caused by cross-contamination:an updated statistical result.Proteomics JT - Proteomics,2003,3(7):1313-7.
    [43]Zenkert,S,Schubert,B,Fassnacht,M,et al.Steroidogenic acute regulatory protein mRNA expression in adrenal tumours. Eur J Endocrinol, 2000,142(3):294-9.
    [44] Sekar, N, Garmey, JC, Veldhuis, JD. Mechanisms underlying the steroidogenic synergy of insulin and luteinizing hormone in porcine granulosa cells: joint amplification of pivotal sterol-regulatory genes encoding the low-density lipoprotein (LDL) receptor, steroidogenic acute regulatory (stAR) protein and cytochrome P450 side-chain cleavage (P450scc) enzyme. Mol Cell Endocrinol, 2000,159(1-2):25-35.
    [45] Ma, Y, Ren, S, Pandak, WM, et al. The effects of inflammatory cytokines on steroidogenic acute regulatory protein expression in macrophages. Inflamm Res. 56(12). Switzerland,2007. 495-501.
    [46] Ning, Y, Chen, S, Li, X, et al. Cholesterol, LDL, and 25-hydroxycholesterol regulate expression of the steroidogenic acute regulatory protein in microvascular endothelial cell line (bEnd.3). Biochem Biophys Res Commun JT-Biochemical and biophysical research communications, 2006,342 (4): 1249-56.
    [47] Shughrue, PJ, Merchenthaler, I. Estrogen prevents the loss of CA1 hippocampal neurons in gerbils after ischemic injury. Neuroscience, 2003,116(3):851-61.
    [48] Xilouri, M, Avlonitis, N, Calogeropoulou, T, et al. Neuroprotective effects of steroid analogues on P19-N neurons. Neurochem Int, 2007,50(4):660-70.
    [49] Mu, D, Hsu, DS, Sancar, A. Reaction mechanism of human DNA repair excision nuclease. J Biol Chem, 1996,271(14):8285-94.
    [50] Green, PS, Yang, SH, Nilsson, KR, et al. The nonfeminizing enantiomer of 17beta-estradiol exerts protective effects in neuronal cultures and a rat model of cerebral ischemia. Endocrinology, 2001,142(l):400-6.
    [51] Garcia-Segura, LM, Melcangi, RC. Steroids and glial cell function. Glia. 54(6). United States,2006. 485-98.
    [52] Sunday, L, Tran, MM, Krause, DN, et al. Estrogen and progestagens differentially modulate vascular proinflammatory factors. Am J Physiol Endocrinol Metab. 291(2). United States,2006. E261-7.
    [53] Razmara, A, Krause, DN, Duckies, SP. Testosterone augments endotoxin-mediated cerebrovascular inflammation in male rats. Am J Physiol Heart Circ Physiol. 289(5). United States,2005. H1843-50.
    [54]Slowik,A,Turaj,W,Pankiewicz,J,et al.Hypercortisolemia in acute stroke is related to the inflammatory response.J Neurol Sci.196(1-2).Netherlands,2002.27-32.
    [55]Horsburgh,K,Fitzpatrick,M,Nilsen,M,et al.Marked alterations in the cellular localisation and levels of apolipoprotein E following acute subdural haematoma in rat.Brain Res JT - Brain research,1997,763(1):103-10.
    [56]Ignatius,MJ,Gebicke-Harter,PJ,Skene,JH,et al.Expression of apolipoprotein E during nerve degeneration and regeneration.Proc Natl Acad Sci U S A.83(4).UNITED STATES,1986.1125-9.
    [57]Snipes,GJ,McGuire,CB,Norden,JJ,et al.Nerve injury stimulates the secretion of apolipoprotein E by nonneuronal cells.Proc Natl Acad Sci U S A.83(4).UNITED STATES,1986.1130-4.
    [58]Struble,RG,Nathan,BP,Cady,C,et al.Estradiol regulation of astroglia and apolipoprotein E:an important role in neuronal regeneration.Exp Gerontol.42(1-2).England,2007.54-63.
    [59]Martinez-Gonzalez,NA,Sudlow,CL.Effects of apolipoprotein E genotype on outcome after ischaemic stroke,intracerebral haemorrhage and subarachnoid haemorrhage.J Neurol Neurosurg Psychiatry,2006,77(12):1329-35.
    [60]Aleong,R,Blain,JF,Poirier,J.Pro-inflammatory cytokines modulate glial apolipoprotein E secretion.Curr Alzheimer Res,2008,5(1):33-7.
    [61]Danbolt,NC.The high affinity uptake system for excitatory amino acids in the brain.Prog Neurobiol JT - Progress in neurobiology,1994,44(4):377-96.
    [62]戴维国,马常升,马文领,等.脑缺血早期星形胶质细胞谷氨酰胺合成酶免疫组化的时程变化.解剖学杂志,2003,(04):352-355.
    [63]Huang,TL,O'Banion,MK.Interleukin-1 beta and tumor necrosis factor-alpha suppress dexamethasone induction of glutamine synthetase in primary mouse astrocytes.J Neurochem.71(4).UNITED STATES,1998.1436-42.
    [64]Adams,RA,Passino,M,Sachs,BD,et al.Fibrin mechanisms and functions in nervous system pathology.Mol Interv.4(3).United States,2004.163-76.
    [65]Dziedzic,T.Clinical significance of acute phase reaction in stroke patients.Front Biosci,2008,13:2922-7.
    [66]Intiso,D,Zarrelli,MM,Lagioia,G,et al.Tumor necrosis factor alpha serum levels and inflammatory response in acute ischemic stroke patients.Neurol Sci,2004,24(6):390-6.
    [67] Shankar, A, Wang, JJ, Rochtchina, E, et al. Positive association between plasma fibrinogen level and incident hypertension among men: population-based cohort study. Hypertension JT - Hypertension, 2006,48(6): 1043-9.
    [68] Hengst, U, Albrecht, H, Hess, D, et al. The phosphatidylethanolamine-binding protein is the prototype of a novel family of serine protease inhibitors. J Biol Chem,2001,276(1):535-40.
    [69] Rincon, F, Mayer, SA. Novel therapies for intracerebral hemorrhage. Curr Opin Crit Care, 2004,10(2):94-100.
    [70] Suo, Z, Citron, BA, Festoff, BW. Thrombin: a potential proinflammatory mediator in neurotrauma and neurodegenerative disorders. Curr Drug Targets Inflamm Allergy, 2004,3(1): 105-14.
    [71] Mhatre, M, Nguyen, A, Kashani, S, et al. Thrombin, a mediator of neurotoxicity and memory impairment. Neurobiol Aging, 2004,25(6):783-93.
    [72] Tank, EM, True, HL. Disease-associated mutant ubiquitin causes proteasomal impairment and enhances the toxicity of protein aggregates. PLoS Genet, 2009,5(2):e1000382.
    [73] Kyratzi, E, Pavlaki, M, Kontostavlaki, D, et al. Differential effects of Parkin and its mutants on protein aggregation, the ubiquitin-proteasome system, and neuronal cell death in human neuroblastoma cells. J Neurochem, 2007,102(4):1292-303.
    [74] Di, Napoli M, McLaughlin, B. The ubiquitin-proteasome system as a drug target in cerebrovascular disease: therapeutic potential of proteasome inhibitors. Curr Opin Investig Drugs. 6(7). England,2005. 686-99.
    [75] Wojcik, C, Di, Napoli M. Ubiquitin-proteasome system and proteasome inhibition: new strategies in stroke therapy. Stroke. 35(6). United States,2004. 1506-18.
    [76] Williams, AJ, Dave, JR, Tortella, FC. Neuroprotection with the proteasome inhibitor MLN519 in focal ischemic brain injury: relation to nuclear factor kappaB (NF-kappaB), inflammatory gene expression, and leukocyte infiltration. Neurochem Int, 2006,49(2):106-12.
    [77] Qureshi, N, Vogel, SN, Van Way C 3rd, et al. The proteasome: a central regulator of inflammation and macrophage function. Immunol Res, 2005,31(3):243-60.
    [78] Trowem, AR, Mann, DA. A bi-functional activator/repressor element required for transcriptional activity of the human UCH-L1 gene assembles a neuron-specific protein: single-strand DNA complex. Neurosci Lett. 272(1). IRELAND, 1999. 25-8.
    [79] Liu, Y, Fallon, L, Lashuel, HA, et al. The UCH-L1 gene encodes two opposing enzymatic activities that affect alpha-synuclein degradation and Parkinson's disease susceptibility. Cell, 2002,111 (2):209-18.
    [80] Kaur, C, Ling, EA. Antioxidants and neuroprotection in the adult and developing central nervous system. Curr Med Chem, 2008,15(29):3068-80.
    [81] Rojas, H, Lekic, T, Chen, W, et al. The antioxidant effects of melatonin after intracerebral hemorrhage in rats. Acta Neurochir Suppl, 2008,105:19-21.
    [82] Kasperczyk, S, Kasperczyk, J, Ostalowska, A, et al. The Role of the Antioxidant Enzymes in Erythrocytes in the Development of Arterial Hypertension among Humans Exposed to Lead. Biol Trace Elem Res, 2009.
    [83] Hattori, F, Oikawa, S. Peroxiredoxins in the central nervous system. Subcell Biochem. 44England,2007. 357-74.
    [84] Van Hemelrijck A, Hachimi-Idrissi, S, Sarre, S, et al. Post-ischaemic mild hypothermia inhibits apoptosis in the penumbral region by reducing neuronal nitric oxide synthase activity and thereby preventing endothelin-1-induced hydroxyl radical formation. Eur J Neurosci. 22(6). France,2005. 1327-37.
    [85] Donnelly, S, Stack, CM, O'Neill, SM, et al. Helminth 2-Cys peroxiredoxin drives Th2 responses through a mechanism involving alternatively activated macrophages. FASEB J. 22(11). United States,2008. 4022-32.
    [86] Kang, SW, Chang, TS, Lee, TH, et al. Cytosolic peroxiredoxin attenuates the activation of Jnk and p38 but potentiates that of Erk in Hela cells stimulated with tumor necrosis factor-alpha. J Biol Chem. 279(4). United States,2004. 2535-43.
    [87] Yang, CS, Lee, DS, Song, CH, et al. Roles of peroxiredoxin Ⅱ in the regulation of proinflammatory responses to LPS and protection against endotoxin-induced lethal shock. J Exp Med, 2007,204(3):583-94.
    [88] Makino, Y, Okamoto, K, Yoshikawa, N, et al. Thioredoxin: a redox-regulating cellular cofactor for glucocorticoid hormone action. Cross talk between endocrine control of stress response and cellular antioxidant defense system. J Clin Invest, 1996,98(11):2469-77.
    [89] Yenari, MA, Liu, J, Zheng, Z, et al. Antiapoptotic and anti-inflammatory mechanisms of heat-shock protein protection. Ann N Y Acad Sci. 1053United States,2005. 74-83.
    [90] Wang, X, Feuerstein, GZ. The Janus face of inflammation in ischemic brain injury. Acta Neurochir Suppl, 2004,89:49-54.
    [91] Wang, J, Dore, S. Inflammation after intracerebral hemorrhage. J Cereb Blood Flow Metab, 2007,27(5):894-908.
    [92] Zheng, Z, Kim, JY, Ma, H, et al. Anti-inflammatory effects of the 70 kDa heat shock protein in experimental stroke. J Cereb Blood Flow Metab. 28(1). United States,2008. 53-63.
    [93] Moon, SY, Zheng, Y. Rho GTPase-activating proteins in cell regulation. Trends Cell Biol, 2003,13(1):13-22.
    [94] Arimura, N, Inagaki, N, Chihara, K, et al. Phosphorylation of collapsin response mediator protein-2 by Rho-kinase. Evidence for two separate signaling pathways for growth cone collapse. J Biol Chem, 2000,275(31): 23973-80.
    [95] Nishimura, T, Fukata, Y, Kato, K, et al. CRMP-2 regulates polarized Numb- mediated endocytosis for axon growth. Nat Cell Biol, 2003,5 (9):819-26.
    [96] Fukata, Y, Itoh, TJ, Kimura, T, et al. CRMP-2 binds to tubulin heterodimers to promote microtubule assembly. Nat Cell Biol, 2002,4(8):583-91.
    [97] Kawano, Y, Yoshimura, T, Tsuboi, D, et al. CRMP-2 is involved in kinesin-1-dependent transport of the Sra-1/WAVEl complex and axon formation. Mol Cell Biol, 2005,25(22):9920-35.
    [98] Weitzdoerfer, R, Fountoulakis, M, Lubec, G Aberrant expression of dihydropyrimidinase related proteins-2,-3 and -4 in fetal Down syndrome brain. J Neural Transm Suppl, 2001,(61):95-107.
    [99] Horiuchi, Y, Asada, A, Hisanaga, S, et al. Identifying novel substrates for mouse Cdk5 kinase using the yeast Saccharomyces cerevisiae. Genes Cells, 2006,11(12):1393-404.
    [100] Cole, AR, Causeret, F, Yadirgi, G, et al. Distinct priming kinases contribute to differential regulation of collapsin response mediator proteins by glycogen synthase kinase-3 in vivo. J Biol Chem, 2006,281(24): 16591-8.
    [101] Arimura, N, Menager, C, Kawano, Y, et al. Phosphorylation by Rho kinase regulates CRMP-2 activity in growth cones. Mol Cell Biol, 2005,25(22): 9973-84.
    [102] Vincent, P, Collette, Y, Marignier, R, et al. A role for the neuronal protein collapsin response mediator protein 2 in T lymphocyte polarization and migration. J Immunol, 2005,175(11):7650-60.
    [103] Vuaillat, C, Varrin-Doyer, M, Bernard, A, et al. High CRMP2 expression in peripheral T lymphocytes is associated with recruitment to the brain during virus-induced neuroinflammation. J Neuroimmunol, 2008,193(1-2):38-51.
    [104] Chung, MA, Lee, JE, Lee, JY, et al. Alteration of collapsin response mediator protein-2 expression in focal ischemic rat brain. Neuroreport, 2005,16 (15):1647-53.
    [105] Maurer, MH, Berger, C, Wolf, M, et al. The proteome of human brain microdialysate. Proteome Sci, 2003,1(1):7.
    [106] Fontana, A, Weber, E, Grob, PJ, et al. Dual effect of glia maturation factor on astrocytes. Differentiation and release of interleukin-1 like factors. J Neuroimmunol, 1983,5(3):261-9.
    [107] Zaheer, S, Wu, Y, Bassett, J, et al. Glia maturation factor regulation of STAT expression: a novel mechanism in experimental autoimmune encephalomyelitis. Neurochem Res, 2007,32(12):2123-31.
    [108] Ikeda, K, Kundu, RK, Ikeda, S, et al. Glia maturation factor-gamma is preferentially expressed in microvascular endothelial and inflammatory cells and modulates actin cytoskeleton reorganization. Circ Res, 2006,99(4):424-33.
    [109] Murakami, M, Kudo, I, Inoue, K. Secretory phospholipases A2. J Lipid Mediat Cell Signal, 1995,12(2-3):119-30.
    [1] Ottaviani E, Franchini A, Genedani S. ACTH and its role in immune- neuroendocrine functions. A comparative study. Curr Pharm Des. 1999. 5(9): 673-81.
    [2] Haddad JJ, Saade NE, Safieh-Garabedian B. Cytokines and neuro-immune- endocrine interactions: a role for the hypothalamic-pituitary-adrenal revolving axis. J Neuroimmunol. 2002. 133(1-2): 1-19.
    [3] Turnbull AV, Rivier CL. Regulation of the hypothalamic-pituitary-adrenal axis by cytokines: actions and mechanisms of action. Physiol Rev. 1999. 79(1): 1-71.
    [4] Clarkson AN. Anesthetic-mediated protection/preconditioning during cerebral ischemia. Life Sci JT - Life sciences. 2007. 80(13): 1157-75.
    [5] Ishibashi N, Prokopenko O, Reuhl KR, Mirochnitchenko O. Inflammatory response and glutathione peroxidase in a model of stroke. J Immunol JT - Journal of immunology (Baltimore, Md. : 1950). 2002. 168(4): 1926-33.
    [6] Trendelenburg G, Dirnagl U. Neuroprotective role of astrocytes in cerebral ischemia: focus on ischemic preconditioning. Glia JT - Glia. 2005. 50(4): 307-20.
    [7] Beschorner R, Dietz K, Schauer N, et al. Expression of EAAT1 reflects a possible neuroprotective function of reactive astrocytes and activated microglia following human traumatic brain injury. Histol Histopathol JT - Histology and histopathology. 2007. 22(5): 515-26.
    [8] Shin HY, Kim JH, Phi JH, et al. Endogenous neurogenesis and neovascularization in the neocortex of the rat after focal cerebral ischemia. J Neurosci Res JT - Journal of neuroscience research. 2008. 86(2): 356-67.
    [9] Johansson A, Olsson T, Carlberg B, Karlsson K, Fagerlund M. Hypercortisolism after stroke-partly cytokine-mediated. J Neurol Sci JT - Journal of the neurological sciences. 1997. 147(1): 43-7.
    [10] Ghorbel MT, Sharman G, Leroux M, et al. Microarray analysis reveals interleukin-6 as a novel secretory product of the hypothalamo-neurohypophyseal system. J Biol Chem JT - The Journal of biological chemistry. 2003. 278(21): 19280-5.
    [11] Hanisch A, Dieterich KD, Dietzmann K, et al. Expression of members of the interleukin-6 family of cytokines and their receptors in human pituitary and pituitary adenomas. J Clin Endocrinol Metab JT - The Journal of clinical endocrinology and metabolism. 2000. 85(11): 4411-4.
    [12] Chamorro A, Urra X, Planas AM. Infection after acute ischemic stroke: a manifestation of brain-induced immunodepression. Stroke JT - Stroke; a journal of cerebral circulation. 2007. 38(3): 1097-103.
    [13] Besedovsky HO, Del RA, Sorkin E. Antigenic competition between horse and sheep red blood cells as a hormone-dependent phenomenon. Clin Exp Immunol. 37(1). ENGLAND,1979. 106-13.
    [14] del RA, Besedovsky H, Sorkin E. Endogenous blood levels of corticosterone control the immunologic cell mass and B cell activity in mice. J Immunol JT - Journal of immunology (Baltimore, Md.: 1950). 1984. 133(2): 572-5.
    [15] Besedovsky H, Sorkin E, Keller M, Muller J. Changes in blood hormone levels during the immune response. Proc Soc Exp Biol Med. 150(2). UNITED STATES, 1975. 466-70.
    [16] Besedovsky HO, del RA, Sorkin E. Lymphokine-containing supematants from con A-stimulated cells increase corticosterone blood levels. J Immunol. 126(1). UNITED STATES, 1981. 385-7.
    [17] Besedovsky HO, Del RA, Sorkin E, Lotz W, Schwulera U. Lymphoid cells produce an immunoregulatory glucocorticoid increasing factor (GIF) acting through the pituitary gland. Clin Exp Immunol. 59(3). ENGLAND,1985. 622-8.
    [18] Weigent DA, Blalock JE. Associations between the neuroendocrine and immune systems. J Leukoc Biol. 58(2). UNITED STATES, 1995. 137-50.
    [19] Blalock JE. Shared ligands and receptors as a molecular mechanism for communication between the immune and neuroendocrine systems. Ann N Y Acad Sci. 1994.741:292-8.
    [20] Smith EM, Meyer WJ, Blalock JE. Virus-induced corticosterone in hypophysectomized mice: a possible lymphoid adrenal axis. Science. 1982. 218(4579): 1311-2.
    [21] Holsboer F, Stalla GK, von BU, Hammann K, Muller H, Muller OA. Acute adrenocortical stimulation by recombinant gamma interferon in human controls. Life Sci JT - Life sciences. 1988. 42(1): 1-5.
    [22] Olsen NJ, Nicholson WE, DeBold CR, Orth DN. Lymphocyte-derived adrenocorticotropin is insufficient to stimulate adrenal steroidogenesis in hypophysectomized rats. Endocrinology. 1992. 130(4): 2113-9.
    [23] Dunn AJ, Vickers SL. Neurochemical and neuroendocrine responses to Newcastle disease virus administration in mice. Brain Res. 1994. 645(1-2): 103-12.
    [24] Goebel MU, Baase J, Pithan V, et al. Acute interferon beta-lb administration alters hypothalamic-pituitary-adrenal axis activity, plasma cytokines and leukocyte distribution in healthy subjects. Psychoneuroendocrinology JT - Psychoneuroendocrinology. 2002. 27(8): 881-92.
    [25] Zalcman S, Green-Johnson JM, Murray L, et al. Cytokine-specific central monoamine alterations induced by interleukin-1, -2 and -6. Brain Res JT - Brain research. 1994. 643(1-2): 40-9.
    [26] Pardy K, Murphy D, Carter D, Hui KM. The influence of interleukin-2 on vasopressin and oxytocin gene expression in the rodent hypothalamus. J Neuroimmunol JT - Journal of neuroimmunology. 1993. 42(2): 131-8.
    [27] Buckingham JC, Loxley HD, Christian HC, Philip JG Activation of the HPA axis by immune insults: roles and interactions of cytokines, eicosanoids, glucocorticoids. Pharmacol Biochem Behav JT - Pharmacology, biochemistry, and behavior. 1996. 54(1): 285-98.
    [28] Silverman MN, Miller AH, Biron CA, Pearce BD. Characterization of an interleukin-6- and adrenocorticotropin-dependent, immune-to-adrenal pathway during viral infection. Endocrinology JT - Endocrinology. 2004. 145(8): 3580-9.
    [29] Brown SL, Smith LR, Blalock JE. Interleukin 1 and interleukin 2 enhance proopiomelanocortin gene expression in pituitary cells. J Immunol JT - Journal of immunology (Baltimore,Md. : 1950). 1987. 139(10): 3181-3.
    [30] Woloski BM, Smith EM, 3rd MWJ, Fuller GM, Blalock JE. Corticotropin- releasing activity of monokines. Science. 1985. 230(4729): 1035-7.
    [31] Katahira M, Iwasaki Y, Aoki Y, Oiso Y, Saito H. Cytokine regulation of the rat proopiomelanocortin gene expression in AtT-20 cells. Endocrinology JT - Endocrinology. 1998. 139(5): 2414-22.
    [32] Besedovsky HO, del RA. Regulating inflammation by glucocorticoids. Nat Immunol. 2006. 7(6): 537.
    [33]Sternberg EM.Neural regulation of innate immunity:a coordinated nonspecific host response to pathogens.Nat Rev Immunol.2006.6(4):318-28.
    [34]Nakamura H,Nagase H,Ogino K,Hatta K,Matsuzaki I.Involvement of central,but not placental corticotropin releasing hormone(CRH) in heat stress induced immunosuppression during pregnancy.Brain Behav Immun.2001.15(1):43-53.
    [35]Thompson A,Han VK,Yang K.Differential expression of 11betahydroxysteroid dehydrogenase types 1 and 2 mRNA and glucocorticoid receptor protein during mouse embryonic development.J Steroid Biochem Mol Biol.2004.88(4-5):367-75.
    [36]Zhang TY,Daynes RA.Macrophages from 11beta-hydroxysteroid dehydrogenase type 1-deficient mice exhibit an increased sensitivity to lipopolysaccharide stimulation due to TGF-beta-mediated up-regulation of SHIP1 expression.J Immunol.2007.179(9):6325-35.
    [37]Chida Y,Sudo N,Sonoda J,Hiramoto T,Kubo C.Early-life psychological stress exacerbates adult mouse asthma via the hypothalamus-pituitary-adrenal axis.Am J Respir Crit Care Med.2007.175(4):316-22.
    [38]Roth TL,Vance CK.Corticosteroid-induced suppression of in vitro lymphocyte proliferation in four captive rhinoceros species.J Zoo Wildl Med.2007.38(4):518-25.
    [39]Emonet S,Kaya G,Hauser C.[Gleich's syndrome].Ann Dermatol Venereol.2000.127(6-7):616-8.
    [40]Renner U,De Santana EC,Gerez J,et al.Intrapituitary expression and regulation of the gp130 cytokine interleukin-6 and its implication in pituitary physiology and pathophysiology.Ann N Y Acad Sci.2009.1153:89-97.
    [41]Widmann T,Sester U,Gartner BC,et al.Levels of CMV specific CD4 T cells are dynamic and correlate with CMV viremia aider allogeneic stem cell transplantation.PLoS ONE.2008.3(11):e3634.
    [42]He Q,Xie CM,Tan SY,et al.[Effects of glucocorticoids on tuberculous pleural effusion:experiment with rats].Zhonghua Yi Xue Za Zhi.2008.88(32):2285-9.
    [43]Rani CS,Elango N,Wang SS,Kobayashi K,Strong R.Identification of an activator protein-1-like sequence as the glucocorticoid response element in the rat tyrosine hydroxylase gene.Mol Pharmacol.2009.75(3):589-98.
    [44] SCh P, Papasozomenos H. The activation of heat shock transcription factor 1 is differentially regulated in the brain of estrogen- and testosterone-treated heat-shocked rats. J Alzheimers Dis. 2008. 15(3): 375-90.
    [45] Wang Y, Ben K, Cao X, Wang Y. Transport of anti-sperm monoclonal IgA and IgG into murine male and female genital tracts from blood. Effect of sex hormones. J Immunol. 1996. 156(3): 1014-9.
    [46] Islander U, Erlandsson MC, Chavoshi T, et al. Estren-mediated inhibition of T lymphopoiesis is estrogen receptor-independent whereas its suppression of T cell-mediated inflammation is estrogen receptor-dependent. Clin Exp Immunol. 2005. 139(2): 210-5.
    [47] Hao S, Li P, Zhao J, Hu Y, Hou Y. 17beta-estradiol suppresses cytotoxicity and proliferative capacity of murine splenic NK1.1+ cells. Cell Mol Immunol. 2008. 5(5): 357-64.
    [48] Ben-Jonathan N, Chen S, Dunckley JA, LaPensee C, Kansra S. Estrogen receptor-alpha mediates the epidermal growth factor-stimulated prolactin expression and release in lactotrophs. Endocrinology. 2009. 150(2): 795-802.
    [49] Klecha AJ, Genaro AM, Gorelik G, et al. Integrative study of hypothalamus-pituitary-thyroid-immune system interaction: thyroid hormone-mediated modulation of lymphocyte activity through the protein kinase C signaling pathway. J Endocrinol. 2006. 189(1): 45-55.
    [50] Roux M, Bartke A, Dumont F, Dubois MP. Immunohistological study of the anterior pituitary gland - pars distalis and pars intermedia - in dwarf mice. Cell Tissue Res. 1982. 223(2): 415-20.
    [51] Niewiadomski P, Coute-Monvoisin AC, Abad C, Ngo D, Menezes A, Waschek JA. Mice deficient in both pituitary adenylyl cyclase-activating polypeptide and vasoactive intestinal peptide survive, but display growth retardation and sex-dependent early death. J Mol Neurosci. 2008. 36(1-3): 200-7.
    [52] Power DM. Developmental ontogeny of prolactin and its receptor in fish. Gen Comp Endocrinol. 2005. 142(1-2): 25-33.
    [53] Breuner CW, Patterson SH, Hahn TP. In search of relationships between the acute adrenocortical response and fitness. Gen Comp Endocrinol. 2008. 157(3): 288-95.
    [54] Bakker JM, Schmidt ED, Kroes H, et al. Effects of short-term dexamethasone treatment during pregnancy on the development of the immune system and the hypothalamo-pituitary adrenal axis in the rat. J Neuroimmunol. 1995. 63(2): 183-91.
    [55] Katahira M, Iwasaki Y, Aoki Y, Oiso Y, Saito H. Cytokine regulation of the rat proopiomelanocortin gene expression in AtT-20 cells. Endocrinology. 1998. 139(5): 2414-22.
    [56] Breij EC, Batenburg JJ. Surfactant protein D/anti-Fc receptor bifunctional proteins as a tool to enhance host defence. Expert Opin Biol Then 2008. 8(4): 409-19.
    [57] Kreutzkamp B. [Inflammation. Catecholamine-producing phagocytes increase the immune response]. Med Monatsschr Pharm. 2008. 31(4): 152.
    [58] Suriyo T, Thiantanawat A, Chaiyaroj SC, Parkpian P, Satayavivad J. Involvement of the lymphocytic muscarinic acetylcholine receptor in methylmercury-induced c-Fos expression and apoptosis in human leukemic T cells. J Toxicol Environ Health A. 2008. 71(16): 1109-23.
    [59] Mahapatra NR. Catestatin is a novel endogenous peptide that regulates cardiac function and blood pressure. Cardiovasc Res. 2008. 80(3): 330-8.
    [60] Raivich G, Bohatschek M, Werner A, et al. Lymphocyte infiltration in the injured brain: role of proinflammatory cytokines. J Neurosci Res. 2003. 72(6): 726-33.
    [61] Chapman S, Kadar T, Gilat E. Seizure duration following sarin exposure affects neuro-inflammatory markers in the rat brain. Neurotoxicology. 2006. 27(2): 277-83.
    [62] Moncayo HE, Penz-Koza A, Marth C, Gastl G, Herold M, Moncayo R. Vascular endothelial growth factor in serum and in the follicular fluid of patients undergoing hormonal stimulation for in-vitro fertilization. Hum Reprod. 1998. 13(12): 3310-4.
    [63] Bernton EW, Beach JE, Holaday JW, Smallridge RC, Fein HG Release of multiple hormones by a direct action of interleukin-1 on pituitary cells. Science. 238(4826). UNITED STATES, 1987. 519-21.
    [64] Andreis PG, Neri G, Belloni AS, Mazzocchi G, Kasprzak A, Nussdorfer GG. Interleukin-1 beta enhances corticosterone secretion by acting directly on the rat adrenal gland. Endocrinology JT - Endocrinology. 1991. 129(1): 53-7.
    [65] Barney M, Call GB, Mcllmoil CJ, et al. Stimulation by interleukin-6 and inhibition by rumor necrosis factor of cortisol release from bovine adrenal zona fasciculata cells through their receptors. Endocrine JT - Endocrine. 2000. 13(3): 369-77.
    [66] Moncayo HE, Penz-Koza A, Marth C, Gastl G, Herold M, Moncayo R. Vascular endothelial growth factor in serum and in the follicular fluid of patients undergoing hormonal stimulation for in-vitro fertilization. Hum Reprod. 1998. 13(12): 3310-4.
    [67] Cawood TJ, Moriarty P, O'Farrelly C, O'Shea D. The effects of tumour necrosis factor-alpha and interleukinl on an in vitro model of thyroid-associated ophthalmopathy; contrasting effects on adipogenesis. Eur J Endocrinol. 2006. 155(3): 395-403.
    [68] Denicoff KD, Durkin TM, Lotze MT, et al. The neuroendocrine effects of interleukin-2 treatment. J Clin Endocrinol Metab JT - The Journal of clinical endocrinology and metabolism. 1989. 69(2): 402-10.
    [69] McCoy JG, Matta SG, Sharp BM. Prostaglandins mediate the ACTH response to interleukin-1-beta instilled into the hypothalamic median eminence. Neuroendocrinology JT - Neuroendocrinology. 1994. 60(4): 426-35.
    [70] Kovacs KJ, Elenkov IJ. Differential dependence of ACTH secretion induced by various cytokines on the integrity of the paraventricular nucleus. J Neuroendocrinol JT - Journal of neuroendocrinology. 1995. 7(1): 15-23.
    [71] Ryuto M, Ono M, Izumi H, et al. Induction of vascular endothelial growth factor by tumor necrosis factor alpha in human glioma cells. Possible roles of SP-1. J Biol Chem. 1996. 271(45): 28220-8.
    [72] Bernardini R, Kamilaris TC, Calogero AE, et al. Interactions between tumor necrosis factor-alpha, hypothalamic corticotropin-releasing hormone, and adrenocorticotropin secretion in the rat. Endocrinology JT - Endocrinology. 1990. 126(6): 2876-81.
    [73] Jaattela M, Ilvesmaki V, Voutilainen R, Stenman UH, Saksela E. Tumor necrosis factor as a potent inhibitor of adrenocorticotropin-induced cortisol production and steroidogenic P450 enzyme gene expression in cultured human fetal adrenal cells. Endocrinology JT - Endocrinology. 1991. 128(1): 623-9.
    [74] Besedovsky HO, del RA. Immune-neuroendocrine circuits: integrative role of cytokines. Front Neuroendocrinol. 1992. 13(1): 61-94.
    [75] Navarra P, Tsagarakis S, Faria MS, Rees LH, Besser GM, Grossman AB. Interleukins-1 and -6 stimulate the release of corticotropin-releasing hormone-41 from rat hypothalamus in vitro via the eicosanoid cyclooxygenase pathway. Endocrinology JT - Endocrinology. 1991. 128(1): 37-44.
    [76] Saphier D. Neuroendocrine effects of interferon-alpha in the rat. Adv Exp Med Biol JT - Advances in experimental medicine and biology. 1995. 373: 209-18.
    [77] Gisslinger H, Svoboda T, Clodi M, et al. Interferon-alpha stimulates the hypothalamic-pituitary-adrenal axis in vivo and in vitro. Neuroendocrinology JT - Neuroendocrinology. 1993. 57(3): 489-95.
    [78] Auernhammer CJ, Melmed S. Leukemia-inhibitory factor-neuroimmune modulator of endocrine function. Endocr Rev JT - Endocrine reviews. 2000. 21(3): 313-45.
    [79] Chesnokova V, Melmed S. Leukemia inhibitory factor mediates the hypothalamic pituitary adrenal axis response to inflammation. Endocrinology JT - Endocrinology. 2000. 141(11): 4032-40.
    [80] Petrovsky N, Bucala R. Macrophage migration inhibitory factor (MIF). A critical neurohumoral mediator. Ann N Y Acad Sci JT - Annals of the New York Academy of Sciences. 2000. 917: 665-71.
    [81] Rook GA. Glucocorticoids and immune function. Baillieres Best Pract Res Clin Endocrinol Metab JT - Bailliere's best practice & research. Clinical endocrinology & metabolism. 1999. 13(4): 567-81.
    [82] Smith EM, Cadet P, Stefano GB, Opp MR, Hughes TK Jr. IL-10 as a mediator in the HPA axis and brain. J Neuroimmunol JT - Journal of neuroimmunology. 1999. 100(1-2): 140-8.
    [83] Orange JS, Salazar-Mather TP, Opal SM, et al. Mechanism of interleukin 12-mediated toxicities during experimental viral infections: role of tumor necrosis factor and glucocorticoids. J Exp Med JT - The Journal of experimental medicine. 1995. 181(3): 901-14.
    [84] Sugama S, Kim Y, Baker H, et al. Tissue-specific expression of rat IL-18 gene and response to adrenocorticotropic hormone treatment. J Immunol JT - Journal of immunology (Baltimore, Md. : 1950). 2000. 165(11): 6287-92.
    [85] Smith GW, Aubry JM, Dellu F, et al. Corticotropin releasing factor receptor 1-deficient mice display decreased anxiety, impaired stress response, and aberrant neuroendocrine development. Neuron JT - Neuron. 1998. 20(6): 1093-102.
    [86] Culebras A, Miller M. Absence of sleep-related elevation of growth hormone level in patients with stroke. Arch Neurol JT - Archives of neurology. 1983. 40(5): 283-6.
    [87] Culebras A, Miller M. Dissociated patterns of nocturnal prolactin, cortisol, and growth hormone secretion after stroke. Neurology JT - Neurology. 1984. 34(5): 631-6.
    [88] Ramasubbu R, Flint A, Brown G, Awad G, Kennedy S. Diminished serotonin-mediated prolactin responses in nondepressed stroke patients compared with healthy normal subjects. Stroke JT - Stroke; a journal of cerebral circulation. 1998. 29(7): 1293-8.
    [89] Hagg E, Asplund K, Eriksson S, Lithner F, Strand T, Wester PO. Serum thyroid-stimulating hormone in cerebrovascular disease. Acta Med Scand JT - Actamedica Scandinavica. 1986. 219(1): 53-8.
    [90] Furui T, Satoh K, Asano Y, Shimosawa S, Hasuo M, Yaksh TL. Increase of beta-endorphin levels in cerebrospinal fluid but not in plasma in patients with cerebral infarction. J Neurosurg JT - Journal of neurosurgery. 1984. 61(4): 748-51.
    [91] Elwan O, Abdallah M, Issa I, Taher Y, el-Tamawy M. Hormonal changes in cerebral infarction in the young and elderly. J Neurol Sci JT - Journal of the neurological sciences. 1990. 98(2-3): 235-43.
    [92] Gaillard RC, Al-Damluji S. Stress and the pituitary-adrenal axis. Baillieres Clin Endocrinol Metab JT - Bailliere's clinical endocrinology and metabolism. 1987. 1(2): 319-54.
    [93] Feibel JH, Hardy PM, Campbell RG, Goldstein MN, Joynt RJ. Prognostic value of the stress response following stroke. JAMA JT - JAMA: the journal of the American Medical Association. 1977. 238(13): 1374-6.
    [94] Olsson T. Urinary free cortisol excretion shortly after ischaemic stroke. J Intern Med JT - Journal of internal medicine. 1990. 228(2): 177-81.
    [95] Fassbender K, Schmidt R, Mossner R, Daffertshofer M, Hennerici M. Pattern of activation of the hypothalamic-pituitary-adrenal axis in acute stroke. Relation to acute confusional state, extent of brain damage, and clinical outcome. Stroke JT - Stroke; a journal of cerebral circulation. 1994. 25(6): 1105-8.
    [96] Olsson T, Marklund N, Gustafson Y, Nasman B. Abnormalities at different levels of the hypothalamic-pituitary-adrenocortical axis early after stroke. Stroke JT - Stroke; a journal of cerebral circulation. 1992. 23(11): 1573-6.
    [97] Astrom M, Olsson T, Asplund K. Different linkage of depression to hypercortisolism early versus late after stroke. A 3-year longitudinal study. Stroke JT - Stroke; a journal of cerebral circulation. 1993. 24(1): 52-7.
    [98] Petraglia F, Facchinetti F, Parrini D, Micieli G, De Luca S, Genazzani AR. Simultaneous circadian variations of plasma ACTH, beta-lipotropin, beta-endorphin and cortisol. Horm Res JT - Hormone research. 1983. 17(3): 147-52.
    [99] Johansson A, Ahren B, Nasman B, Carlstrom K, Olsson T. Cortisol axis abnormalities early after stroke-relationships to cytokines and leptin. J Intern Med JT - Journal of internal medicine. 2000. 247(2): 179-87.
    [100] Kanthan R, Shuaib A, Griebel R, el-Alazounni H, Miyashita H, Kalra J. Evaluation of monoaminergic neurotransmitters in the acute focal ischemic human brain model by intracerebral in vivo microdialysis. Neurochem Res JT - Neurochemical research. 1996. 21(5): 563-6.
    [101] Rolandi E, Gandolfo C, Franceschini R, Cataldi A, Garibaldi A, Barreca T. Twenty-four-hour beta-endorphin secretory pattern in Alzheimer's disease. Neuropsychobiology JT - Neuropsychobiology. 1992.25(4): 188-92.
    [102] Auer RN, Jensen ML, Whishaw IQ. Neurobehavioral deficit due to ischemic brain damage limited to half of the CA1 sector of the hippocampus. J Neurosci JT - The Journal of neuroscience : the official journal of the Society for Neuroscience. 1989. 9(5): 1641-7.
    [103] Sapolsky RM, Pulsinelli WA. Glucocorticoids potentiate ischemic injury to neurons: therapeutic implications. Science JT - Science (New York, N.Y.). 1985.229(4720): 1397-400.
    [104] Prass K, Meisel C, Hoflich C, et al. Stroke-induced immunodeficiency promotes spontaneous bacterial infections and is mediated by sympathetic activation reversal by poststroke T helper cell type 1 -like immunostimulation. J Exp Med JT - The Journal of experimental medicine. 2003. 198(5): 725-36.
    [105] Offner H, Subramanian S, Parker SM, Afentoulis ME, Vandenbark AA, Hum PD. Experimental stroke induces massive, rapid activation of the peripheral immune system. J Cereb Blood Flow Metab JT - Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism. 2006. 26(5): 654-65.
    [106] Rosenzweig HL, Lessov NS, Henshall DC, Minami M, Simon RP, Stenzel-Poore MR Endotoxin preconditioning prevents cellular inflammatory response during ischemic neuroprotection in mice. Stroke JT - Stroke; a journal of cerebral circulation. 2004. 35(11): 2576-81.
    [107] Czlonkowska A, Cyrta B, Korlak J. Immunological observations on patients with acute cerebral vascular disease. J Neurol Sci JT - Journal of the neurological sciences. 1979. 43(3): 455-64.
    [108] Kawaharada M, Urasawa K. [Immunological functions and clinical course of elderly patients with cerebrovascular diseases]. Nippon Ronen Igakkai Zasshi JT - Nippon Ronen Igakkai zasshi. Japanese journal of geriatrics. 1992. 29(9): 652-60.
    [109] Gendron A, Teitelbaum J, Cossette C, et al. Temporal effects of left versus right middle cerebral artery occlusion on spleen lymphocyte subsets and mitogenic response in Wistar rats. Brain Res JT - Brain research. 2002. 955(1-2): 85-97.
    [110] Chamorro A, Amaro S, Vargas M, et al. Interleukin 10, monocytes and increased risk of early infection in ischaemic stroke. J Neurol Neurosurg Psychiatry JT - Journal of neurology, neurosurgery, and psychiatry. 2006. 77(11): 1279-81.
    [111] Allard L, Burkhard PR, Lescuyer P, et al. PARK7 and nucleoside diphosphate kinase A as plasma markers for the early diagnosis of stroke. Clin Chem JT - Clinical chemistry. 2005. 51(11): 2043-51.
    [112] Efstathiou SP, Tsioulos DI, Tsiakou AG, Gratsias YE, Pefanis AV, Mountokalakis TD. Plasma adiponectin levels and five-year survival after first-ever ischemic stroke. Stroke JT - Stroke; a journal of cerebral circulation. 2005. 36(9): 1915-9.
    [113] Marklund N, Peltonen M, Nilsson TK, Olsson T. Low and high circulating cortisol levels predict mortality and cognitive dysfunction early after stroke. J Intern Med JT - Journal of internal medicine. 2004. 256(1): 15-21.
    [114] Schwarz S, Schwab S, Klinga K, Maser-Gluth C, Bettendorf M. Neuroendocrine changes in patients with acute space occupying ischaemic stroke. J Neurol Neurosurg Psychiatry JT - Journal of neurology, neurosurgery, and psychiatry. 2003. 74(6): 725-7.
    [115] Slowik A, Turaj W, Pankiewicz J, Dziedzic T, Szermer P, Szczudlik A. Hypercortisolemia in acute stroke is related to the inflammatory response. J Neurol Sci. 196(1-2). Netherlands,2002. 27-32.
    [116] Theodoropoulou A, Metallinos IC, Elloul J, et al. Prolactin, cortisol secretion and thyroid function in patients with stroke of mild severity. Horm Metab Res JT - Hormone and metabolic research. Hormon- und Stoffwechselforschung. Hormones et metabolisme. 2006. 38(9): 587-91.
    [117] Wilckens T, De Rijk R. Glucocorticoids and immune function: unknown dimensions and new frontiers. Immunol Today. 1997. 18(9): 418-24.
    [118] Visser J, Nagelkerken L. Expression of the IL-10 receptor on human monocytes is moderately suppressed by glucocorticoids. Int Immunopharrnacol. 2002. 2(10): 1491-3.
    [119] Barrat FJ, Cua DJ, Boonstra A, et al. In vitro generation of interleukin 10-producing regulatory CD4(+) T cells is induced by immunosuppressive drugs and inhibited by T helper type 1 (Th1)- and Th2-inducing cytokines. J Exp Med. 2002. 195(5): 603-16.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700