棉花、烟草响应低温胁迫的差异蛋白质组学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植物在长期的进化过程中具备了各种不同的生理生化机制,以抵抗、适应各种逆境。在众多非生物胁迫中,低温是限制许多重要作物产量和分布的重要环境因素。植物通过改变形态、生理和生化过程,使胁迫应答基因表达,合成特殊的蛋白质来响应低温胁迫。到目前为止,关于低温胁迫对植物生长发育以及各种代谢活动影响产生的机理还不清楚。本研究利用差异蛋白质组学策略首次对低温胁迫下棉花幼苗、烟草悬浮细胞蛋白质组变化以及外源转录因子CBF1A表达对烟草悬浮细胞蛋白质组的影响进行了研究,以期为揭示植物对低温胁迫响应的分子机制提供依据。
     1利用差异蛋白质组学策略,采用三氯乙酸-丙酮沉淀法( TCA/acetone precipitation)提取棉花幼苗总蛋白质,建立了棉花幼苗蛋白质双向电泳体系;双向电泳凝胶经银染和考马斯亮蓝R-350热染,扫描获取电泳图片,利用ImageMaster 2D Platium Software分析比较低温胁迫处理幼苗与未低温处理幼苗的蛋白质组差异;发现银染的凝胶中有54个差异表达蛋白点,其中29个蛋白点在低温处理后表达量升高,25个蛋白点表达量降低;利用质谱技术成功鉴定出其中的8个差异表达蛋白点,其中的7个蛋白点被鉴定为同一种蛋白β-球蛋白,另一种蛋白鉴定为Rubisco大亚基;通过对棉花子叶生理生化指标的测定发现,低温胁迫会引起棉花幼苗子叶肽链内切酶活性的增强;子叶净光合速率和羧化效率降低;棉花子叶内活性氧产生速率升高,脂质过氧化加速。基于上述结果,我们认为低温胁迫会加速β-球蛋白和Rubisco大亚基的降解,并对蛋白的降解模式进行了分析。本文为从分子水平上揭示棉花幼苗低温响应机制研究奠定了基础,为深入了解低温胁迫下蛋白的降解机制提供了依据。
     2利用差异蛋白质组学策略,采用三氯乙酸-丙酮沉淀法提取烟草悬浮细胞总蛋白质,建立了烟草悬浮细胞蛋白质双向电泳体系;分析比较了烟草悬浮细胞在低温胁迫处理后蛋白质组的变化,通过对差异表达蛋白点的鉴定,发现LEA–类似蛋白NtLEA7-3的丰度在低温处理后上调,为低温诱导表达升高蛋白。通过荧光定量PCR分析发现低温胁迫下该蛋白mRNA水平变化与蛋白表达水平变化情况基本一致。利用RACE技术得到NtLEA7-3基因全长cDNA (GenBank登录号:EF532409)。NtLEA7-3 cDNA全长为1 267 bp,该序列含有一个969 bp的完整开放读码框,编码322个氨基酸,蛋白质理论分子量约为35.7 kDa,等电点为4.86。对NtLEA7-3编码的蛋白质进行结构预测分析表明,该蛋白富含无规卷曲(Coil),高达65.31%,其次是α-螺旋(Helix),为19.69 %,而β-折叠(Strand)只有15.00%。将NtLEA7-3编码区插入原核表达载体pET30a (+),并转化到大肠杆菌菌株BL21中,经IPTG诱导,NtLEA7-3融合蛋白在BL21菌株中成功表达。将得到的NtLEA7-3编码区插入植物表达载体pBI121中,构建了NtLEA7-3植物表达载体pBI121-LEA;成功地将其转入到烟草和悬浮细胞中,获得了转基因烟草植株及悬浮细胞,通过对转基因植株及悬浮细胞的表型和低温胁迫下生理生化特征分析表明,NtLEA7-3成功地表达可以提高转基因植株和悬浮细胞的耐低温胁迫能力。将NtLEA7-3编码区插入含有GFP基因的植物表达载体pBI121中,构建了NtLEA7-3-GFP的植物表达载体pBI121-LEA-GFP,成功地将NtLEA7-3-GFP融合基因转入拟南芥和烟草悬浮细胞,发现NtLEA7-3定位于细胞核中。本文不仅为研究植物的抗逆机理提供了参考,为植物抗性育种提供了有效的候选基因,同时为深入研究NtLEA7-3的结构、功能和分子调控机制奠定了基础。
     3成功地将棉花低温胁迫相关转录因子CBF1A基因转入了烟草悬浮细胞中,利用差异蛋白质组学策略分析了转CBF1A基因烟草悬浮细胞和野生型烟草悬浮细胞的蛋白质组差异,发现外源CBF1A基因的表达会引起烟草悬浮细胞蛋白质组的变化,有7个蛋白点表达差异显著,其中4个蛋白点表达升高,3个蛋白点表达降低。利用质谱技术成功鉴定出其中6个蛋白点,代表了5种不同的蛋白,其中3个是功能已知蛋白,即推测的叶绿体半胱氨酸合成酶前体、苹果酸脱氢酶类似蛋白、短链脱氢酶,另2个蛋白为功能未知蛋白。本研究为揭示CBF1A对植物的调控机制提供了参考。
During the long-term evolution, plants have developed sophisticated biochemical and physiological mechanisms to adapt and resistance to various environmental stresses. Among different stress, cold is a major environmental limitation to crop productivity and to the distribution of wild species. Plants acquire resistance to stress environment by reprogramming metabolism and gene expression, gaining a new equilibrium between growth, development and survival. But the mechanism of low temperature stress on growth and the accompanying metabolic changes remain to be elucidated in detail. In this study, we carried out comparative proteomic analyses to investigate the proteomic response of cotton (Gossypium hirsutum L.) and Nicotiana tabacum cell suspension culture under chilling stress and the proteomic changes of total proteins in Nicotiana tabacum cell suspension culture when the cotton CBF1A were expressed in them. The aim was to provide a better understanding about the underlying molecular mechanisms for plant response to low temperature.
     To gain a better understanding of chilling stress responses in cotton (Gossypium hirsutum L.), we carried out a comparative proteomic analysis. Cotyledon proteins of 1-week-old cotton seedlings treated with or without chilling treatment at 4℃were extracted, separated by a two-dimensional gel electrophoresis and compared. Among 1500 protein spots reproducibly detected on each gel, 25 protein spots were down-regulated and 29 were up-regulated. Seven cotton proteins were identified by mass spectrometry analysis as beta-globulin A precursor fragments. One was identified as a Rubisco large subunit fragment, providing evidence of both seed storage protein and photosynthetic protein destruction by chilling stress. The related physiological and biochemical analysis showed that there was a significant increase in endopeptidase activity and activated oxygen generation rate, and an obvious decrease in carboxylation efficiency and maximum net photosynthetic rate of cotton seedlings under chilling stress. Based on the above results, the degradation mechanisms of beta-globulin and Rubisco under chilling stress were discussed. In conclusion, our study provides new insights into chilling-stress responses in cotton and better understanding of the degradation mechanisms of seed storage proteins and photosynthetic proteins under chilling stress.
     In this study, differential proteomic analysis was conducted to characterize the proteins in Nicotiana tabacum cell suspension culture that were differently expressed in responsive to chilling stress with 2-DE and MS/MS. The gels were analyzed by ImageMasterTM 2D Platinum software. About five hundred reproducible protein spots were detected, among which one protein spot was up-regulated in the chilling stressed samples. MALDI-TOF-TOF MS analysis followed by database searching helped to identify the spot as late embryogenesis abundant (LEA)–like protein. To investigate the change of gene expression at the mRNA level, we performed qPCR analysis. The results showed that the mRNA level is correlated well with protein level. A full-length cDNA encoding the protein (designated as NtLEA7-3, GenBank accession No. EF532409) was cloned from Nicotiana tabacum cell suspension culture by rapid amplification of cDNA ends. The cDNA was 1 267 bp containing a 969 bp open reading frame which was deduced to encode a peptide of 322 amino acids whose predicted molecular mass was 35.7 kDa and isoelectric point was 4.86. It was predicted that the structure of NtLEA7-3 was rich in coils, and was poor in helix and strands. The coding region of the NtLEA7-3 was inserted into an expression vector, pET30a (+), and transformed into Escherichia coli BL2l. The fusion protein was successfully expressed with IPTG induction. The plant expression vector pBI121-LEA with this fragment under the control of 35S promoter was constructed and transformed into Nicotiana tabacum plants and cell suspension culture. Northern blot and Western blot analysis indicated that the NtLEA7-3 was expressed successfully in them. The related physiological and biochemical analysis showed that the NtLEA7-3 was a very efficient gene for improving chilling tolerance of Nicotiana tabacum. The coding region of the NtLEA7-3 was inserted into an expression vector pBI121 containin GFP and transformed into Arabidopsis thaliana plants and Nicotiana tabacum cell suspension culture. Then the transgenic Arabidopsis thaliana plant roots and cell suspension culture were observed through fluorescence microscopy and the results showed the NtLEA7-3 were expressed in the nucleus. This research not only provides a better understanding for the molecular mechanisms of plant response to low temperature, but also a useful candidate gene for resistance breeding. Furthermore, this study may be helpful to study the structure, function and regulation of the NtLEA7-3.
     The cotton CBF1A gene under the control of 35S promoter was transformed into Nicotiana tabacum cell suspension culture successfully. A comparative proteomic analysis was carried out to gain a better understanding of the proteins differently expressed in responsive to CBF1A expression in Nicotiana tabacum cell suspension culture. Among the protein spots detected, 7 protein spots displayed differential expression. There were 4 up-regulated and 3 down-regulated protein spots in the transgenic cell suspension culture. MS analysis followed by database searching helped to identify 6 spots representing 5 different proteins. The identified proteins include putative chloroplast cysteine synthase 1 precursor, malate dehydrogenase like-protein, short chain dehydrogenase and two unknown protein. This research provides a better understanding for the molecular regulation mechanisms of CBF1A.
引文
柴小清,靳飞,张艳萍,等.缺铁逆境胁迫下水稻叶蛋白质组的双向电泳分析[J].首都师范大学学报(自然科学版). 2004, 25(3): 45-51
    董贵俊,张卫东,陈双燕,等. N~+注入引起向日葵蛋白质组变异研究初报[J].生物物理学报. 2004, 20(4): 269-274
    郭子武,李宪利,高东升,等.植物低温胁迫响应的生化与分子生物学机制研究进展[J]. 中国生态农业学报. 2004, 12(2): 54-57
    何彩云.四种针叶树种与欧美107杨响应干旱与高温胁迫的蛋白质组研究.中国林业科学研究院学位论文. 2007
    何大澄,肖雪媛.差异蛋白质组学及其应用[J].北京师范大学学报(自然科学版). 2002, 38(4): 558-562
    霍晨敏,赵宝存,葛荣朝,等.小麦耐盐突变体盐胁迫下的蛋白质组分析[J].遗传学报. 2004, 31(12): 1408-1414
    乐寅婷,李梅,陈倩,等.油菜叶片蛋白质组对机械损伤应答的初步分析[J].植物生态学报. 2008, 32(1): 220-225
    李昆朋.不同基因型玉米对磷胁迫的反应及根系蛋白质组学研究.山东大学博士学位论文. 2007
    李美茹,刘鸿先,王以柔,等.植物细胞中的抗寒物质及其与植物耐冷性的关系[J].植物生理学通讯. 1995, 31: 28-33
    李妮亚,高俊凤.干旱对小麦幼芽蛋白质组分及等电点的影响[J].西北农业大学学报. 1997, 25(3): 6-11
    李鑫.比较蛋白质组学研究与应用进展[J].国际免疫学杂志. 2006, 29 (3): 156-160
    李雪梅,陆国芳,王振英,等.微管解聚剂和光合作用抑制型除草剂诱导的黑麦和玉米中蛋白质组分变化的比较研究[J].植物研究. 2007, 27(6): 694-700
    李永华,邹琦.植物体内甜菜碱合成相关酶基因工程.植物生理学通讯[J]. 2002, 38 (5): 500-504
    李跃强,宣维健,盛承发.植物的低温蛋白[J].生态学报. 2004, 24(5): 1034-1039
    梁慧敏,夏阳,王太明.植物抗寒冻、抗旱、耐盐基因工程研究进展[J].草业学报. 2003, 12(3): 1-7
    刘卫群,李浩.差异蛋白质组学在植物研究中的应用[J].安徽农业科学. 2006, 34(17): 4201- 4203
    刘新宇.低氧胁迫时玉米幼苗根尖表达蛋白的鉴定[J].四川农业大学硕士论文. 2004
    罗秋香,管清杰,金淑梅,等.植物耐盐性分子生物学研究进展[J].分子植物育种. 2006, 6(S): 57-64
    马千全,邹琦,李永华.根施甜菜碱对水分胁迫下小麦幼苗水分状况和抗氧化能力的改善作用[J].作物学报. 2004, 30 (4): 321-328
    乔建军,赵红,葛志强,等.水杨酸作用下东北红豆杉细胞的二维凝胶电泳分析[J].生物工程学报. 2003, 19(1): 92-96
    乔建军,赵红,牛晋阳,等.过氧化氢作用下东北红豆杉悬浮培养细胞中蛋白表达差异的研究[J].植物病理学报. 2003, 33(5): 429-433
    邵继荣.水稻冷激应答特异蛋白的电泳分析[J].乐山师专学报(自然科学版). 1998, (1): 35-37
    沈波,李云荫.渗透胁迫和脱落酸对冬小麦叶片蛋白质的影响[J].作物学报. 1996, 22(3): 288-293
    舒烈波,梅捍卫,罗利军.水稻抗旱耐盐蛋白质组学研究进展[J].生物技术通报. 2007, (4): 31-37
    苏智广,文富强,冯玉麟. SELDI蛋白质芯片技术及其应用[J].生命的化学. 2004, 24(4): 356-358
    孙国荣,彭永臻,阎秀峰.干旱胁迫对白桦实生幼苗叶片蛋白质的影响[J].林业科学. 2003, 3(94): 151-154
    孙彤,李伟,刘祥林,等.缺铁胁迫诱导的水稻根转录本组和蛋白质组分析[J].全国第四届植物基因组学大会会议论文集. 2003
    孙言伟,姜颖,贺福初.差异蛋白质组学的研究进展[J].生命科学. 2005, 17(2): 137-140
    汪耀富,杨天旭,刘国顺,等.渗透胁迫下烟草叶片基因的差异表达研究[J].作物学报. 2007, 33(6): 914-920
    王国莉,郭振飞.植物耐冷性分子机理的研究进展[J].植物学通报. 2003, 20(6): 671-679
    王希.玉米二氧化硫(SO2)胁迫相关蛋白分析.南昌大学硕士学位论文. 2006
    王艳. Cd2 +诱导蔬菜不同组织蛋白质组变化的比较研究[J].天律师范大学硕士论文. 2006
    魏琳.卷柏干旱生理基础及差异蛋白质组学研究.福建师范大学硕士学位论文. 2006
    武霞.野大麦盐胁迫的差异蛋白质组学研究.吉林大学硕士学位论文. 2005
    席景会.低温胁迫下拟南芥差异蛋白质组学研究.吉林大学博士学位论文研究. 2007
    夏德习.拟南芥硫氧还蛋白基因在逆境胁迫下的功能解析.东北林业大学硕士论文. 2007
    徐恒平,汪沛洪.土壤干旱对小麦根系蛋白组分变化的影响[J].西北农业学报. 1992, 1(1): 33-36
    严顺平.水稻响应盐胁迫和低温胁迫的蛋白质组研究.中国科学院研究生院博士学位论文. 2006
    杨梅.邻羟基苯甲酸胁迫对不同杉木无性系化感效应及差异蛋白质组分析.福建农林大学博士学位论文. 2007
    喻方圆,徐锡增.植物逆境生理研究进展[J].世界林业研究. 2003, 16(5): 6-11
    张恩平,张淑红.盐胁迫下不同盐敏感型番茄在蛋白质表达上的差异[J].沈阳农业大学学报. 2005, 36(1): 25-28
    张建秋,陆海,王智,等.双向电泳技术分析白刺盐胁迫蛋白的表达[J].吉林农业大学学报. 2004, 26(5): 511-51
    赵军,赵玉田,梁博文.寒胁迫过程中冬小麦叶片组织可溶性蛋白质含量的变化和功能[J]. 中国农业科学. 1994, 27(2): 57-61
    周涵韬,林鹏.盐胁迫下红树植物蛋白质的比较分析[J].海洋科学. 2002, 26(4): 4-6
    朱小燕.蛋白质组学及其在植物生态毒理学研究中的应用[J].淮阴工学院学报. 2008, 17(2): 68-71
    Abbasi, F.M. and Komastu, S.A proteomic approach to analyze salt-responsive proteins in rice leaf sheath[J]. Proteomics. 2004, 4: 2072-2081
    Adnan, S., Susan, L., Weiss, D., et al. Isolation and characterization of a heat-induced gene, hcit2, encoding a novel 16.5kDa protein: Expression coincides with heat-induced tolerance to chilling stress[J]. Plant Mol. Biol. 1998, 36(6): 935-939
    Agarwal, G.K., Rakwal, R., Yonekura, M., et al. Proteome analysis of differentially displayed proteins as a tool for investigating ozone stress in rice (Oryzasativa L.) seedlings[J]. Proteomics. 2002, 2: 947-959
    Agarwal, M., Hao, Y.J., Kapoor, A. et al. A R2R3 type MYB transcription factor is involved in the cold regulation of CBF genes and in acquired freezing tolerance[J]. J. Biol. Chem.2006, 281: 37636-37645
    Ali, G.M. and Komastu, S. Proteomic analysis of rice leaf sheath during drought stress[J]. J. Proteome Res. 2006, 5: 396-403
    Allen, D.J. and Ort, D.R. Impacts of chilling temperatures on photosynthesis in warm-climate plants[J]. Trends Plant Sci. 2001, 6: 36-42
    Alsheikh, M.K., Heyen, B.J., Randall, S.K. et al. Ion binding properties of the dehydrin ERD14 are dependent upon phosphorylation[J]. J. Biol. Chem. 2003, 278: 40882-40889
    Alsheikh, M.K., Svensson, J.T., Randall, S.K. et al. Phosphorylation regulated ion-binding is a property shared by the acidic subclass dehydrins[J]. Plant Cell Environ. 2005, 28: 1114-1122
    Anders, B.J., Adela, G., Mercè, F., et al. Phosphorylation mediates the nuclear targeting of the maize Rab17 protein[J]. The Plant Journal. 1998, 13(5): 691-697
    Antikainen, M. and Griffith, M. Antifreeze protein accumulation in freezing-tolerant cereals [J]. Physiol. Plant. 1997, 99: 423-432
    Ariizumi, T., Kishitani, S., Inatsugi, R., et al. An increase in unsaturation of fatty acids in phosphatidy lglycerol from leaves improves the rates of photosynthesis and growth at low temperatures in transgenic rice seedlings[J]. Plant Cell Physiol. 2002, 43(7): 751-758
    Ashraf, M. Breeding for salinity tolerance in plants[J]. Crit. Rev. Plant Sci. 1994, 13: 17-42
    Battista, J.R., Park, M.J., McLemore, A.E. et al. Inactivation of two homologues of proteins presumed to be involved in the desiccation tolerance of plants sensitizes Deinococcus radiodurans R1 to desiccation[J]. Cryobiology. 2001, 43: 133-139
    Becker, C., Shutov, A.D., Nong, V.H., et al. Purification, cDNA cloning and characterization of proteinase B, an asparagine-specific endopeptidase from germinating vetch (Vicia sativa L.) seeds[J]. Eur. J. Biochem. 1995, 228: 456-462
    Benedict, C., Geisler, M., Trygg, J., et al. Consensus by democracy. Using meta-analyses of microarray and genomic data to model the cold acclimation signaling pathway in Arabidopsis[J]. Plant Physiol. 2006, 141: 1219-1232
    Bies-Ethe`ve, N., Gaubier-Comella P., Debures, A., et al. Inventory, evolution and expression profiling diversity of the LEA (late embryogenesis abundant) protein genefamily in Arabidopsis thaliana. Plant Mol. Biol. 2008, 67: 107-124
    Blackman, S.A., Obendorf, R.L., Leopold, A.C. et al. Desiccation tolerance in developing soybean seeds—the role of stress proteins[J]. Physiol. Plant. 1995, 93: 630-638
    Bongani, K.N., Stephen, C., William, J.S., et al. Identification of Arabidopsis salt and osmotic stress responsive proteins using two-dimensional difference gel electrophoresis and mass spectrometry[J]. Proteomics. 2005, 5: 4185-4196
    Borsani, O., Zhu, J., Verslues, P.E., et al. Endogenous siRNAs derived from a pair of natural cis-antisense transcripts regulate salt tolerance in Arabidopsis[J]. Cell. 2005, 123: 1279-1291
    Boudet, J., Buitink, J., Hoekstra, F.A., et al. Comparative analysis of the heat stable proteome of radicles of Medicago trunculata seeds during germination identifies late embryogenesis abundant proteins associated with desiccation tolerance[J]. Plant Physiol. 2006, 140: 1418-1436
    Bravo, L.A., Gallardo, J., Navarrete, A., et al. Cryoprotective activity of a coldinduced dehydrin purified from barley[J]. Physiol. Plant. 2003, 118: 262-269 Bray, E. A. Trends in Plant Science. 1997, 2: 48-54
    Browne, J.A., Dolan, K.M., Tyson, T., et al. Dehydration-specific induction of hydrophilic protein genes in the anhydrobiotic nematode Aphelenchus avenae[J]. Eukaryot Cell. 2004, 3: 966-975
    Browne, J.A., Tunnacliffe, A., Burnell, A.M. Plant desiccation gene found in a nematode[J]. Nature. 2002, 416: 38
    Burke, M.J. The vitreous state and survival of anhydrous biological systems. In: Leopold AC (ed) Membranes, metabolism and dry organisms[J]. Cornell University Press, New York. 1986, 358-364
    Cabane, M., Calvet, P., and Vincens, P. Characterization of chilling- acclimation-related proteins in soybean and identification of one as a member of the heat shock protein (HSP) family[J]. Planta. 1993, 190: 246-353
    Cameron, E.C. and Mazelis, M. A nonproteolytic“Trypsin-like”enzyme purification and properties of arachain[J]. Plant Physiol. 1971, 48: 278-281
    Campos, F., Zamudio, F. and Covarrubias, A.A. Two different late embryogenesis abundantproteins from Arabidopsis thaliana contain specific domains that inhibit Escherichia coli growth[J]. Biochem Biophys Res Comm. 2006, 342: 406-413
    Castro, A.J., Carapito, C., Zorn, N., et al. Proteomic analysis of grapevine (Vitisvinifera L.) tissues subjected to herbicide stress[J]. J Exp. Bot., 2005, 56(421): 2783-2795.
    Ceccardi, T.L., Meyer, N.C. and Close, T.J. Purification of a maize dehydrin[J]. Protein Expr. Purif. 1994, 5: 266-269
    Chang, W.W., Huang, L. and Shen, M. Patterns of protein synthesis and tolerance of anoxia in root tips of maiza seedlings acclimated to a low-oxygen environment, and identification of proteins by mass spectrometry[J]. Plant Physiol. 2000, 122: 295-318
    Cheng, Z., Targolli, J. and Huang, X. Wheat LEA genes, PMA80 and PMA1959, enhance dehydration tolerance of transgenic rice (Oryza sativa L.) [J]. Mol. Breed. 2002, 10: 71-82
    Chinnusamy, V., Zhu, J., Zhu, J.K., et al. Gene regulation during cold acclimation in plants[J]. Physiol. Plant. 2006, 126: 52-61
    Chinnusamy, V., Ohta, M., Kanrar, S., et al. ICE1: a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis[J]. Genes Dev. 2003, 17: 1043-1054
    Chinnusamy, V., Zhu, J.H. and Zhu J.K. Cold stress regulation of gene expression in plants[J]. Trends in Plant Science. 2007, 12(10): 444-451
    Close, T.J. Dehydrins: a commonalty in the response of plants to dehydration and low temperature[J]. Physiol. Plant. 1997, 100: 291-296
    Cole, C.N. and Scarcelli, J.J. Transport of messenger RNA from the nucleus to the cytoplasm[J]. Curr. Opin. Cell Biol. 2006, 18: 299-306
    Cook, D., Fowler, S., Fiehn, O., et al. A prominent role for the CBF cold responsive pathway in configuring the low-temperature metabolome of Arabidopsis[J].. Proc. Nat. Acad. Sci. USA. 2004, 101: 15243-15248
    Costa, P., Bahrman, N., Frigerio, J.M., et al. Water-deficit responsive proteins in maritime pine[J]. Plant Mol. Biol. 1998, 39: 587-596
    Crowe, J.H., Carpenter, J.F. and Crowe, L.M. The role of vitrification in anhydrobiosis[J]. Annu. Rev. Physiol. 1998, 60: 73-103
    Crowe, J.H., Oliver, A.E., Hoekstra, F.A., et al. Stabilization of dry membranes by mixtures of hydroxyethyl starch and glucose: the role of vitrification[J]. Cryobiology. 1997, 3: 20-30
    Cullen, B.R. 2003: Nuclear RNA export[J]. J. Cell Sci. 116, 587–597
    Cuming, A.C. Shewry, P.R. and Casey, R. LEA proteins. In Seed proteins[J]. The Netherlands. 1999, 753-780
    Dai, X., Xu, Y., Ma, Q., et al. Overexpression of a R1R2R3MYBgene, OsMYB3R-2, increases tolerance to freezing, drought, and salt stress in transgenic Arabidopsis[J]. Plant Physiol. 2007, 143: 1739-1751
    Danyluk, J., Houde, M., Rassart, E., et al. Differential expression of a gene encoding an acidic dehydrin in chilling sensitive and freezing tolerant gramineae species[J]. FEBS. Lett. 1994, 344: 20-24
    Danyluk, J., Perron, A. Houde, M. et al. Accumulation of an acidic dehydrin in the vicinity of the plasma membrane during cold acclimation of wheat[J]. Plant Cell. 1998, 10: 623-638
    Danyluk, J., Rassart, E. and Sarhan, F. Gene expression during cold and heaat shock in wheat[J]. Biochem Cell Biol. 1991, 69: 383-391
    Davletova, S., Schlauch, K., Coutu, J., et al. The zinc-finger protein Zat12 plays a central role in reactive oxygen and abiotic stress signaling in Arabidopsis[J]. Plant Physiol. 2005, 139: 847-856
    Dhindsa, M.S. Intraspecific nest parasitism in two species of Indian weaverbirds Ploceus benghalensis and P. manyar [J]. Ibis. 1981, 125: 243-245
    Ding, C.K., Wang, C.Y., Gross, K.C., et al. Reduction of chilling injury and transcript accumulation of heats hock proteins In tomato fruit by methyl jasmonate and methyl salicylate[J]. Plant Sci. 2001, 161(6): 1153-1159
    Dong, C.H., Agarwal, M., Zhang, Y., et al. The negative regulator of plant cold responses, HOS1, is a RING E3 ligase that mediates the ubiquitination and degradation of ICE1[J]. Proc. Natl. Acad. Sci. U. S. A. 2006, 103: 8281-8286
    Dong, C.H., Hu, X., Tang, W., et al. A putative Arabidopsis nucleoporin AtNUP160 is critical for RNA export and required for plant tolerance to cold stress[J]. Mol. Cell. Biol.2006, 26: 9533-9543
    Dunker, A.K., Lawson, J.D. and Brown, C.J., et al. Intrinsically disordered protein[J]. J. Mol. Graphics Model. 2001, 19: 26-59
    Dure, L.III. Structural motifs in Lea proteins. In: Close TJ, Bray EA (eds) Plant responses to cellular dehydration during environmental stress[J]. The American Society of Plant Physiologists, Rockville, MD. 1993, 91-103
    Dure, L.III, Crouch, M., Harada, J., et al. Common amino acid sequence domains among the LEA proteins of higher plants[J]. Plant Mol. Biol. 1989, 12: 475-486
    Dyson, H.J. and Wright, P.E. Coupling of folding and binding for unstructured proteins[J]. Curr. Opin. Struct Biol. 2002, 12: 54-60
    Ellis, R.J. From chloroplasts to chaperones: how one thing led to another[J]. Photosynth Res. 2004, 80: 333-343
    Eom, J., Baker, W.R. and Kintanar, A. The embryospecific EMB-1 protein of Daucus carota is flexible and unstructured in solution[J]. Plant Sci. 1996, 115: 17-24
    Figueras, M., Pujal, J. and Saleh, A. Maize Rab17 overexpression in Arabidopsis plants promotes osmotic stress tolerance[J]. Ann. Appl. Biol. 2004, 144: 251-257
    Finch-Savage, W.E., Pramanik, S.K. and Bewley, J.D. The expression of dehydrin proteins in desiccation-sensitive (recalcitrant) seeds of temperate trees[J]. Planta. 1994, 193: 478-485
    Fischer, J., Becker, C., Hillmer, S., et al. The families of papain-and legumain-like cysteine proteinases from embryonic axes and cotyledons of Vicia seeds: developmental pattern, intracellular localization and functions in globulin proteolysis[J]. Plant Mol. Biol. 2000, 43: 83-101
    Foolad, M.R., Subbiah, P., Kramer, C., et al. Genetic relationships among cold, salt and drought tolerance during seed germination in an interspecific cross of tomato[J]. Euphytica. 2003, 130: 199-206
    Fowler, S. and Thomashow, M.F. Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway[J]. Plant Cell. 2002, 14: 1675-1690
    Gal, T.Z., Glazer, I. and Koltai, H. An LEA group 3 family member is involved in survival ofC. elegans during exposure to stress[J]. FEBS. Lett. 2004, 577: 21-26
    Gal, T.Z., Glazer, I., Koltai, H. et al. Differential gene expression during desiccation stress in the insect killing nematode Steinernema feltiae IS-6[J]. J. Parasitol. 2003, 89: 761-766
    Galau, G.A. and Dure, L.III. Developmental biochemistry of cottonseed embryogenesis and germination: changing messenger ribonucleic acid populations as shown by reciprocal heterologous complementary deoxyribonucleic acid-messenger ribonucleic acid hybridization[J]. Biochemistry. 1981, 20: 4169–4178
    Galau, G.A., Wang, H.Y.C., Hughes, D.W., et al. Cotton Lea5 and Lea14 encode atypical late embryogenesis-abundant proteins[J]. Plant Physiol. 1993, 101: 695-696
    Garay-Arroyo, A., Colmenero-Flores, J.M., Garciarrubio, A., et al. Highly hydrophilic proteins in prokaryotes and eukaryotes are common during conditions of water deficit[J]. J Biol. Chem. 2000, 275, 5668-5674
    Gilmour, S.J., Audrey, M.S. and Maite, P.S. Overexpression of the Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation[J]. Plant physiol. 2000, 124: 1854-1865
    Gomes, E., Jakobsen, M.K., Axelsen, K.B., et al. Chilling tolerance in Arabidopsis involves ALA1, a member of a new family of putative amino phospholipid translocases[J]. Plant Cell. 2000, 12: 2441-2453
    Gong, Z., Dong, C., Lee, H., et al. A DEAD box RNA helicase is essential for mRNA export and important for development and stress responses in Arabidopsis[J]. Plant Cell. 2005, 17: 256-267
    Gong, Z., Lee, H., Xiong, L., et al. RNA helicase-like protein as an early regulator of transcription factors for plant chilling and freezing tolerance[J]. Proc. Natl. Acad. Sci. U. S. A. 2002, 99: 11507- 11512
    Goyal, K., Tisi, L. and Basran, A. Transition from natively unfolded to folded state induced by desiccation in an anhydrobiotic nematode protein[J]. J. Biol. Chem. 2003, 278: 12977- 12984
    Goyal, K., Walton, L.J. and Tunnacliffe, A. LEA proteins prevent protein aggregation due to water stress[J]. Biochem. J. 2005, 388: 151-157
    Grelet, J., Benamar, A., Teyssier, E., et al. Identification in pea seed mitochondria of a late-embryogenesis abundant protein able to protect enzymes from drying[J]. Plant Physiol. 2005, 137: 157-167
    Griffith, M., Antikainen, M. and Hon, W.C. Antifreeze proteins in winter rye[J]. Physiol. Plant. 1997, 100: 327-332
    Grossoehme, N.E., Akilesh, S., Guerinot, M.L., et al. Metalbinding thermodynamics of the histidine-rich sequence from the metal-transporter protein ITR1 of Arabidopsis thaliana [J]. Inorg. Chem. 2006, 45: 8500-8508
    Gupta, A.S., Webb, R.P., Holadya, A.S., et al. Overexpression of superoxide dismutase protects plants from oxidature strees[J]. Plant Physiol. 1993, 103: 1067-1073
    Guy, C.L. and Haskell, D. Detection of polypeptides associated with the cold acclimation process in spinach[J]. Electrophoresis. 1988, 9: 787-796
    Hajduch, M., Rakwal, R. and Agrawal, G.K., et al. High-resolution two-dimensional electrophoresis separation of proteins from metal-stressed rice (Oryza sativa L.) leaves: Drastic reductions/fragmentation of ribulose-1,5-bisphosphate carboxylase/oxygenase and induction of stress-related proteins[J]. Electrophoresis. 2001, 22: 2824-2831
    Hajela, K.K., Horvath, D.P., Gilmour, S.J., et al. Molecular cloning and expression of cor(cold regulated)genes in Arabidopsis thaliana[J]. Plant Physiol. 1990, 93: 1246-1252
    Hannah, M.A., Heyer, A.G., Hincha, D.K., et al. A global survey of gene regulation during cold acclimation in Arabidopsis thaliana[J]. PLoS. Genet. 2005, 1(2): e26
    Hannah, M.A., Wiese, D., Freund, S., et al. Natural genetic variation of freezing tolerance in Arabidopsis[J]. Plant Physiol. 2006, 142: 98-112
    Hara, M., Fujinaga, M. and Kuboi, T. Metal binding by citrus dehydrin with histidine-rich domains[J]. J. Exp. Bot. 2005, 56: 2695-2703
    Hara, M., Fujinaga, M., Kuboi, T. et al. Radical scavenging activity and oxidative modification of citrus dehydrin[J]. Plant Physiol. Biochem. 2004, 42: 657-662
    Hara, M., Terashima, S. and Kuboi, T. Characterization and cryoprotective activity of cold-responsive dehydrin from Citrus unshiu[J]. J. Plant Physiol. 2001, 158: 1333-1339
    Hara, M., Terashima, S., Fukaya, T., et al. Enhancement of cold tolerance and inhibition of lipid peroxidation by citrus dehydrin in transgenic tobacco[J]. Planta. 2003, 217: 290-298
    Hassan, H.M. Determination of microbial damage caused by oxygen Free radicals, and the protective rule of superoxide dismutase[J]. Packer L. ed. Methods in Enzymology. 1984, 105: 404-412
    Heath, R.L. and Packer, L. Photoperoxidation in isolated chlorophasts I kinetics and stoichiometry of fatty acid peroxidation[J]. Arch. Biochem. Biophys. 1968, 125: 189-198
    Hincha, D.K., Hany, B.N., Srar, A.H., et al. Cabbage Cryoprotection is a member of the nonspecific plant lipid transfer protein gene family[J]. Plant Physiol. 2001, 125: 835-846
    Hirose, Y. and Manley, J.L. RNA polymerase II and the integration of nuclear events [J]. Genes Dev. 2000, 14: 1415-1429
    Hong, B., Barg, R. and Ho, T-HD. Developmental and organ-specific expression of an ABA- and stress-induced protein in barley[J]. Plant Mol. Biol. 1992, 18: 663-674
    Honjoh, K.I., Matsumoto, H., Shimizu, H., et al. Cryoprotective activities of Group 3 late embryogenesis abundant proteins from Chlorella vulgaris C-27[J]. Biosci Biotechnol Biochem. 2000, 64: 1656-1663
    Honjoh, K.I., Oda, Y., Takata, R., et al. Introduction of the hiC6 gene, which encodes a homologue of a late embryogenesis abundant (LEA) protein, enhances freezing tolerance of yeast[J]. J. Plant Physiol. 1999, 155: 509-512
    Hossein, A., Johan, E., Mohammad, K., et al. Effects of salinity levels on proteome of Suaeda aegyptiaca leaves[J]. Proteomics. 2006, 6: 2542-2554
    Houde, M., Dallaire, S., Dong, D., et al. Overexpression of the acidic dehydrin WCOR410 improves freezing tolerance in transgenic strawberry leaves[J]. Plant Biotech. J. 2004, 2: 381-387
    Houde, M., Daniel, C., Lachapelle, M., et al. Immunolocalization of freezing-tolerance- associated proteins in the cytoplasm and nucleoplasm of wheat crown tissues[J]. Plant J . 1995, 8: 583-593
    Hsing, Y.C., Chen, Z.Y., Shih, M.D., et al. Unusual sequences of group 3 LEA mRNA inducible by maturation or drying in soybean seeds[J]. Plant Mol. Biol. 1995, 29: 863-868
    Hu, Y.X., Wang, Y.X., Liu, X.F., et al. Arabidopsis RAV1 is down-regulated by brassinosteroid and may act as a negative regulator during plant development[J]. Cell Res. 2004, 14: 8-15
    Huges, M.A. and Dunn, M.A. The molecular biology of plant acclimation to low temperature[J]. J. Exp. Bot. 1996, 47: 291-305
    Hughes, D.W. and Galau, G.A. Temporally modular gene expression during cotyledon development[J]. Genes Dev. 1989, 3: 358-369
    Illing, N., Denby, K.J., Collett, H., et al. The signature of seeds in resurrection plants: a molecular and physiological comparison of desiccation tolerance in seeds and vegetative tissues[J]. Integr. Comp. Biol. 2005, 45: 771-787
    Imai, R., Chang, L., Ohta, A., et al. A lea-class gene of tomato confers salt and freezing tolerance when expressed in Saccharomyces cerevisiae[J]. Gene. 1996, 170: 243-248
    Imin, N., Kerim, T., Rolfe, B.G., et al. Effect of early cold stress on the maturation of rice anthers[J]. Proteomics. 2004, 4: 1873-1882
    Ishida, H., Shimizu, S., Makino, A., et al. Light-dependent fragmentation of the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase in chloroplasts isolated from wheat leaves[J]. Planta. 1998, 204: 305-309
    Ismail, A.M., Hall, A.E. and Close, T.J. Purification and partial characterization of a dehydrin involved in chilling tolerance during seedling emergence of cowpea[J]. Plant Physiol. 1999, 120: 237-244
    Iturbe-Ormaetxe, I., Escuredo, P.R., Arrese-Igor, C., et al. Oxidative damage in pea plants exposed to water deficit or paraquat[J]. Plant Physiol. 1998, 116: 173-181
    Iturriaga, G., Schneider, K., Salamini, F., et al. Expression of desiccation-related proteins from the resurrection plant Craterostigma plantagineum in transgenic tobacco[J]. Plant Mol. Biol. 1992, 20: 555-558
    Janowiak, F., Luck, E. and D?rffling, K. Chilling tolerance of maize seedlings in the field during cold periods in ppring is related to chilling-induced increase in abscisic acid level[J ]. J. Agron. Crop Sci. 2003, 189: 156-161
    Jarillo, J.A., Capel, J., Leyva, A., et al. Two related low-temperature-inducible genes of Arabidopsis encode proteins showing high homology to 14-3-3 proteins, a family ofputative kinase regulators[J]. Plant Mol. Biol. 1994, 25(4): 693-704
    Jensen, A.B., Goday, A., Figueras, M., et al. Phosphorylation mediates the nuclear targeting of the maize Rab17 protein[J]. Plant J. 1998, 13: 691-697
    John, B., Alan, T. and Ann, B. An hydrobiosis: plant desiccation gene found in a nematode [J]. Nature. 2002, 418: 38
    Jonak, C., Kieger1, S., Ligterink, W., et al. Stress signaling in plant: amitogen_activated protein kinase pathway is activated by cold and drought[J]. Proc. NatAcad Sci. U. S. A. 1996, 193: 11274-11279
    Jonak, C., Ligterink, W. and Hirt, H. MAP kinase in plant signal transduction[J]. Cell. Mol. Lofe. Sci. 1999, 55: 204-213
    Jones-Rhoades, M.W., Bartel, D.P. and Bartel, B., et al. MicroRNAs and their regulatory roles in plants[J]. Annu. Rev. Plant Biol. 2006, 57: 19-53
    Kabaki, N., Yoneyama, T. and Tajima, K. Physiological mechanism of growth retardation in rice seedlings as affected by low temperature[J]. Jpn. J. Crop Sci. 1982, 51: 82- 88
    Kadyrzhanova, D.K., Vlachonasios, K.E., Ververidis, P., et al. Molecular cloning of an ovel heat induced/chilling tolerance related cDNA in tomato fruit by use of mRNA differential display[J]. Plant Mol. Biol. 1998, 36(6): 885-895
    Kanervo, E., Tasaka, Y., Murata, N., et al. Membrane lipid unsaturation modulates processing of the photosystem II reaction-centerprotein D1 at low temperatures[J]. Plant Physiol. 1997, 114: 841-849
    Kanlaya, K., Daduang, S., Wongkham, C., et al. Protein profiles in response to salt stress in leaf sheaths of rice seedlings[J]. Sci. Asia. 2005, 31: 403-408
    Kaplan, F., Kopka, J., Haskell, D.W., et al. Exploring the temperature-stress metabolome of Arabidopsis[J].. Plant Physiol. 2004, 136, 4159-4168
    Kasuga, M., Liu, Q., Miura, S. et al. Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor[J]. Nature Biotechnol. 1999, 17:287-292
    Kazuoka, T. and Oeda, K. Purification and characterization of COR85-oligomeric complex from cold-acclimated spinach[J]. Plant Cell Physiol. 1994, 35: 601-611
    Kiga, C., Nakagawa, T., Koizumi, K., et a1. Expression patterns of plasma proteins in spontaneously diabeticratsafteroral administration of a Kampo medicine, Hachimi-jio- gan, using SELDI Protein Chip platform[J]. Biol. Pharm Bull. 2005, 28(6): 1031-1037
    Kikawada, T., Nakahara, Y., Kanamori, Y., et al. Dehydration-induced expression of LEA proteins in an anhydrobiotic chironomid[J]. Biochem Biophys Res Commun 2006, 348: 56-61
    Kim, D.W., Rakwal, R., Agrawal G.K., et al., A hydroponic rice seedling culture modelsystem for investigating proteome of salt stress in rice leaf[J]. Electrophoresis. 2005, 26(23): 4521-4539
    Kim, J.C., Lee, S.H., Cheong, Y.H., et al. A novel cold-inducible zinc finger protein from soybean, SCOF-1, enhances cold tolerance in transgenic plants[J]. Plant J. 2001, 25: 247-259
    Klose, J., Nock, C., Herrmann, M., et a1. Genetic analysis of the mouse brain proteome [J]. Nat. Genet. 2002, 30(4): 385-393
    Knighth, H., Trewavas, A.J., Knight, M.R. Cold calcium signaling in Arabidopsis involved two cellular pools and a change in calcium signature after acclimation[J]. Plant Cell. 1996, 8: 489-503
    Koag, M.C., Fenton, R.D., Wilkens, S., et al. The binding of maize DHN1 to lipid vesicles. Gain of structure and lipid specificity[J]. Plant Physiol. 2003, 131: 309-316
    Kodama, H., Hamada, T., Horiguchi, G. et al. Genetic enhancement of cold tolerance by expression of a gene for chloroplastω-3 fatty acid desaturase in transgenic tobacco[J]. Plant Physiol. 1994, 105: 601-605
    Koiwa, H., Barb, A.W., Xiong, L., et al. C-terminal domain phosphatase-like family members (AtCPLs) differentially regulate Arabidopsis thaliana abiotic stress signaling, growth, and development[J]. Proc. Natl. Acad. Sci. U. S. A. 2002, 99: 10893-10898
    Komatsu, S., Muhammad, A. and Rakwal, R. Seperation and characterization of proteins from green and etiolated shoots of rice (Oryza sativa L.): towards a rice proteome[J]. Electrophoresis 1999, 20: 630-636
    Konishi, H., Ishiguro, K. and Komatsu, S. A proteomics approach towards understanding blast fungus infection of rice grown under different levels on nitrogen fertilization[J].Proteomics. 2001, 1: 1162-1171
    Kornyeyev, D., Logan, B.A., Payton, P., et al. Enhanced photochemical light utilization and decreased chilling-induced photoinhibition of photosystem II in cotton overexpressing genes encoding chloroplast-targeted antioxidant enzymes[J]. Physiol. Plantarum. 2001, 113: 323-331
    Kratsch, H.A. and Wise, R.R. The ultrastructure of chilling stress[J]. Plant Cell Environ. 2000, 23: 337-350
    Kudla, J., Xu, Q., Harter, K., et al. Genes for calcineurin B-like proteins in Arabidopsis are differentially regulated by stress signals[J]. P. Natl. Acad. Sci. USA. 1999, 96: 4718-4723.
    Kuroda, K., Kasuga, J., Arakawa, K., et al. Xylemray parenchyma cells in borealhard wood species respond to subfreezing temperatures by deep super cooling that is accompanied by incompleted esiccation[J]. Plant Physiol. 2003, 131: 736-744
    Lan, Y., Cai, D., Zheng, Y.Z., Expression in Escherichia coli of three different soybean late embryogenesis abundant (LEA) genes to investigate enhanced stress tolerance[J]. J. Int. Plant Biol. 2005, 47: 613-621
    Lee, B.H., Lee, H., Xiong, L., et al. A mitochondrial complex I defect impairs cold-regulated nuclear gene expression[J]. Plant Cell. 2002, 14(6): 1235-1251
    Lee, B.H., Kapoorb, A., Zhu, J., et al. STABILIZED1, a stress-upregulated nuclear protein, is required for pre-mRNA splicing, mRNA turnover, and stress tolerance in Arabidopsis[J]. Plant Cell. 2006, 18: 1736-1749
    Lee, B.H., Hendersonb, D.A. and Zhu, J.K., et al. The Arabidopsis cold-responsive transcriptome and its regulation by ICE1[J]. Plant Cell. 2005, 17: 3155-3175
    Lee, H., Guo, Y., Ohta, M., et al. LOS2, a genetic locus required for cold responsive transcription encodes a bi-functional enolase[J]. EMBO J. 2002, 21: 2692-2702
    Lee, H., Xiong, L., Gong, Z., et al. The Arabidopsis HOS1 gene negatively regulates cold signal transduction and encodes a RING finger protein that displays cold-regulated nucleo-cytoplasmic partitioning[J]. Genes Dev. 2001, 15: 912-924
    Lee, S., Lee, E.J., Yang, E.J., et al. Proteomic identification of annexins,calcium-dependent membrane binding proteins that mediate osmotic stress and abscisic acid signaltransduction in Arabiopsis[J]. Plant Cell. 2004, 16 (60): 1378-1391
    Leone, A., Costa, A., Tucci, M., et al. Comaprative analysis of short-and-term changes in gene expression caused by low water potential in potato cell-suspension cultures[J]. Plant Physiol. 1994, 106: 703-712
    Li, Q.B., Haskell, D.W., Guy, C.L., et al. Coordinate and nonOcoordinate expression of the stress 70 family and other molecular chaper ones at high and low temperature in spinach and tomato[J]. Plant Mol. Biol. 1999, 39 (1): 21-34
    Lilley, K.S., Razzaq, A. and Dupree, P. Two-dimensional gel electrophoresis: recent advances in sample preparation, detection and quantitation[J]. Current Opinion Chemacl Biology. 2002, 6 (1): 46-50
    Lisse, T., Bartels, D., Kalbitzer, H.R., et al. The recombinant dehydrin-like desiccation stress protein from the resurrection plant Craterostigma plantagineum displays no defined threedimensional structure in its native state[J]. Biol. Chem. 1996, 377: 555-561
    Liu, J., and Zhu, J.K. A Calcium Sensor Hmology Required for Plant Salt Tolerance[J]. Science. 1998, 280: 1943-1945.
    Liu, Q., Kasuga, M., Sakuma, Y., et al. Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain, separate two cellular signal transduction pathways in drought- and low temperatureresponsive gene expression, respectively, in Arabidopsis[J]. Plant Cell. 1998, 10: 1391-1406
    Liu, Q., Kasuga, M., Sakuma, Y., et al. Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis[J]. Plant Cell. 1998, 10: 1391-1406
    Liu, Y. and Zheng, Y. PM2, a group 3 LEA protein from soybean, and its 22-mer repeating region confer salt tolerance in Escherichia coli[J]. Biochem. Biophys. Res. Commun. 2005, 331: 325-332
    Lopez, M.F., Kristal, B.S., Chernokalskaya, E., et al. High-throughput profiling of the mitochondrial proteome using affinity fractionation and automation[J]. Electrophoresis. 2000, 21: 2617
    Los, D.A., Ray, M.K., Murata, N. et al. Differences in the control of the temperature-dependent expression of four genes for desaturases in Synechocystis sp. PCC6803[J]. Mol. Microbiol. 1997, 25: 1167-1175
    Manfre, A.J., Lanni, L.M. and Marcotte, W.R. The Arabidopsis Group 1 late embryogenesis abundant protein ATEM6 is required for normal seed development[J]. Plant Physiol. 2006, 140: 140-149
    Martin, B., Ort, D.R. and Boyer, J.S. Impairment of photosynthesis by chilling-temperatures in tomato[J]. Plant Physiol. 1981, 68: 329-334
    Maruyama, K. Sakuma, Y., Kasuga, M., et al. Identification of cold-inducible downstream genes of the Arabidopsis DREB1A/CBF3 transcriptional factor using two microarray systems[J]. Plant J. 2004, 38: 982-993
    Mastrangelo, A.M., Belloni, S., Barilli, S., et al. Low temperature promotes intron retention in two e-cor genes of durum wheat[J]. Planta. 2005, 221: 705-715
    Matsuda, O., Sakamoto, H., Hashimoto, T., et al. A temperature sensitive mechanism that regulates post-translational stability of a plastidialω-3 fatty acid desaturase (FAD8) in Arabidopsis leaf tissues[J]. J. Biol. Chem. 2005, 280: 3597-3604
    May, M.J., Vernoux, T., Leaver, C., et al. Glutathione homeostasis in plants: implications for environmental sensing and plant development[J]. Journal of Experimental Botany, 1998, 49(321): 649-667
    McCubbin, W.D., Kay, C.M. and Lane, B.G. Hydrodynamic and optical properties of the wheat germ Em protein[J]. Can J. Biochem. Cell Biol. 1985, 63: 803-811
    Meza-Basso, Alberdi, L., Raynl, M., et al. Changes in protein synthesis in rapeseed seedlings during a low termperature treatment[J]. Plant Physiol. 1987, 82: 733-738
    Mishra, V.K., Palgunachari, M.N., Segrest, J.P., et al. Interactions of synthetic peptide analogs of the class A amphipathic helix with lipids[J]. J. Biol. Chem. 1994, 269: 7185 -7191
    Mittler, R., Kim, Y.S., Song, L., et al. Gain- and loss-of-function mutations in Zat10 enhance the tolerance of plants to abiotic stress[J]. FEBS Lett. 2006, 580: 6537-6542
    Miura, K., Bo Jina, J., Lee, J., et al. SIZ1-mediated sumoylation of ICE1 controls CBF3/DREB1A expression and freezing tolerance in Arabidopsis[J]. Plant Cell. 2007, 19: 1403-1414
    Mizoguchi, T., Ichimura, K. and Shinozaki, K. Environmental stress response in plants: the role of mitogen-activated protein kinases[J]. Trends Biotech. 1997, 15: 15-19
    Momma, M., Kaneko, S., Haraguchi, K., et al. Peptide mapping and assessment of cryoprotective activity of 26/27-kDa dehydrin from soybean seeds[J]. Biosci. Biotechnol Biochem. 2003, 67: 1832-1835
    Moore, L.E., Pfeiffer, R., Warner, M., et a1. Identification of biomarkers of arsenic exposure and metabolism in urine using SELDI technology[J]. Biochem. Mol. Toxicol. 2005, 19(3): 176
    Mouillon, J.M., Gustafsson, P. and Harryson, P. Structural investigation of disordered stress proteins. Comparison of full-length dehydrins with isolated peptides of their conserved segments[J]. Plant Physiol. 2006, 141: 638-650
    Mulcahy, R.I. and Gipp, J.J. Identification of a putative antioxidant responsive element in the 5'-flanking region of the humanγ-glutamyl cysteine synthetase heavy subunit gene [J]. Biochem. Biophys. Res. Comm. 1995, 209: 227-233
    Müntz, K., Belozersky, M.A., Dunaevsky, Y.E., et al. Stored proteinases and the initiation of storage protein mobilization in seeds during germination and seedling growth[J]. J. Exp. Bot. 2001, 52: 1741-1752
    Nair, R. and Rost, B. LOCnet and LOCtarget: Sub-cellular localization for structural genomics targets[J]. Nucleic Acids Res. 2004, 32(Database issue): W517-W521
    Nat, N.V.K., Sanjeeva, S., Laksiri, G., et al. Proteome-level changes in the roots of Pisum sativum in response to salinity [J]. Ann Appl. Biol. 2004, 145: 217-230
    Nayyar, H. and Chander, S. Protective effects of polyamines against oxidative stress induced by water and cold stress in chickpea[J]. J. Agron. Crop Sci. 2004, 190: 355-365
    Novillo, F., Alonso, J.M., Ecker, J.R., et al. CBF2/DREB1C is a negative regulator of CBF1/DREB1B and CBF3/DREB1A expression and plays a central role in stress tolerance in Arabidopsis[J]. Proc. Natl. Acad. Sci. U. S. A. 2004, 101: 3985-3990
    Oliver, M.J., Dowd, S.E., Zaragoza, J., et al. The rehydration transcriptome of the desiccation-tolerant bryophyte Tortula ruralis: transcript classification and analysis[J]. BMC Genomics. 2004, 5: 89
    Oono, Y., Seki, M., Nanjo, T., et al. Monitoring expression profiles of Arabidopsis gene expression during rehydration process after dehydration using ca. 7000 full-length cDNA microarray[J]. Plant J. 2003, 34: 868-887
    Orver, B.L., Sangwan, V., Omann, F., et al. Early Steps in Cold Sensing by Plant Cells the Role of Act in Cytoskeleton and Mem bram e Fluidity[J]. Plant J. ( S096027412) , 2003, 23: 785-794.
    Palusa, S.G., Ali, G.S. and Reddy, A.S.N., et al. Alternative splicing of pre-mRNAs of Arabidopsis serine/arginine -rich proteins: regulation by hormones and stresses[J]. Plant J. 2007, 49: 1091–1107
    Pandey, A. and Mann, M. Proteomics to study genes and genomes[J]. Nature. 2000, 405: 837-846
    Park, B.J., Liu, Z.C., Kanno, A., et al. Genetic improvement of Chinese cabbage for salt and drought tolerance by constitutive expression of a B. napus LEA gene[J]. Plant Sci. 2005, 169: 553-558
    Parker, R., Flowers, T. J., Moore A. L., et al. An accurate and reproducible method for proteome profiling of the effects of salt stress in the rice leaf lamina[J]. J. Exp. Bot. 2006, 57: 1109-1118
    Parry, G., Ward, S., Cernac, A., et al. The Arabidopsis suppressor of auxin resistance proteins are nucleoporins with an important role in hormone signaling and development[J]. Plant Cell. 2006, 18: 1590- 1603
    Prilusky, J., Felder, C.E., Zeev-Ben-Mordehai, T, et al. FoldIndex: a simple tool to predict whether a given protein sequence is intrinsically unfolded[J]. Bioinformatics. 2005, 21: 3435-3438
    Puhakainen, T., Hess, M.W., M?kel?, P., et al. Overexpression of multiple dehydrin genes enhances tolerance to freezing stress in Arabidopsis[J]. Plant Mol. Biol. 2004, 54: 743- 753
    Puupponen-Pimia, R., Saloheimo, M., Vasara, T., et al. Characterization of a birch (Betula pendula Roth.) embryogenic gene, BP8[J]. Plant Mol. Biol. 1993, 23: 423-428
    Rakwal, R. and Komatsu, S. Abscisic acid promoted changes in the protein profiles of rice seedling by proteome analysis[J]. Mol. Biol. Rep. 2004, 31: 217-230
    Rakwal, R. and Komatsu, S. Role of jasmonate in the rice (Oryza sativa L.) self-defense mechanism using proteome analysis[J]. Electrophoresis. 2000, 21: 2492-2500
    Ramani, S. and Apte, S.K. Transient expression of multiple genes in salinity-stressed young seedlings of rice cv. bura rata[J]. Biochem Biophys Res. Commun. 1997, 233: 663-667
    Raquel, R. and Manuel, T. Proteome analysis ofmaize roots reveals that oxidative stress is a main contributing factor to p lant arsenic toxicity[J]. Phytochemistry. 2005, 66: 1519-1528
    Renaut, J., Lutts, S., Hoffmann, L., et al. Responses of poplar to chilling temperatures: proteomic and physiological aspects[J]. Plant Biology. 2004, 6: 81-90
    Requejo, R. and Tena, M. Proteome analysis of maize root s reveals t hat oxidative st ress is a main contributing factor to plant arsenic toxicity[J]. Phytochemistry. 2005, 66: 1519-1528
    Reyes, J.L., Rodrigo, M.J., Colmenero-Flores, J.M., et al. Hydrophilins from distant organisms can protect enzymatic activities from water limitation effects in vitro[J]. Plant Cell Environ. 2005, 28: 709-718
    Riccardi, F., Gazeau, P., de Vienne, D., et al. Protein changes in response to progressive water deficit in maize. Quantitative variation and polypeptide identification[J]. Plant Physiol. 1998, 117: 1253-1263
    Riccardi, F., Gazeau, P., Jacquemot, M.P., et al. Deciphering genetic variations of proteome responses to water deficit in maize leaves[J]. Plant Physiol Biochem. 2004, 42(12): 1003-1011
    Riccardi, F., Gazeau, P., Jacquemot, M.P., et al. Deciphering genetic variations of proteome responses to water deficit in maize leaves[J]. Plant Physiol. Biochem. 2004, 42(12): 1003-1011
    Rinne, P.L.H., Kaikuranta, P.L.M., van der Plas, L.H.W., et al. Dehydrins in cold-acclimated apices of birch (Betula pubescens Ehrh.): production, localization and potential role in rescuing enzyme function during dehydration[J]. Planta 1999, 209: 377 -388
    Rohila, J.S., Jain, R.K. and Wu, R. Genetic improvement of Basmati rice for salt and drought tolerance by regulated expression of a barley Hva1 cDNA[J]. Plant Sci. 2002, 163: 525- 532
    Roth, U., von Roepenack-Lahaye, E., Clemens, S., et al. Proteome changes in Arabidopsis thaliana roots upon exposure to Cd2+[J]. Journal of Experimental Botany. 2006, 57 (15): 4003-4013.
    Russouw, P.S., Farrant, J., Brandt, W., et al. Isolation and characterization of a heat-soluble protein from pea (Pisum sativum) embryos[J]. Seed Sci Res. 1995, 5: 137-144
    Russouw, P.S., Farrant, J., Brandt, W., et al. The most prevalent protein in a heat-treated extract of pea (Pisum sativum) embryos is an LEA group 1 protein; its conformation is not affected by exposure to high temperature[J]. Seed Sci. Res. 1997, 7: 117-123
    Sabehat, A., Lurie, S., Weiss, D., et al. Expression of small heat-shock proteins at low temperatures: A possible role in protecting against chilling injuries[J]. Plant Physiol. 1998, 117(2): 651-658
    Sage, R. F. The evolution of C-4 photosynthesis. New Phytologist[J]. 2004, 161: 341-370
    Sale, S.K., Brand, T.W., Rumbn, K.E., et al. The L EA 2 like protein HSP12 in Saccharomy ces cerevisiae has a plasma membrane location and protects membranes against desiccation and ethanol induced stress [J]. Biochim Biophys Acta. 2000, 1463 (2): 267- 268.
    Salekdeh, G.H.H., Siopongeo, J., Wade, L.J., et al. A proteomic approach to analyzing drough and salt responsiveness in rice[J]. Field Crops Research. 2002, 76, 199-219
    Salekdeh, G.H., Siopongco, J., Wade, L.J., et al. Proteomic analysis of rice leaves during drought stress and recovery[J]. Proteomics. 2002, 2: 1131-1145
    Sanan-Mishra, N., Pham, X.H., Sopory, S.K., et al. Pea DNA helicase 45 overexpression in tobacco confers high salinity tolerance without affecting yield[J]. Proc. Natl. Acad. Sci. U. S. A. 2005, 102: 509-514
    Sanchez-Ballesta, M.T., Rodrigo, M.J., Lafuente, M.T., et al. Dehydrin from Citrus, which confers in vitro dehydration and freezing protection activity, is constitutive and highly expressed in the flavedo of fruit but responsive to cold and water stress in leaves[J]. J. Agric. Food Chem. 2004, 52: 1950-1957
    Satoh, R., Nakashima, K., Seki, M., et al. ACTCAT, a novel cis-acting element for proline- and hypoosmolarity-responsive expression of the ProDH gene encoding proline dehydrogenase in Arabidopsis[J]. Plant Physiol. 2002, 130: 709-719
    Shen, S., Jing, Y. and Kuang, T. Proteomics approach to identify wound-response related proteins from rice leaf sheath[J]. Proteomics. 2003, 3: 527-535
    Shi, Y., Xiang, R., Horvath, C., et al. The role of liquid chromatography in proteomics[J]. J. Chromatogr A. 2004, 1053(1-2): 27-36
    Shih, M.D., Lin, S.C., Hsieh, J.S., et al. Gene cloning and characterization of a soybean (Glycine max L.) LEA protein, GmPM16[J]. Plant Mol. Biol. 2004, 56: 689-703
    Shinozaki, K. and Kazuloys, I. Gene expression signal transduction in water-stress response [J]. Plant Physiol. 1997, 115: 327-334.
    Shinozaki, K. and Yamaguchi-Shinozaki, K. Molecular responses to drought and cold stress[J]. Curr. Opin. Biotechnol. 1996, 7: 161-167
    Shutov, A.D. and Vaintraub, I.A. Deradation of storage proteins in germinating seeds [J]. Phytochemistry. 1987, 26: 1557-1666
    Shutov, A.D., B?umlein, H., Blattner, F.R., et al. Storage and mobilization as antagonistic functional constraints on seed storage globulin evolution[J]. J. Exp. Bot. 2003, 54: 1645-1654
    Sivamani, E., Bahieldin, A., Wraith, J.M., et al. Improved biomass productivity and water use efficiency under water deficit conditions in transgenic wheat constitutively expressing the barley HVA1 gene[J]. Plant Sci 2000, 155: 1-9
    Skrudlik, G., B?czek-Kwinta, R. and Ko?cienlniak, J. The effect of short warm breaks during chilling on photosynthesis and the activity of antioxidant enzymes in plants sensitive to chilling[J]. J. Agron. Crop Sci. 2000, 184: 233-240.
    Soulages, J.L., Kim, K., Arrese, E.L., et al. Conformation of a Group 2 late embryogenesis abundant protein from soybean. Evidence of poly (L-proline)-type II structure[J]. Plant Physiol. 2003, 131: 963-975
    Soulages, J.L., Kim, K., Walters, C., et al. Temperature-induced extended helix/random coil transitions in a group 1 late embryogenesis-abundant protein from soybean[J]. Plant Physiol. 2002, 128: 822-832
    Steponkus, P.L., Uemura, M., Joseph, R.A., et al. Mode of action of the COR15a gene on the freezing tolerance of Arabidopsis thaliana[J]. Proc. Natl. Acad. Sci. USA. 1998, 95: 14570- 14575
    Stockinger, E.J., Gilmour, S.J., and Thomashow, M.F., et al. Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcription activator that binds to the C repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit[J]. Proc. Natl. Acad. Sci. U. S. A. 1997, 94: 1035-1040
    Stone, J.M., Palta, J.P., Bamberg, J.B., et al. Inheritance of freezing resistance in tuberbearing solanum species: evidence for independent genetic control of nonacclimated freezing tolerance and cold acclimation capacity[J]. Proc. Natl. Acad. Sci. U. S. A. 1993, 90: 7869-7873
    Sun, T.K., Kyu, S.C., Seok, Y., et al. Proteomic analysis of differentially expressed proteins induced by rice blast fungus and elicitor in suspension-cultured rice cells[J]. Proteomics. 2003, 3: 2368-2378
    Sunkar, R. and Zhu, J.K. Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis[J]. Plant Cell. 2004, 16: 2001-2019
    Sunkar, R., Chinnusamy, V., Zhu, J., et al. Small RNAs as big players in plant abiotic stress responses and nutrient deprivation[J]. Trends Plant Sci. 2007, 12: 301-309
    Sunkar, R., Kapoor, A., and Zhu, J.K., et al. Posttranscriptional induction of two Cu/Zn superoxide dismutase genes in Arabidopsis is mediated by downregulation of miR398 and important for oxidative stress tolerance[J]. Plant Cell. 2006, 18: 2051-2065
    Svensson. J., Palva, E.T., Welin, B. et al. Purification of recombinant Arabidopsis thaliana dehydrins by metal ion affinity chromatography[J]. Protein Expr. Purif. 2000, 20: 169- 178
    Swire-Clark, G.A. and Marcotte, W.R. The wheat LEA protein Em functions as an osmoprotective moledule in Saccharomyces cerevisiae[J]. Plant Mol. Biol. 1999, 39: 117 -128
    Swire-Clark, G.A. and Marcotte, W.R. The wheat LEA protein Em functions as an osmoprotective moledule in Saccharomyces cerevisiae[J]. Plant Mol. Biol. 1999, 39: 117-128
    Takanashi, J., Maruyama, S., Kabaki, N., et al. Temperature dependence of protein synthesis by cell-free system constructed with polysomes from rice radicle[J]. Jpn. J. Crop Sci.1987, 56: 44-50
    Taylor, N.L., Heazlewood, J.L., Day, D.A., et al. Differential impact of environmental stresses on the pea mitochondrial proteome[J]. Mol. Cell Proteomics. 2005, 4: 1122-1133
    Thomashow, M.F. So what’s new in the field of plant cold acclimation? Lots [J] Plant Physiol. 2002, 125: 89-93
    Thulasiraman, V., Wang, Z., Katrekar, A., et al. Simultaneous monitoring of multiple kinase activities by SELDI-TOF mass spectrometry[J]. Methods Mol. Biol. 2004, 278: 205-214
    Tompa, P. Intrinsically unstructured proteins[J]. Trends Biochem Sci. 2002, 27: 527-533
    Tompa, P., Bánki, P., Bokor, M., et al. Protein-water and protein-buffer interactions in the aqueous solution of an intrinsically unstructured plant dehydrin: NMR intensity and DSC aspects[J]. Biophys J. 2006, 91: 2243-2249
    Tunnacliffe, A. and Wise, M.J. The continuing conundrum of the LEA proteins[J]. Naturwissenschaften. 2007, 94: 791-812
    Uemura, M., Joseph, R.A., Steponkus, P.L., et al. Cold acclimation of Arabidopsis thaliana: effect on plasma membrane lipid composition and freeze-induced lesions[J]. Plant Physiol. 1995, 109: 15-30
    Ukaji, N., Kuwabara, C., Akezawa, D., et al. Accumulation of small heat-shock protein homologs in the endoplasmic reticulum of cortical parenchyma cells in mulberry in association with seasonal cold acclimation[J]. Plant Physiol. 1999, 120: 481-490
    Ulrich, H.D. Mutual interactions between the SUMO and ubiquitin systems: A plea of no contest[J]. Trends Cell Biol. 2005, 15: 525-532
    Unlu, M., Margan, M.E. and Minden, J.S. Difference gel electrophoresis: asinglegel method for detecting changes in protein extracts[J]. Electrophoresis. 1997, 18: 2071-2077
    Uversky, V.N., Gillespie, J.R., Fink, A.L. et al. Why are“natively unfolded”proteins unstructured under physiologic conditions? [J]. Proteins. 2000, 41: 415-427
    Valeria, D., William, J.S., Marcello, D., et al. Changes in the tobacco leaf apoplast proteome in response to salt stress[J]. Proteomics. 2005, 5: 737-745
    van Berkel, J., Salamini, F. and Gebhardt, C. Transcripts accumulating during cold storage of potato (Solanum tuberosum L.) tubers are sequence related to stress-responsive gene[J].Plant Physiol. 1994, 104: 445-452
    Vannini, C., Locatelli F., Bracale M., et al. Overexpression of the rice Osmyb4 gene increases chilling and freezing tolerance of Arabidopsis thaliana plants[J]. Plant J. 2004, 37: 115-127
    Vashisht, A.A., Pradhan, A., Tuteja, R., et al. Cold- and salinity stress-induced bipolar pea DNA helicase 47 is involved in protein synthesis and stimulated by phosphorylation with protein kinase C[J]. Plant J. 2005, 44: 76-87
    Verslues, P.E., Guo, Y., Dong, C.H., et al. Mutation of SAD2, an importin beta-domain protein in Arabidopsis, alters abscisic acid sensitivity[J]. Plant J. 2006, 47: 776-787
    Vigh, L., Los, D.A., Horvath, I., et al. The primary signal in the biological perception of temperature: Pd- catalyzed hydrogenation of membrane lipids stimulated the expression of the desA gene in Synechocystis PCC6803[J]. Proc. Natl. Acad. Sci. USA. 1993, 90(19): 9090-9094
    Vogel, J.T., Zarka, D.G., Van Buskirk, H.A., et al. Roles of the CBF2 and ZAT12 transcription factors in configuring the low temperature transcriptome of Arabidopsis[J]. Plant J. 2005, 41: 195-211
    von Caemmerer, S., Evans, J.R., Hudson, G.S., et al. The kinetics of ribulose-1,5- bisphosphate carboxylase/oxygenase in vivo inferred from measurements of photosynthesis in leaves of transgenic tobacco[J]. Planta. 1994, 195: 88-97.
    Welin, B.V., Olson, A., Nylander, M., et al. Characterization and differential expression of dhn/lea/rab-like genes during cold acclimation and drought stress in Arabidopsis thaliana[J]. Plant Mol. Biol. 1994, 26: 131-144
    Wen, J.Q., Oono, K., Imai, R., et al. Two novel mitogen_activated protein signaling components, OsMEK1 and OsMAP1, are involved in a moderate low_temperature signaling pathway in rice[J]. Plant Physiol. 2002, 129: 1880-1891
    Widmann, C., Gibson, S., Jarpe, M.B., et al. Mitogen-activated protein kinase, conservation of a three-kinase module from yeast to human[J]. Physiol. Rev. 1999, 79: 143-180
    Wilkins, M.R. Government backs proteome proposal[J]. Nature. 1995, 378: 653
    Wise, M.J. and Tunnacliffe, A. POPP the question: what do LEA proteins do? [J]. Trends Plant Sci. 2004, 9:13-17
    Wise, M.J. LEAping to conclusions: a computational reanalysis of late embryogenesis abundant proteins and their possible roles[J]. BMC Bioinformatics. 2003, 4: 52
    Wisniewsk, M., Webb, R., Balsamo, R., et al. Purification, imunolocalization, cryoprotective, and antifreeze activity of PCA60: a dehydrin from peach (Prunus persica) [J]. Physiol. Plant. 1999, 105: 600-608
    Wolkers, W.F., McCready, S., Brandt, W.F., et al. Isolation and characterization of a D-7 LEA protein from pollen that stabilizes glasses in vitro[J]. Biochim Biophys Acta. 2001, 1544: 196-206
    Wu, J., Lightner, J., Warwick, N., et al. Low temperature damage and subsequent recovery of fab1 mutant Arabidopsis exposed to 2℃[ J]. Plant Physiol. 1997, 113: 347-356
    Wu, S.L., Choudhary, G., Ramstrom, et al. Evaluation of shotgun sequencing for proteomic analysis of human plasma using HPLC coupled with either ion trap or Fourier transform mass spectrometry[J]. J. Proteome Res. 2003, 2: 383-393
    Xin, Z. and Browse, J. Eskimo1 mutants of Arabidopsis are constitutively freezing tolerant[J]. Proc. Natl. Acad. Sci. U. S. A. 1998, 95: 7799-7804
    Xin, Z., Mandaokar, A., Chen, J., et al. Arabidopsis ESK1 encodes a novel regulator of freezing tolerance[J]. Plant J. 2007, 49: 786-799
    Xiong, L., Lee, H., Ishitani M., et al. Repression of stress-responsive genes by FIERY2, a novel transcriptional regulator in Arabidopsis[J]. Proc. Natl. Acad. Sci. U. S. A. 2002, 99: 10899 - 10904
    Xu, D., Duan, X., Wang, B., et al. Expression of a late embryogenesis abundant protein gene, HVA1, from barley confers tolerance to water defecit and salt stress in transgenic rice[J]. Plant Physiol. 1996, 110: 249-257
    Yamaguchi-Shinozaki, K. and Shinozaki, K. Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses[J]. Annu. Rev. Plant Biol. 2006, 57: 781-803
    Yan, S.P., Zhang, Q.Y., Tang, Z.C., et al. Comparative proteomic analysis provides new insights into chilling stress responses in rice[J]. Mol. Cell Proteomics. 2006, 5: 484-496.
    Yan, S., Tang, Z., Su, W., et al. Proteomic analysis of salt stress-responsive proteins in rice roots[J]. Proteomics. 2005, 5: 235-244
    Yanaguchi_Shinozaki, K., Koizum, M., Urao, S., et al. Molecular cloning and characterization of 9 cDNA clone that encodes a putative transmembrane channel protein [J]. Plant Cell Physiol. 1992, 33(3): 217-224
    Yin, Z., Rorat, T., Szabala, B.M., et al. Expression of a Solanum sogarandinum SK3-type dehydrin enhances cold tolerance in transgenic cucumber seedlings[J]. Plant Sci. 2006, 170: 1164-1172
    Zhang, L., Ohta, A., Takagi, M., et al. Expression of plant Group 2 and Group 3 lea genes in Saccharomyces cerevisiae revealed functional divergence among LEA proteins[J]. J. Biochem. 2000, 127: 611-616
    Zhang, X., Fowler, S.G., Cheng, H., et al. Freezing-sensitive tomato has a functional CBF cold response pathway, but a CBF regulon that differs from that of freezing-tolerant Arabidopsis[J]. Plant J. 2004, 39: 905-919
    Zhang, Y., Li, J., Yu, F., et al. Cloning and expression analysis of SKn-type dehydrin gene from bean in response to heavy metals[J]. Mol. Biotechnol. 2006, 32: 205-217
    Zhu, J.K. Salt and drought stress signal transduction in plants[J]. Annu. Rev. Plant Biol. 2002, 53: 247-273
    Zhu, J., Shi, H., Lee, B., et al. An Arabidopsis homeodomain transcription factor gene, HOS9, mediates cold tolerance through a CBF-independent pathway[J]. Proc. Natl. Acad. Sci. U. S. A. 2004, 101, 9873-9878
    Zhu, J., Verslues, P.E., Zheng, X., et al. HOS10 encodes an R2R3-type MYB transcription factor essential for cold acclimation in plants[J]. Proc. Natl. Acad. Sci. U. S. A. 2005, 102: 9966-9971
    Zhu, T. and Provart, N.J. Transcriptional responses to low temperature and their regulation in Arabidopsis[J]. Can. J. Bot. 2003, 81: 1168 -1174
    Zimmermann, P., Hirsch-Hoffmann, M., Hennig, L., et al. Arabidopsis microarray database and analysis toolbox[J]. Plant Physiol. 2004, 136: 2621-2632

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700