甲磺酸伊马替尼治疗胃肠道间质瘤与耐药机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究目的:
     1.分析及评估伊马替尼治疗胃肠道间质瘤(Gastrointestinal stromal tumor,GIST)患者的临床疗效和副反应,总结伊马替尼治疗经验。
     2.分析原发GIST患者基因突变和伊马替尼继发耐药GIST患者基因突变的发生规律,分析基因突变与临床特征之间的关系,为防止伊马替尼耐药以及新靶向药物治疗提供依据。了解基因突变与伊马替尼继发耐药的关系,更好地阐明伊马替尼耐药机制。
     3.目的是发现GIST KIT癌基因信号转导通路的特征,探测哪条通路与靶向治疗干预潜在相关。
     研究方法:
     1.胃肠道间质瘤的靶向治疗
     分析我院2003年11月至2008年8月使用分子靶向药物——伊马替尼治疗32例GIST患者的临床资料,总结伊马替尼治疗经验。
     2.基因突变与伊马替尼耐药的相关研究
     用PCR扩增和基因测序的方法检测32例胃肠道间质瘤KIT基因第9,11,13,17外显子和PDGFRA基因第12,18外显子序列,总结胃肠道间质瘤基因突变的发生规律,并且结合临床随访资料,探索GIST患者发生伊马替尼继发耐药的某些规律。分析基因突变与临床特征之间的关系,为防止伊马替尼耐药以及新靶向药物治疗提供依据。
     3.信号通路与伊马替尼耐药的相关研究
     我们通过Western blotting检测信号通路中介物的表达,评价KIT突变类型与不同信号通路激活的相关性。发现GIST KIT癌基因信号转导机制的特征,探测哪条通路与靶向治疗干预潜在相关。
     研究结果:
     1.在接受治疗的32例患者中,28例(87.5%)患者CD117阳性,23例(71.9%)患者CD34阳性。获得最佳疗效时评估,有10例(31.3%)获得PR,9例(28.1%)获得SD,4例(12.5%)出现疾病进展(Progression disease,PD),1例(3.1%)获得疾病完全缓解(Complete response,CR),8例(25%)患者为术后伊马替尼辅助治疗,随访时仍然有疗效,表现为无瘤生存。9例(28.1%)患者无明显副反应,23例(71.9%)出现药物副反应,包括17例(53.1%)出现2种或以上副反应,均为Ⅰ级或Ⅱ级副反应,3例(9.4%)患者出现Ⅲ级副反应,没有1例出现Ⅳ级副反应。
     2.32例患者中22例病例存在KIT基因激活性突变,其中2例发生KIT基因第9外显子突变,17例发生第11外显子编码的跨膜区突变,1例发生第13外显子突变。2例发生PDGFRA基因第18外显子突变,8例未发现KIT基因和PDGFRA基因突变,表现为野生基因型。有13例伊马替尼耐药患者,其中包括4例原发耐药患者和9例继发耐药患者。9例继发患者中有5例没有发生二次突变,4例发生二次突变。而4例患者发生二次突变有两种表现类型。其中3例(病例8,12,18)突变为同一种类型,表现为KIT基因第17外显子同一处碱基发生替换突变,即密码子第2467位点T为G所替换(T2467G),可导致823密码子编码氨基酸由酪氨酸转变为天冬氨酸(Y823D)。1例患者为KIT基因第13外显子第1924位点A为G所替换(A1924G),导致642密码子编码氨基酸由赖氨酸改变为谷氨酸(K642E)。
     3.所有GIST均见KIT强烈表达,伊马替尼治疗有效后,PKIT表达下降,其中获得完全缓解GIST PKIT表达水平最低,如果出现继发耐药,则PKIT表达再次上升。所有GIST中MAPK及PMAPK均见强烈表达,表达水平相似。未经伊马替尼治疗GIST和继发耐药GIST PAKT表达强烈,伊马替尼治疗有效GIST PAKT表达水平下降。所有GIST PMTOR表达水平相当。GIST中PCNA和BCL2表达相似,未经伊马替尼治疗GIST和伊马替尼耐药GIST第一次手术标本,高于伊马替尼有效GIST和完全缓解GIST表达,但同一患者不同时段,不同部位标本表达却有差异。
     结论:
     1.伊马替尼治疗GIST疗效肯定,不良反应较轻,且毒性能够耐受。具有高危因素的GIST患者,术后推荐辅助治疗。
     2.伊马替尼继发耐药可能同KIT基因第17外显子密码子第2467位点T为G所替换(T2467G)和第13外显子第1924位点A为G所替换(A19246)相关。
     3.RAS/RAF/MAPK和PI3-K/AKT/MTOR两条信号通路在GIST形成过程中起着非常重要的作用,均为KIT依赖性的,在伊马替尼继发耐药GIST中,PI3-K/AKT/MTOR通路比RAS/RAF/MAPK通路更为关键
【Objective】1.To assess the efficacy and safety of imatinib mesylate in patients with unresectable and/or metastatic GIST or in adjuvant treatment.2.To explore the mechanisms responsible for the acquired resistance to imatinib.3.To characterize oncogenic KIT signaling mechanisms in GISTs,and to determine which signaling pathways might be of potential relevance to therapeutic interventions.
     【Methods】1.32 patients with GIST were analyzed for efficacy and safety retrospectively.Front-line imatinib treatment consisted of 400 mg once daily.Dose escalation to 600mg or 800 mg a day was allowed if the tumor progressed and the patients tolerated the initial dose.2.With the bidirectional DNA sequencing and the analysis of an ABI PRISM 310 capillary electrophoresis system,we sequenced the KIT and PDGFRA gene in the 32 GIST patients before or after imatinib treatment.3.Detected by Western blottying,ctivation of signaling intermediates was evaluated in GISTs with different KIT mutational mechanisms to evaluate the relevance of the type of KIT mutation for differential activation of signaling pathways.
     【Results】1.Of 32 patients with GIST,CD117-positive was confirmed in 28 cases(87.5%),and 23 patients(71.9%) were judged to be positive in expressing CD34.1 patient had CR(3.1%),10 patients(31.3%) achieved PR,9 patients(28.1%)had SD,and 4 patients(12.5%)had PD.8 patients(25%) who obtained neoadjuvant therapy after radical resection were alive without disease.9(28.1%) out of 32 patients had no adverse effects related to the drug.23 cases (71.9%)appeared mild adverse effects which were of gradeⅠorⅡ, including 17 patients had two or more side effects.3 patients(9.4%) displayed gradeⅢadverse reaction,and all cases had no adverse effects of gradeⅣ.
     2.In 22 of 32 cases carried activating mutations in KIT,17 cases were found mutations in exon 11 encoding the juxtamembrane domain,2 patients were found in exon 9,1 case was found mutation in exon 13. Two cases were found mutation in PDGFRA gene exon 18,and 8 patients were found no mutation in KIT and PDGFRA gene(Wild type).In 13 patients,including 9 patients who were secondary resistance to imatinib and 4 cases who were primary resistance to imatinib,secondary mutation were only identified in patients with acquired resistance to imatinib.Secondary KIT mutations were identified in 4 out of 9 imatinib-resistant patients.In 3 patients,we found an identical novel exon-17 missense mutation,T2467G, resulting in a substitution of Tyr by Asp at codon 823(Y823 D)in tyrosine kinase domain of KIT.We found a novel exon 13 missense mutation,A1924G,in the other one patient.
     3.KIT expressed strongly in all GIST patients.The level of p-KIT expression decreased dramatically in patients with GIST after imatinib therapy,especially in patients who obtained CR during the treatment,nonetheless,p-KIT expression increased when the GIST patients acquired resistance.The level of MAPK,p-MAPK,and p-MTOR expression in all GIST patients were strong,and the deference were no significace.P-AKT expressed strongly in untreated GIST patients and in GIST patients who showed secondary resistance to imatinib,by contrast,the level of p-AKT expression in GIST patients who responsed to imatinib were lower.Of all GIST patients,the level of PCNA and BCL2 expression were similar. PAKT expression in untreated GIST patients and in GIST patients who showed secondary resistance to imatinib were stronger than other GIST patients who responsed to imatinib.
     【Conclusion】1.Imatinib is generally safe and has significant activity in the treatment of GIST patients.Most of the adverse effects were mild and manageable.2.The exon-17 missense mutation,T2467G,and exon 13 missense mutation,A1924G,in tyrosine kinase domain of KIT are correlated with imatinib resistance.3.Signal transduction pathways such as RAS/RAF/MAPK and PI3-K/AKT/MTOR pathways are constitutively activated in a KIT-dependent manner.They are essential to GIST pathogenesis,and the PI3-K/AKT/MTOR pathway is particularly relevant for therapeutic targeting in imatinib-resistant GIST.
引文
1. Mazur MT, Clark HB. Gastric stromal tumors: Reappraisal of histogenesis. Am J Surg Pathol 1983; 7: 507-519.
    
    2. Kindblom LG, Remotti HE, Aldenborg F, et al. Gastrointestinal pacemaker cell tumor (GIPACT): gastrointestinal stromal tumors show phenotypic characteristics of the interstitial cells of Cajal. Am J Pathol 1998;152:1259-1269.
    
    3. Kluppel M, Huizinga JD, Malysz J, et al. Developmental origin and Kit-dependent development of the interstitial cells of cajal in the mammalian small intestine. Dev Dyn 1998; 211: 60-71.
    
    4. Thuneberg L. Interstitial cells of Cajal: intestinal pacemaker cells? Adv Anat Embryol Cell Biol 1982; 71:1-130.
    
    5. Nilsson BP, Bumming P, Meis-Kindblom JM, et al. Gastrointestinal stromal tumors: The incidence, prevalence, clinical course, and prognostication in the preimatinib mesylate era. Cancer 2005; 103: 821-829.
    
    6. Tryggvason G, Gislason HG, Magnusson MK, et al. Gastrointestinal stromal tumors in Iceland, 1990-2003: The Icelandic GIST study, a population -based incidence and pathologic risk stratification study. Int J Cancer 2005; 117:289-293.
    
    7. Goettsch WG, Bos SD, Breekveldt-Postma N, etal. Incidence of gastrointestinal stromal tumours is underestimated: Results of a nation -wide study. Eur J Cancer 2005; 41: 2868-2872.
    
    8.Blanke C, Eisenberg BL, Heinrich M. Epidemiology of GIST.Am J Gastroenterol 2005; 100: 2366.
    
    9. Fletcher CD, Berman JJ, Corless C, et al. Diagnosis of gastrointestinal stromal tumors: A consensus approach. Hum Pathol 2002; 33: 459-465.
    
    10.Miettinen M, Lasota J. Gastrointestinal stromal tumors: pathology and prognosis at diff erent sites. Semin Diagn Pathol 2006; 23: 70-83.
    
    11.Buchdunger E, Zimmermann J, Mett H, et al. Inhibition of the Ab1 protein-tyrosine kinase in vitro and in vivo by a2-phenylaminopyrimidine derivative. Cancer Res 1996; 56:100-104.
    
    12.Corless CL, Fletcher JA, Heinrich MC. Biology of gastrointestinal stromal tumors. J Clin Oncol. 2004;22: 3813-3825.
    
    13.Blanke C, JoensuuH, Demetri GD, et al. Outcome of advanced gastrointestinal stromal tumor (GIST) patients treated with imatinib mesylate: Four-year follow-up of a phase II randomized trial. Proc Am Soc Clin Oncol, GI 2006, (Abstr).
    
    14.Verweij J, Casali PG, Zalcberg J, et al. Progression-free survival in gastrointestinal stromal tumours with high-dose imatinib: randomised trial. Lancet 2004; 364: 1127-1134.
    
    15.Heinrich MC, Corless CL, Demetri GD,et al. Kinase mutations and imatinib response in patients with metastatic gastrointestinal stromal tumor. J Clin Oncol 2003; 21:4342-43 49.
    
    16.Debiec-Rycnter M, Cools J, Dumez H, et al. Mechanisms of resistance to imatinib mesylate in gastrointestinal stromal tumors and activity of PKC412 inhibitor against imatinib- resistant mutants. Gastroenterology 2005;128:270-279.
    
    17.Heinrich MC, Corless C, Blanke CD, et al. Molecular correlates of imatinib resistance in gastrointestinal stromal tumors. J Clin Oncol 2006;24:4764-4774.
    
    18.Antonescu CR, Besmer P, Tianhua G, et al. Acquired resistance to imatinib in gastrointestinal stromal tumor occurs through secondary gene mutation. Clin Cancer Res 2005;11:4182-4190.
    
    19.Wardelmann E, Merkelbach-Bruse S, Pauls K, et al. Polyclonal evolution of multiple secondary KIT mutations in gastrointestinal stromal tumors under treatment with imatinib mesylate. Clin Cancer Res 2006; 12:1743-1749.
    
    20.Fletcher JA, Corless CL, Dimitrijevic S, et al. Mechanisms of resistance to imatinib mesylate in advanced gastroin -testinal stromal tumor (GIST). Proc Am Soc Clin Oncol 2003;22:815.
    
    21 .Mahon FX, Belloc F, Lagarde V, et al. MDR1 gene overexpression confers resistance to imatinib mesylate in leukemia cell line models.Blood 2003; 101:2368-2373.
    
    22.Judson I, Ma P, Peng B, et al. Imatinib pharmacokinetics in patients with gastrointestinal stromal tumour: A retrospective population pharmacokinetic study over time. Cancer Chemother Pharmacol 2005;55: 379-386.
    23.Burger H,van Tol H,Boersma AWM,et al.Imatinib mesylate (STI571) is a substrate for the breast cancer resistance protein (BCRP)/ABCG2 drug pump.Blood 2004;104:2940-2942.
    1. DeMatteo RP, Heinrich MC, El-Rifai WM, et al. Clinical management of gastrointestinal stromal tumors: before and after STI-571. Hum Pathol 2002,33:466-477.
    
    2. Druker BJ, Talpaz M, Resta DJ, et al. Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med 2001,344:1031-1037.
    
    3. van Oosterom AT, Judson I, Verweij J, et al. Safety and effi -cacy of imatinib (STI571) in metastatic gastrointestinal stromal tumors: a phase I study. Lancet 2001,358:1421-1423.
    
    4. Verweij J, van Oosterom A, Blay JY, et al. Imatinib mesylate (STI-571 Glivec, Gleevec) is an active agent for gastrointestinal stromal tumors,but does not yield responses in other soft-tissue sarcomas that a reunselected for a molecular target. Results from an EORTC Soft Tissue and Bone Sarcoma Group phase II study. Eur J Cancer 2003, 39:2006-2011.
    
    5. Therasse P, Arbuck SG, Eisenhauer EA, et al. New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. J Natl Cancer Inst 2000,92: 205-216.
    
    6. Green S, Weiss GR. Southwest Oncology Group standard response criteria, endpoint definitions and toxicity criteria. Invest New Drugs 1992,10: 239-253.
    
    7. Cancer Therapy Evaluation Program. Common toxicity criteria manual:common toxicity criteria, version 2.0. Bethesda, Md.: National Cancer Institute, June 1999. (Also available at http:// ctep. cancer. gov/forms/CTCManual _v4_10-4-99 .pdf.)
    
    8. Rutkowski P, Symonides M, Zdzienicki M, et al. Developments in targeted therapy of advanced gastrointestinal stromal tumors. Recent Patents Anticancer Drug Discov, 2008, 3(2): 88—99.
    
    9. Heinrich MC, Blanke CD, Druker BJ, et al. Inhibition of KIT tyrosine kinase activity: a novel molecular approach to the treatment of KIT -positive malignancies.J Clin Oncol 2002;20:1692-1703.
    10.Tuveson DA,Willis NA,Jacks T,et al.STI571 inactivation of the gastrointestinal stromal tumor c-KIT oncoprotein:biological and clinical implications.Oncogene 2001;20:5054-5058.
    11.Demetri GD,Benjamin R,Blanke CD,et al.NCCN task force report:optimal management of patient with gastrointestinal stromal tumor (GIST)—expansion and update of NCCN clinical practice guidelines.J Natl Comp Cancer Network 2004;2(suppl 1):S1-S26.
    12.师英强.肿瘤靶向治疗的现状与进展.中国实用外科杂志,2006,26(6):422-424.
    13.Fletcher CD,Berman J,Corless CL,et al.Diagnosis ofgastrointestinal stromal tumors:a consensus approach.Hum Pathol 2002;33:459-465.
    14.Miettinen M,Sobin LH,Lasota J.Gastrointestinal stromal tumors of the stomach:a clinicopathologic,immunohistochemical,and molecular genetic study of 1765 cases with long-term follow-up.Am J Surg Pathol 2005;29:52-68.
    15.Medeiros F,Corless CL,Duensing A,et al.KIT-negative gastrointestinal stromal tumors:proof of.concept and therapeutic implications.Am J Surg Pathol 2004;28:889-94.
    16.Heinrich MC,Corless CL,Duensing A,et al.PDGFRA activating mutations in gastrointestinal stromal tumors.Science 2003;299:708-710.
    17.Miwa S,Nakajima T,Murai Y,et al.Mutation assay of the novel gene DOG1 in gastrointestinal stromal tumors(GISTs).J Gastroenterol 2008;43:531-537.
    18.Demetri GD,von Mehren M,Blanke CD,et al.Efficacy and safety of imatinib mesylate in advanced gastrointestinal stromal tumors.N Engl J Med 2002;347:472-480.
    19.Benjamin RS,Blanke CD,Blay JY,et al.Management of gastrointestinal stromal tumors in the imatinib era:selected case studies.Oncologist 2006;11:9-20.
    20.Loughrey MB,Beshay V,Dobrovic A,et al.Pathological response of gastrointestinal stromal tumour to imatinib treatment correlates with tumour KIT mutational status in individual tumour clones.Histopathology 2006;49:99-100.
    21. Shankar S, van Sonnenberg E, Desai J, et al. Gastrointestinal stromal tumor: new nodule-within-a-mass pattern of recurrence after partial response to imatinib mesylate. Radiology 2005;235:892-898.
    
    22. Choi H, Charnsangavej C, de Castro Faria S, et al. CT evaluation of the response of gastrointestinal stromal tumors after imatinib mesylate treatment: a quantitative analysis correlated with FDG PET findings. AJR Am J Roentgenol 2004;183:1619-1628.
    
    23. Choi H, Charnsangavej C, Faria S, et al. Correlation of computed tomography and positron emission tomography in patients with metastatic gastrointestinal stromal tumor treated at a single institution with imatinib mesylate: Proposal of new computed tomography response criteria. J Clin Oncol 2007;25:1753-1759.
    
    24.Benjamin RS, Choi H, Macapinlac HA, et al.We Should Desist Using RECIST, at Least in GIST. J Clin Oncol 2007;25:1760-1764.
    
    25. Lee JL, Ryu MH, Chang HM, et al. Clinical outcome in gastrointestinal stromal tumor patients who interrupted imatinib after achieving stable disease or better response. Jpn J Clin Oncol 2006, 36:704-711.
    
    26.DeMatteo R, Owzar K, Maki R, et al. Adjuvant imatinib mesylate increases recurrence free survival (RFS) in patients with completely resected localized primary gastrointestinal stromal tumor (GIST): North American Intergroup Phase III trial ACOSOG Z9001. J Clin Oncol 2007;25:A10079.
    1. Hirota S, Isozaki K, Moriyama Y, et al. Gain-of-function mutations of c-kit in human gastrointestinal stromal tumors. Sciencel998;279:577-80.
    
    2. Koh JS, Trent JC, Chen LL, et al. Gastrointestinal stromal tumors: Overview of pathologic features, molecular biology, and therapy with imatinib mesylate. Histol Histopathol 2004;19: 565-74.
    
    3. Heinrich MC, Corless CL, Demetri GD, et al. Kinase mutations and imatinib response in patients with metastatic gastrointestinal stromal tumor. J Clin Oncol 2003;21:4342-49.
    
    4. Antonescu CR. Targeted therapy of cancer: new roles for pathologists in identi~ing GISTs and other sarcomas. Mod Pathol. 2008. 2 1 Suppl 2: S31-S36.
    
    5.Nishida T, Shirao K, Sawaki A, et al. Eficacy and safety profile of imatinib mesylate (ST1571) in Japanese patients with advanced gastrointestinal stromal tumors: a phase II study(STI571B1202). Int J Clin Oncol, 2008, 13(3): 244—251.
    
    6.Heinrich MC, Corless CL, Demetri GD, et al. Kinase mutations and imatinib response in patients with metastatic gastrointestinal stromal tumor. J Clin Oncol 2003; 21: 4342-49.
    
    7.Hirota S, Isozaki K, Moriyama Y, et al. Gain-of-function mutations of c-kit in human gastrointestinal stromal tumors. Science 1998; 279: 577-80.
    
    8.Rubin BP, Singer S, Tsao C, et al. KIT activation is a ubiquitous feature of gastrointestinal stromal tumors. Cancer Res 2001; 61:8118-21.
    
    9.Wardelmann E, Losen I, Hans V, et al. Deletion of Trp-557 and Lys -558 in the juxtamembrane domain of the c-kit protooncogene is associated with metastatic behavior of gastrointestinal stromal tumors. Int J Cancer 2003; 106: 887-95.
    
    10.Heinrich MC, Corless CL, Duensing A, et al. PDGFRA activating mutations in gastrointestinal stromal tumors. Science 2003; 299:708-10.
    
    11 .Hirota S, Ohashi A, Nishida T, et al. Gain-of-function mutations of platelet-derived growth factor receptor alpha gene in gastrointestinal stromal tumors. Gastroenterology 2003; 125: 660-67.
    12.Blume-Jensen P, Claesson-Welsh L, Siegbahn A, et al. Activation of the human c-kit product by ligand-induced dimerization mediates circular actin reorganization and chemotaxis. Embo J 1991; 10: 4121-28.
    
    13.Mol CD, Dougan DR, Schneider TR, et al. Structural basis for the autoinhibition and STI-571 inhibition of c-Kit tyrosine kinase. J Biol Chem 2004; 279: 31655-63.
    
    14.Chan PM, Ilangumaran S, La Rose J, et al. Autoinhibition of the kit receptor tyrosine kinase by the cytosolic juxtamembrane region. Mol Cell Biol 2003; 23: 3067-78.
    
    15.Kitayama H, Kanakura Y, Furitsu T, et al. Constitutively activating mutations of c-kit receptor tyrosine kinase confer factor-independent growth and tumorigenicity of factor-dependent hematopoietic cell lines.Blood 1995; 85: 790-98.
    
    16.Ma Y, Cunningham M, Wang X, et al. Inhibition of spontaneous receptor phosphorylation by residues in putative alpha-helix in the KIT intracellular juxtamembrane region. J Biol Chem 1999; 274: 13399-402.
    
    17.Verweij J, Casali PG, Zalcberg J, et al. Progression free survival in gastrointestinal stromal tumours with high-dose imatinib: randomised trial. Lancet 2004;364:1127-34.
    
    18.Debiec-Rychter M, Dumez H, Judson I, et al. Use of c-kit/PDGFRA mutational analysis to predict the clinical response to imatinib in patients with advanced gastrointestinal stromal tumours entered on phase I and II studies of the EORTC Soft Tissue and Bone Sarcoma Group. Eur J Cancer 2004;40:689-95.
    
    19.Heinrich MC, Corless CL, Blanke CD, et al. Molecular correlates of imatinib resistance in gastrointestinal stromal tumors. J Clin Oncol 2006;24: 4764-74.
    
    20.Wardelmann E, Merkelbach-Bruse S, Pauls K, et al. Polyclonal evolution of multiple secondary KIT mutations in gastrointestinal stromal tumors under treatment with imatinib mesylate. Clin Cancer Res 2006; 12:1743-49.
    
    21. Loughrey MB, Waring PM, Dobrovic A. Polyclonal resistance in gastrointestinal stromaltumor treated with sequential kinase inhibitors.Clin Cancer Res 2006;12(20),6205-06.
    22.Sleijfer S, Wiemer E, Seynaeve C, et al. Improved Insight into Resistance Mechanisms to Imatinib in Gastrointestinal Stromal Tumors:A Basis for Novel Approaches and Individualization of Treatment.Oncologist 2007;12;719-26.
    
    23.Debiec-Rychter M, Cools J, Dumez H, et al. Mechanism of resistance to imatinib mesylate in gastrointestinal stromal tumors and activity of the PKC412 inhibitor against imatinib -resistant mutants. Gastroenterology 2005;128: 270-79.
    
    24.Ma Y, Zeng S, Metcalfe DD, et al. The c-KIT mutation causing human mastocytosis is resistant to STI571 and other KIT kinase inhibitors: Kinases with enzymatic site mutations show different inhibitor sensitivity profiles than wild-type kinases and those with regulatory -type mutations. Blood 2002;99:1741-1744.
    
    25.Shah N, Nicoll J, Nagar B, et al.Multiple BCR-ABL kinase domain mutations confer polyclonal resistance to the tyrosine kinase inhibitor imatinib (STI571) in chronic phase and blast crisis chronic myeloid leukemia.Cancer Cell2002;2:117-125.
    
    26.Nishida T, Kanda T, Nishitani A, et al. Secondary mutations in the kinase domain of the KIT gene are predominant in imatinib—resistant gastrointestinal stromal tumor. Cancer Sci, 2008, 99(4): 799—804.
    
    27.Wakai T, Kanda T, Hirota S, et al. Late resistance to imatinib therapy in a metastatic gastrointestinal stromal tumour is associated with a second KIT mutation. Br. J Cancer 2004; 90: 2059-61.
    
    28.Tamborini E, Bonadiman L, Greco A, et al. A new mutation in the KIT ATP pocket causes acquired resistance to imatinib in a gastrointestinal stromal tumor patient. Gastroenterology 2004; 127: 294-99.
    
    29.Chen LL, Trent JC, Wu EF, et al. A missense mutation in KIT kinase domain 1 correlates with imatinib resistance in gastrointestinal stromal tumors. Cancer Res 2004; 64: 5913-19.
    
    30.McLean SR, Gana-Weisz M, Hartzoulakis B, et al. Imatinib binding and cKIT inhibition is abrogated by the cKIT kinase domain I missense mutation Val654Ala. Mol Cancer Ther 2005; 4: 2008-15.
    
    31.Antonescu CA, Besmar P, Tianhua G, et al. Acquired resistance to imatinib in gastrointestinal stromal tumor occurs through secondary gene mutation. Clin Cancer Res 2005; 11: 4182-90.
    
    32.Tamborini E, Pricl S, Negri T, etal. Functional analyses and molecular modeling of two c-Kit mutations responsible for imatinib secondary resistance in GIST patients. Oncogene 2006; 25: 6140-46.
    33.Wardelmann E, Thomas N, Merkelbach-Bruse S, et al. Acquired resistance to imatinib in gastrointestinal stromal tumours caused by multiple KIT mutations. Lancet Oncol 2005; 6: 249-51.
    34.Bertucci F, Goncalves A, Monges G, et al. Acquired resistance to imatinib and secondary KIT exon 13 mutation in gastrointestinal stromal tumour. Oncol Rep 2006;16: 97-101.
    
    35.Mol CD, Dougan DR, Schneider TR, et al. Structural basis for the autoinhibition and STI-571 inhibition of c-Kit tyrosine kinase. J Biol Chem 2004;279:31655-63.
    1. Zhang Z, Zhang R, Joachimiak A, et al. Crystal structure of human stem cell factor: implication for stem cell factor receptor dimerization and activation, Proc. Natl. Acad. Sci. USA 2000;(97),7732-7737.
    2.Blume-Jensen P, Claesson-Welsh L, Siegbahn A, et aLActivation of the human c-kit product by ligand-induced dimerization mediates circular actin reorganization and chemotaxis, EMBO J. 1991;(10),4121-4128.
    3.Sommer G, Agosti V, Ehlers I, et al.Gastrointestinal stromal tumors in a mouse model by targeted mutation of the Kit receptor tyrosine kinase.Proc. Natl. Acad. Sci. USA, 2003;100(11), 6706-6711.
    4. Roskoski R. Signaling by Kit protein-tyrosine kinase—The stem cell factor receptor. Biochemical Biophysical Res Commun2005; 337,1-13.
    5.Thommes K, Lennartsson J, Carlberg M, et al. Identification of Tyr-703 and Tyr-936 as the primary association sites for Grb2 and Grb7 in the c-Kit/stem cell factor receptor. Biochem. J1999 ;341,211-216.
    6.Duronio V, Welham MJ, Abraham S, et al. p21ras activation via hematopoietin receptors and c-Kit requires tyrosine kinase activity but not tyrosine phosphorylation of p21ras GTPaseactivating protein. Proc. Natl.Acad. Sci. USA. 1992;89,1587-1591.
    
    7.Miyazawa K, Hendrie PC, Mantel C, et al: Comparative analysis of signaling pathways between mast cell growth factor (c-kit ligand) and granulocyte-macrophage colony-stimulating factor in human factor-dependent myeloid cell lines involves phosphorylation of Raf-1, GTPase-activating protein and mitogen-activated protein kinase. Exp. Hematol 1991 ;19,110-1123.
    
    8.Ishizuka T. Stem cell factor augments Fc epsilon Rl-mediated TNF-alpha production and stimulates MAP kinases via a different pathway in MC/9 mast cells. J. Immunol. 1998;161, 3624-3630.
    9.Price DJ, Rivnay B, Fu Y, et al. Direct association of Csk homologous kinase (CHK) with the diphosphorylated site Tyr568/570 of the activated c-KIT in megakaryocytes. J. Biol. Chem. 1997 ;272, 5915-5920.
    10.Helgason, CD. Targeted disruption of SHIP leads to hemopoietic perturbations, lung pathology, and a shortened life span. Genes Dev. 1998; 12,1610-1620.
    
    11 .Kozlowski M, Larose L, Lee F, et al. SHP-1 binds and negatively modulates the c-Kit receptor by interaction with tyrosine 569 in the c-Kit juxtamembrane domain. Mol. Cell. Biol. 1998 ;18,2089-2099.
    
    12.Granville CA, Memmott RM, Gills JJ, et al.Handicapping the race to develop inhibitors of the phosphoinositide 3-kinase/Akt/mammalian target of rapamycin pathway. Clin Cancer Res 2006;12:679-689.
    
    13.Vivanco I, Sawyers CL.The phosphatidylinositol 3-kinase Akt pathway in human cancer. Nat Rev Cancer 2002;2:489-501.
    
    14.Lennartsson J, Jelacic T, Linnekin D, et al. Normal and Oncogenic Forms of the Receptor Tyrosine Kinase Kit.Stem Cells 2005;23,16-43.
    
    15.Hirota S, Isozaki K, Moriyama Y, et al. Gain-of-function mutations of c-kit inhuman gastrointestinal stromaltumors. Sciencel998;279:577-580.
    
    16.Corless CL, McGreevey L, Haley A, et al.KIT mutations are common in incidental gastrointestinal stromal tumors one centimeter or less in size.Am J Pathol2002; 160:1567-1572.
    
    17.Lev S, Givol D and Yarden Y. Interkinase domain of kit contains the binding site for phosphatidylinositol 3' kinase. Proc Natl Acad Sci USA 1992;89(2), 678-682.
    
    18. Bauer S, Duensing A, Demetri GD. KIT oncogenic signaling mechanisms in imatinib-resistant gastrointestinal stromal tumor:PI3-kinase/AKT is a crucial survival pathway.Oncogene 2007; 26, 7560-7568.
    
    19.Duensing A, Medeiros F, McConarty B, et al. Mechanisms of oncogenic KIT signal transduction in primary gastrointestinal stromal tumors (GISTs). Oncogene2004;23: 3999-4006.
    
    20.Fletcher JA, Corless CL, Dimitrijevic S, etal. Mechanisms of resistance to imatinib mesylate (IM) in advanced gastrointestinal stromal tumor (GIST). Proc Am Soc Clin Oncol2003;22: a3275.
    
    21.Demetri GD, van Oosterom AT, Garrett CR, et al. Efficacy and safety of sunitinib in patients with advanced gastrointestinal stromal tumour after failure of imatinib: a randomised controlled trial. Lancet 2006; 14:1329-1338.
    22.Carter TA, Wodicka LM, Shah NP, et al. Inhibition of drug-resistant mutants of ABL, KIT, and EGF receptor kinases. Proc Natl Acad Sci USA2005;102:11011-11016.
    
    23.Debiec-Rycnter M, Cools J, Dumez H, et al. Mechanisms of resistance to imatinib mesylate in gastrointestinal stromal tumors and activity of the PKC412 inhibitor against imatinib-resistant mutants. Gastroenterology 2005; 128: 270-279.
    
    24.Antonescu CR, Besmer P, Guo T, et al. Acquired resistance to imatinib in gastrointestinal stromal tumor occurs through secondary gene mutation. Clin Cancer Res 2005;11:4182-4190.
    
    25.Wardelmann E, Thomas N, Merkelbach-Bruse S, et al. Acquired resistance to imatinib in gastrointestinal stromal tumours caused by multiple KIT mutations. Lancet Oncol2005; 6: 249-251.
    
    26.Heinrich MC, Corless CL, Blanke CD, et al. Molecular correlates of imatinib resistance in gastrointestinal stromal tumors. J Clin Oncol 2006;24: 4764-4774.
    
    27.Fletcher CD, Berman JJ, Corless C, et al. Diagnosis of gastrointestinal stromal tumors: A consensus approach.Hum Pathol2002;33,459-465.
    
    28.Linnekin D. Signaling pathways activated by c-Kit in hematopoietic cells. Int J Biochem Cell Biol1999; 31:1053-1074.
    
    29.Rubin BP, Singer S, Tsao C, et al. KIT activation is a ubiquitous feature of gastrointestinal stromal tumors. Cancer Res 2001;61:8118- 21.
    
    30.Heinrich MC, Rubin BP, Longley BJ, et al. Biology and genetic aspects of gastrointestinal stromal tumors: KIT activation and cytogenetic alterations. Hum Pathol 2002;33:484 - 95.
    
    31 .Chian R, Young S, Danilkovitch-Miagkova A, et al. Phosphatidy -linositol 3 kinase contributes to the transformation of hematopoietic cells by the D816V c-Kit mutant. Blood2001, 98(5), 1365-1373.
    
    32.De Miguel MP, Cheng L, Holland EC, et al. Dissection of the c-Kit signaling pathway in mouse primordial germ cells by retroviral-mediated gene transfer. Proc. Natl. Acad. Sci. USA2002, 99(16),10458-10463.
    
    33.Ning ZQ, Li J, Arceci RJ. Signal transducer and activator of transcription 3 activation is required for Asp(816) mutant c-Kit-mediated cytokine-independent survival and proliferation in human leukemia cells. Blood2001,97(11), 3559-3567.
    
    34.FrostMJ, FerraoPT, Hughes TP, etal. Juxtamembrane mutant V560G Kit is more sensitive to Imatinib (STI571) compared with wild-type c-kit whereas the kinase domain mutant D816VKitis resistant.Mol. Cancer Ther2002,1(12), 1115-1124.
    
    35.Heinrich MC, Corless CL, Blanke CD, et al. Molecular correlates of imatinib resistance in gastrointestinal stromal tumors. J Clin Oncol 2006;24:4764-4774.
    
    36.RossiF, Ehlers I, AgostiV, etal. Oncogenic Kit signaling and therapeutic intervention in a mouse model of gastrointestinal stromal tumor. Proc Natl Acad Sci USA 2006,103:12843-12848.
    
    37.Ray R, Tahan SR, Andrews C, Goldman H. Stromal tumors of the stomach: prognostic value of the PCNA index. Mod Pathol 1994; 7: 26-30
    
    38.Sbaschnig RJ, Cunningham RE, Sobin LH,, et al. Proliferating-cell nuclear antigen immunocytochemistry in the evaluation of gastro-intestinal smooth-muscle tumors. Mod Pathol 1994; 7: 780-783
    1.MazurMT, Clark HB. Gastric stromal tumors: Reappraisal of histogenesis. Am J Surg Pathol 1983; 7: 507-519.
    
    2.Fabian MA, Biggs WH, Treiber DK, et al. A small molecule-kinase interaction map for clinical kinase inhibitors. Nat Biotechnol 2005; 23:329-336.
    
    3 Joensuu H, Roberts PJ, Sarlomo-Rikala M, et al. Effect of the tyrosine kinase inhibitor STI571 in a patient with a metastatic gastrointestinal stromal tumor. N Engl J Med 2001; 344:1052 -1056.
    
    4.van Oosterom AT, Judson I, Verweij J, et al. Safety and efficacy of imatinib (STI571) in metastatic gastrointestinal stromal tumours: A phase I study. Lancet 2001;358:1421-1423.
    
    5.Verweij J, van Oosterom A, Blay JY, et al. Imatinib mesylate (STI-571 Glivec, Gleevec) is an active agent for gastroint -estinal stromal tumors,but does not yield responses in other soft-tissue sarcomas that are unselected for a molecular target. Results from an EORTC Soft Tissue and Bone Sarcoma Group phase II study. Eur J Cancer 2003;39:2006-2011.
    
    6.Blanke C, Joensuu H, Demetri GD, et al. Outcome of advanced gastrointestinal stromal tumor (GIST) patients treated with imatinib mesylate: Four-year follow-up of a phase II randomized trial. Proc Am Soc Clin Oncol, GI 2006, (Abstr).
    
    7.Heinrich MC, Shoemaker JS, Corless CL, et al. Correlation of target kinase genotype with clinical activity of imatinib mesylate in patients with metastatic GI stromal tumors expressing KIT. Proc Am Soc Clin Oncol 2005; 23:3s (Abstr).
    
    8.Le Cesne A, Perol D, Ray-Coquard I, et al. Interruption of imatinib in GIST patients with advanced disease: Updated results of the Prospective French Sarcoma Group randomized phase III trial on survival and quality of life. Proc Am Soc Clin Oncol 2005; 23: 823s (Abstr).
    
    9.Judson I, Ma P, Peng B, et al. Imatinib pharmacokinetics in patients with gastrointestinal stromal tumour: a retrospective population pharmaco -kinetic study over time. EORTC Soft Tissue and Bone Sarcoma Group. Cancer Chemother Pharmacol 2005; 55: 379-386.
    
    10.DeMatteo RP,Maki RG, Singer S, et al. Results of Tyrosine Kinase Inhibitor Therapy Followed by Surgical Resection for Metastatic Gastro-intestinal Stromal Tumor. Annals of Surgery 2007; 245: 347-352.
    
    11 .Gronchi A, Fiore M, Miselli F, et al. Surgery of Residual Disease Following Molecular-targeted Therapy With Imatinib Mesylate in Advanced/Metastatic GIST. Annals of Surgery 2007; 245: 341 —346.
    
    12.Katz D, Segal A, Alberton Y, et al. Neoadjuvant imatinib for unresectable gastrointestinal stromal tumor. Anticancer Drugs 2004; 15:599-602.
    
    13.Loughrey MB, Mitchell C, Mann GB. Gastrointestinal stromal tumour treated with neoadjuvant Imatinib. J Clin Pathol 2005;58:779-781.
    
    14.Fletcher JA, Corless CL, Dimitrijevic S, et al. Mechanisms of resistance to imatinib mesylate in advanced gastroin -testinal stromal tumor (GIST). Proc Am Soc Clin Oncol 2003;22:815.
    
    15. Joensuu H. Gastrointestinal stromal tumor. Annals of Oncology 17 (Supplement 10), 2006: x280-x286.
    
    16.Trent J. A prospective, randomized, phase II study of preoperative plus postoperative imatinib mesylate (Gleevec, formerly STI-571) in patients with primary, recurrent, or metastatic resectable, kit-expressing,gastrointestinal stromal tumor (GIST). Available at: http://utm -ext01a.mdacc.tmc.edu/dept/prot/clmicaltrialswp.nsf/Index/ID03-0023 .
    
    17.Trent J. A phase II trial of neoadjuvant/adjuvant STI-571 (Gleevec NSC #716051) for primary and recurrent operable malignant GIST expressing the KIT receptor tyrosine kinase (CD 117) (ACRIN 6665).Available at: http://utm-ext01a.mdacc.tmc.edu/dept/prot/clinicaltrialswp.nsf/Index/RTOG%20S0132 .
    
    18.Verweij J, Casali PG, Zalcberg J, et al. Progression-free survival in gastrointestinal stromal tumours with high-dose imatinib:randomised trial.Lancet 2004; 364: 1127-34.
    
    19.Debiec-Rycnter M, Cools J, Dumez H, et al. Mechanisms of resistance to imatinib mesylate in gastrointestinal stromal tumors and activity of PKC412 inhibitor against imatinib -resistant mutants. Gastroenterology 2005;128:270-279.
    20.Heinrich MC, Corless CL, DemetriGD, et al. Kinase mutations and imatinib response in patients with metastatic gastroin -testinal stromal tumor. J Clin Oncol 2003;21:4342- 4349.
    
    21 .Debiec-Rychter M, Sciot R, Le Cesne A, et al. KIT mutations and dose selection for imatinib in patients with advanced gastrointestinal stromal tumours. Eur J Cancer 2006;42:1093-1103.
    
    22.Heinrich MC, Corless C, Blanke CD, et al. Molecular correlates of imatinib resistance in gastrointestinal stromal tumors. J Clin Oncol 2006;24:4764-4774.
    
    23.Antonescu CR, Besmer P, Guo T, et al. Acquired resistance to imatinib in gastrointestinal stromal tumor occurs through secondary gene mutation.Clin Cancer Res 2005;11:4182-4190.
    
    24.Wardelmann E, Merkelbach-Bruse S, Pauls K, et al. Polyclonal evolution of multiple secondary KIT mutations in gastrointestinal stromal tumors under treatment with imatinib mesylate. Clin Cancer Res 2006; 12: 1743-1749.
    
    25.Tamborini E, Pricl S, Negri T, et al. Functional analyses and molecular modeling of two c-Kit mutations responsible for imatinib secondary resistance in GIST patients. Oncogene 2006;25:6140-6146.
    
    26.Burger H, van Tol H, BoersmaAWM, etal. Imatinib mesylate (STI571) is a substrate for the breast cancer resistance protein (BCRP)/ABCG2 drug pump. Blood 2004;104:2940 -2942.
    
    27.Gambacorti-Passerini C, Zucchetti M, Russo D, et al. Alphal acid glycoprotein binds to imatinib (STI571) and substantially alters its pharmacokinetics in chronic myeloid leukemia patients. Clin Cancer Res 2003;9:625-632.
    
    28.Judson I, Ma P, Peng B, et al. Imatinib pharmacokinetics in patients with gastrointestinal stromal tumour: A retrospective population pharma-cokinetic study over time. Cancer Chemother Pharmacol 2005;55:379-386.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700