真空热循环对T700/5224复合材料力学性能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了揭示T700/5224复合材料在真空热循环作用下的力学性能演化规律,本文在10-3Pa,-140~140℃条件下,对T700/5224复合材料的质损率和力学性能进行了表征,并采用SEM、DMA、AFM和FTIR-ATR等分析方法对试样表面形貌、断口特征及表层化学结构进行了研究。
     研究结果表明,随真空热循环次数的增加,T700/5224复合材料的的质损率升高,经29次真空热循环后上升幅度降低,而经157次真空热循环后趋于平缓。质损率是由于复合材料所吸附的水分及制备时残留的微量有机溶剂在真空环境下逐渐挥发而产生的。随真空热循环次数的增加,T700/5224复合材料90°拉伸强度首先降低,48次热循环后开始升高,198次热循环后趋于平缓;弯曲强度在48次真空热循环前变化不明显,48次真空热循环后开始上升,95次真空热循环后开始降低,经198次真空热循环后趋于平缓;层剪强度变化不明显。
     T700/5224复合材料E’和tans温度谱分析表明,48次真空热循环使树脂基体交联密度明显增加,而经198次真空热循环后树脂基体内真空热循环引起的交联密度增加效应已经结束。T700/5224复合材料表面形貌分析表明,经48次真空热循环后复合材料出现一定数量的界面脱粘区域,但随着真空热循环次数的进一步增加(至198次),界面脱粘区域的形态和数量变化不大,即由真空热循环导致的界面脱粘区域不会一直增加,而是逐渐达到一定的饱和状态。
     ANSYS11.0模拟分析表明,残余热应力数值在复合材料不同区域差异巨大。最小等效应力出现在碳纤维内;最大等效应力出现在树脂基体内部,并且树脂基体密集区处的等效应力比树脂基体非密集区大得多;应力集中出现在碳纤维和基体的交界面一界面层。随热循环次数的增加,残余应力会逐渐累积,当界面层处的累积残余应力达到一值时,在应力集中的作用下,界面层会受到损伤,出现界面脱粘。
In order to reveal the damage effects and mechanism of vacuum thermal cycling on carbon/epoxy composites,the changes in mass loss rate and mechanical properties of T700/5224 composites were investigated under vacuum thermal cycling at the interval of-140~140℃and 10-3 Pa.The surface morphology,fracture and changes in microscopic structure in the skin layer of specimen were characterized in terms of SEM,DMA and FTIR-ATR,respectively.
     The experimental results shows that with increasing the vacuum thermal cycling,the mass loss rate of T700/5224 composites increases,then this rate increases slowly after 29 cycles,and tends to level off after 157 cycles.Mass loss is due to the gradual evaporation of the water absorbed in the composites and the residue organic solvent retained during preparation in vacuum.90°tensile strength of the T700/5224 composites firstly decreases with increasing thermal cycles and improves after 48 cycles and then tends to level off 198 cycles.Bending strength does not exhibit increase until after 48 cycles,then decreases after 95 cycles and level off after 198 cycles.The interlaminar shear strength does not show significant change.
     E'and tans temperature spectroscopy analysis of T700/5224 composites suggest that the crosslink density of the resin matrix increase from 48 cycles to 198 cycles.SEM show that a certain amount of interfacial debonding zone is attributed to 48 vacuum thermal cyclings and the form and the volume of the debonding zone change litter with the further increase in vacuum thermal cycling(to 198 cycles).In other words,interfacial debond zone gradually tend to saturature.
     ANSYS 11.0 simulation demonstrates that there exist the different residual thermal stress in the different region of the composites.The minimum equivalent stress locates at the carbon fiber and the maximum value locates in the resin matrix.The equilvalent stress in the matrix-riched zone of composites is much larger than that in the matrix-starved zone. Stress concentration exists at the interface between the carbon fiber and resin matrix.With increasing the cycles of the vacuum thermal cycling,residual stress will gradually accumulate to such a certain vacuum that interfacial layer of the composites are damaged.
引文
[1]D.G.Burgess.Crack Growth of A Titomium-Aluminum Alloy Under Thermal-mechanical Fatigue.AD-A202 767 MF:1
    [2]J.J.Dugr.Fracture costs us119 billion a tear.SaysStud Battlle/Mnbs.Int.Fract.1983,(23):R81-83
    [3]A.J.Dennis and T.A.Cruse.Cost Benefits from Improved Hot section life Prediction Technolog-y. AIAA.1979,(7):79-1154
    [4]Hamberg o.et.al.Satellite Environmental Testing Cost Benefits.12thAerospace Testing seminar, 1990:39-43
    [5]Anfimov N.Part of Testing in Development of Space crafts and Launch Vehicles Russian Approaches and Experience.15thAerospace Testing seminar,1994:Xi-Xxii
    [6]日本高温强度委员会热疲劳组.热疲劳试验方法的标准化.材料.1954,23:219-223
    [7]许丽丹,王澜.碳纤维增强树脂基复合材料的应用研究.塑料制造.2007.1(2):81-85
    [8]Rutledge Sharon K,Paulsen PhillipE,Brad yJoyce A.Evaluation of Atomic Oxygen Resistant Protective Coatings for Fiber-glass-Epoxy Composites in LEO.NASAN89-21100.
    [9]Stein Bland A,Pippin Gary H.Preliminary Findings of the LDEF Materials Special Investigatio-n Group.NASA N92-24807.
    [10]Bourassa R J,Gillis J R,Rousslang K WAtomic Oxygen and Ultraviolet Radiation Mission Total Exposures for LDEF Experiments.NASA N92-24808.
    [11]Tennyson R C,Mabson G E,Morison W D and Kleiman J.Preliminary Results From The LDEF/UTIAS Composite Materials Experiment.NASA N92-24837.
    [12]Felbeck D K.High-Toughness Graphite/Epoxy Composite Material Experiment.NASA N92-24841.
    [13]Slemp Wayne S,Young Philip Rand Witte William GEffects of LDEF Flight Exposureon Selected Polymer Matrix Resin Composite Materials.NASA N92-24842.
    [14]Heinrich JABS.Effect of Space Exposure of Some Epoxy Matrix Compositeson Their Thermal Expansionand Mechanical Property.NASA N92-24844.
    [15]Tennyson R C and Matthews R.Themal-Vacuum Response of Polymer Matrix Composites in Space.NASA N94-31033.
    [16]Jang Bor Z,Bianchi J,Liu Y Mand Chang C P.Space Environmental Effects on Polymer Composites:Research Needsand Opportuntties.NASA N94-31035.
    [17]George Pete E.Low-Earth Effectson Organic Composite Materials Flownon LDEF.NASA N94-31036.
    [18]Grammer Hollyland Wightman Jamesp.Surface Characterization of LDEF Carbon Fiber/Polymer Matrix Composites.NASA N95-23900.
    [19]Harry Durschand Pete George.Organic Matrix Composite Protective Coatings for Space Applications.NASA N95-23914.
    [20]Startsev Oleg V. Structureand Properties of Polymeric Composite Materials During 1501 Days Outer Space Exposureat "Salyut-7" Orbital Station.NASAN95-23915.
    [21]ESA/PSS-09/QRM-02T Issue 2. A Screening Method Employing a Thermal Vacuum for the Selection of Materials to be Used in Space. August 1976
    [22]ESA/PSS-43/QRM-31T Issue 1. A Screening Test Method Employing a Thermal Vacuum for the Selection of Materials to be Used in the Manufacture of Spacecraft Optical
    Devices. January 1978
    [23]W. A. Campbell, R. S. Marriott, J. J. Park. Outgassing Data for Selecting Spacecraft Materials. NASA N88-10117 MF, August 1987
    [24]薛大同,张景钦.航天材料的真空性能.中国国防科学技术报告.GF-A0017381G.1995
    [25]Paillous A.Degradation of multiply polymer matrix composites induced by space environment composites,1994;25(4):287-295
    [26]Heinish RP.Lights catter from contaminated spacecraft windows.AIAA,71-472,1997
    [27]曾一兵,张廉正,于翘.空间环境下的有机热控涂层.宇航材料工艺,1997;27(3):18-20
    [28]Barens J A,Cogswell F N.Thermoolastics for space.SAMPE Quarterly,1989;20(3):22-27
    [29]Leger L J,Bricker R WApollo perience report:window contamination.NASA TND-6721,1992
    [30]B. A. Banks, S. K. Rutledge, E. Sechkar, T. Stueber, A. Snyder, K.K.de Groh, C. Haytas, D. Brinker, in:Proceedings of the 8th International Symposium on Materials in a Space Environment,5th International Conference on Protection of Materials and Structures from the LEO Space Environment. Arcachon, France, June 2000:5-9
    [31]Barens J A,Cogswell F N.Thermoolastics for space.SAMPE Quarterly,1989; 20(3):22-27
    [32]Nairn J A.The strain energy release rate of composite microcracking a avariational. approach Journal of Comoosite Materials,1989:23(11):1106-1129
    [33]Fukunaga H,Chou T W,Peters P W M et al.Probabilistic failure strength analysis of graphite /epoxy crossply laminates.Journal of Composite Materials,1984;(18):336-356
    [34]Thompson D F, Babel H W.Materials applications on the space station key issues and the approach to their solutoin.SAMPE Quarterly,1989;21(1):27-33
    [35]Steckel G L,Le T D.Compositesssurvivespaceexposure.Advanced Materials Processes,1991; (8):35-38
    [36]George P E,Dursch H w.Low earth orbit effets on organic composites flown on the long duration exposure facility.Journal of Advanced Materials,1994;25(3):10-19
    [37]吴运学,王晓薇,张涛等.碳化硅/铝复合材料热循环损伤的初步研究.宇航材料工艺,1992;22(4):62-66
    [38]Tenney D R,Sykes G F,Bowles D E.Space environmental effects on materials.AGARD Meeti-ng Meeting Environmentental Effects on Materials for Space Applications,1982;24:1-6
    [39]Zimcik D G,Koike B M.Design of thermally stable garaphite/aluminum tublar structures for space applications.SAMPE Quarterly,1990;21(2):11-16
    [40]B. S. Kwang, G. K. Chun, S. H. Chang, H. L. Ho. Prediction of Failure Thermal Cycles in Graphite/Epoxy Composite Materials under Simulated Low Earth Orbit Environments. Composites Part B.2000,31:223-235
    [41]高禹,杨德庄,何世禹.真空热循环对M40J/环氧复合材料力学性能的影响.材料研究学报.2004.18(5):529-536
    [42]高禹,李志君,杨德庄等.真空热循环对单向M40J/5228A复合材料质损率和线膨胀系数的影响.复合材料学报.2004.21(6):108-113
    [43]柯受全主编.卫星环境工程和模拟试验(下).宇航出版社.1996:283-295
    [44]王浚,黄本诚,万大才.环境模拟技术.国防工业出版社.1996:195-200
    [45]GAmbrosi.AMS,a Partical Detector in Space:Result from the precursor Flight and Status of AMS-02.Nuclear physics B.2003,125:236-244
    [46]R.Walker,C.E.Martin.Cost-effective and Robust Mitigation of Space Debris in Low Earth Oribit.Advances in Space Reseach.2004,34:1233-1240
    [47]Koji Fujimoto,Tadashi Shioya,Katsuhiko Satoh.Degradation of Carbon-Based Materials due to Impact of High-Energy Atomic Oxygen.Intemation Journal of Impact Engineering.2003,28:1-11
    [48]朱光武,李保权.空间环境对航天器的影响及其对策研究.上海航天.2002,(4):1-16
    [49]王玉林,万怡灶,陈桂才.三维编织碳纤维/环氧复合材料的吸湿特性及外应力的影响.复合材料学报.2002,19(6):101-105
    [50]习年生,纤维增强复合材料的损伤特征及失效分析方法.航空材料学报.2000,(2):56-57
    [51]钱保功,许观潘,余赋生.高聚物的转变与松弛.北京:科学出版社,1986:173-181
    [52]过梅丽.高聚物与复合材料的动态力学热分析.北京:化学工业出版社,2002:34-43
    [53]陈平,王德中.环氧树脂及其应用.化学工业出版社材料科学与工程出版中心,2004:173
    [54]陈平,刘胜平.环氧树脂.化学工业出版社,200:2-557 158-168
    [55]X.W.Luo,Z.H.Ping,J.P.Ding,et al..Mechanism Studies on Water Sorption and Permeation in Epoxy Resin by Impedance Spectroscopy. Ⅱ.Cure Kinetics of O-Cresol Novolac Resin with Esterfied Phenol Novolac Resin.Journal of Macromolecular Science-Pure and Applied Chemistry,1997,A34:2297-2291

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700