新型硅锗纳米管结构,热熔和力学性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
硅和锗是电子工业领域的重要材料。硅锗纳米管展示出优异的化学、力学性能以及高热导率,可应用到纳米钻孔机,纳米镊子,电子显微镜等方面。硅锗纳米管的物理和化学性质除了受尺寸影响之外,还受组成和原子排列的影响。此外,硅锗纳米管呈现出特殊的结构特征。这些特性为硅锗纳米管的制备和设计提供了空间。因此,研究硅锗纳米管的结构、热融和力学性能具有非常重要的理论和实际意义。
     由于纳米管体系小,结构复杂,单靠实验手段很难获得纳米管的结构和化学、力学性能的相关信息。因此,人们必须借助各种不同的计算模拟方法来研究纳米管。采用计算模拟方法不但能研究硅锗纳米管的结构、热演化现象和力学性能,还能解释实验现象并可以进而指导其制备。研究纳米管的计算模拟方法主要有两种,即量子化学计算和分子模拟方法。量化计算方法较准确,但计算量巨大,适用范围受限。因此,在研究稍大体系纳米管的性质时,最常用的是基于经验势能的分子模拟方法,主要包括分子动力学(molecular dynamics, MD)和蒙特卡洛(Monte Carlo, MC)方法。
     本论文采用量子化学方法研究了硅锗纳米管的两种特异构型,同时采用基于Tersoff势能函数的MD方法研究了硅锗纳米管的热融和力学性能。其主要结论如下:
     1.采用第一性原理(Ab-initio Method)方法研究了间隔式和层状式排列的扶椅型及锯齿型硅锗纳米管的结构和能量稳定性。发现扶椅型硅锗纳米管呈现“褶皱”状结构,而锯齿型硅锗纳米管呈现“齿轮”状构型。扶手椅型硅锗纳米管比锯齿型硅锗纳米管更稳定。间隔排列(Type1)的硅锗纳米管比层状排列(Type2)的硅锗纳米管更稳定。
     2.系统研究了两种原子排列方式的扶椅型和锯齿型SiGe(n=4-10)纳米管的熔化和热演化过程。硅锗纳米管在热熔化过程中,首先由初始管状结构演变成为压缩的纳米线形状,再在更高的温度下转变为缩聚的结构。通过研究发现大尺寸硅锗纳米管比小尺寸纳米管具有更高的“似熔化”温度,这表明大尺寸管比小尺寸管更稳定。间隔式排列的纳米管比层状式排列的纳米管具有更高的热稳定性。锗取代硅纳米管的“似熔化”温度随着锗含量的升高而降低。原子排列方式、构型和能量稳定性是影响SiGe纳米管热熔性能的主要因素。
     3.系统研究了两种原子排列方式的扶椅型和锯齿型硅锗纳米管(n=4-10,13)的力学性能。通过研究发现在拉伸过程中,硅锗纳米管由原始管状结构转变为延伸管状结构,最后在临界应变下出现屈服结构。硅锗纳米管的杨氏模量与原子排列方式、结构、尺寸有紧密联系。间隔式排列的硅锗纳米管具有较大的杨氏模量。温度和拉伸应变速率对硅锗纳米管的力学性能有较大影响。在较高温度和较慢拉伸应变速率下,硅锗纳米管的临界屈服应变值有所下降。硅锗纳米管的临界屈服应变与结构、尺寸有较大影响。间隔式排列的扶椅型硅锗纳米管的临界屈服应变最大。通过TST(过渡态理论),我们预测硅锗纳米管在300K、拉伸速率5%/h的实验条件下的临界屈服应变为3.38%。
Silicon and Germanium are important materials in electronic industry. SiGe nanotubes show excellent thermal and mechanical properties suggesting that they could be used as nanodrillers, nanotweezers, and microscopy tips. The major interest in SiGe is that their properties depend not only on size but also on composition and atomic arrangement. In addition, SiGe nanotubes may display unique structures and properties.
     However, structural and related properties of SiGe nanotubes cannot be understood purely from experimental data for their small scales and complex structures. Therefore, it is necessary to use molecular simulation and ab-initio simulation methods to understand structure and properties of these materials.
     In this work, we adopt ab-initio method to study structural detail of SiGe nanotubes and also use Tersoff-based molecular dynamics method to investigate thermal and mechanical properties of SiGe nanotubes. Some important conclusions were addressed in a systematic here as follows:
     1. Structures and energetic stability of SiGe nanotubes were studied by using Ab-initio Method. It is found that zigzag SiGe nanotubes exhibit Gearlike configuration and armchair nanotubes show puckering configuration. The simulation results indicate that large-diameter nanotubes are more stable than small-diameter ones. Moreover, the type 1 (alternating atom arrangement type) nanotubes are more energetically favorable than the type 2 (layered atom arrangement type) nanotubes.
     2. Thermal evolution study of SiGe nanotubes were investigated by using MD simulation. It is found that during the melting process, the initial nanotubes transform into the compact nanowire first, and then chang into agglomerate structures at higher temperature. It was also found that large-diameter nanotubes exhibit higher melting-like temperature than small-diameter nanotubes, which means that the large-diameter nanotubes are more stable. The melting-like temperatures of Ge-substituted silicon nanotubes decrease with increase of the Ge concentration. In addition, the atomic arrangement type, structural character and energetic stability are the primary governing factors in thermal behaviors of SiGe nanotubes.
     3. Effects of structural, temperature and strain rate on mechanical properties of SiGe nanotubes were investigated by adopting MD simulation. It is found that three structural transformations were taken place during the extending tests, from initial structure, tensile structure, to critical structure deformation. Simulations indicate that Young's modulus is closely dependent on its diameter, chirality and arrangement-structure. Type1 (alternating atom arrangement-type) armchair SiGe nanotube exhibits the largest Young's modulus. The higher temperature and lower strain rate result in the lower critical strain and tensile strength. It is also found that the critical strains of SiGe nanotubes are significantly dependent on the tube diameter and chirality. Furthermore, based on transition state theory (TST) model, we predict that the critical strain of SiGe (6,6) typel nanotube at 300 K, stretched with a strain rate of 5%/h, is about 3.38%.
引文
[1]Iijima S H. Microtubes of graphitic carbon [J].Nature,1991,354(6348):56-58.
    [2]Teo B K. Doping chemistry on low-dimensional silicon surfaces:silicon nanowires as platforms and templates [J]. Coordin Chem Rev,2003,246(4):229-246.
    [3]Durgun E, Tongay S, and Ciraci S. Silicon and Ⅲ-Ⅴ compound nanotubes:Structural and electronic properties [J].Phys.Rev.B,2005,72(075420):1-10.
    [4]Durgun E, Salim C A. Theoretical Study on Silicon and Ⅲ-Ⅴ Compound Nanotubes [J]. Turkish Journal of Physics,2005,29(5):307-318.
    [5]Jeng Y, Tsai P C, Fang T. Molecular dynamics investigation of the mechanical properties of gallium nitride nanotubes under tension and fatigue[J].Nanotechnology,2004,15(12): 1737-1744.
    [6]Zhang P and Crespi V H. Theory of B2O and BeB2 Nanotubes:New Semiconductors and Metals in One Dimension [J]. Phys.Rev.B,2002,89(5):056403-056107.
    [7]Sha J, Niu J, Ma X, Xu J,et al. Silicon Nanotubes Advanced Materials.2002,14(17): 1219-1221.
    [8]Menon M, Richter E, Mavrandonakis A. Structure and stability of SiC nanotubes [J]. Phys.Rev.B,2004,69(115322):1-4.
    [9]Moon W H, Ham J K and Hwang H J. Mechanical Properties of SiC Nanotubes [J]. Nanotech,2003,45(6):158-161.
    [10]成会明.纳米碳管制各、结构、物性及应用[R].北京:化学工业出版社,2002.
    [11]Popov V N. Carbon nanotubes:properties and application [J]. Mater Sci & Eng R,2004, 43:61-102.
    [12]Tang Y H, Sun X H, Au F C K, et al. Microstructure and field-emission characteristics of boron-doped Si nanparticle chains [J]. Appl Phys Lett,2001,79(11):1673-1675.
    Fagan S B, Mota R. Stability Investigation and Thermal Behavior of a Hypothetical Silicon Nanombe [J].The. Chem.,2001,539:101-106.
    [14]Seifert G, KoMer T, Urbassek H M, et al. Tubular Structures of Silicon [J]. Phys.Rev.B, 2001,63:196409.
    [15]Jeong S Y, Kim J Y, Yang H D, et al. Synthesis of silicon nanotubes on porous alumina using molecular beam epiaxy[J].Adv Mater,2003,15(14):1172-1176.
    [16]Sha J, Niu J J, Ma X Y, et al. Silicon nanotubes[J].Adv Mater,2002,14(17):1219-1221.
    [17]Saranin A A,Zotov A V,Kotlyar V G,et al.Ordered arrays of Be-encapsulated Si nanotubes on Si(111)surface[J].Nano Lett,2004,4(8):1469-1473.
    [18]Crescenzi M D,Castrucci P,Scarselli M,et al.Experimental imaging of silicon nanotubes[J].Appl Phys Lett,2005,86(7):231901-1-231901-3.
    [19]Chaieb S, Nayteh M H, Smith A D, et al.Assemblies of silicon nanoparticles roll up into flexible nanotubes [J].Appl Phys Lett,2005,87(12):062104-1-062104-3.
    [20]Popov V N.Carbon nanotubes:properties and application[J].Mater Sci Eng R,2004,43 (23):61-102.
    [21]李俊涛,雷威.场致发射显示技术研究进展[J].电子器件,2002,25(4):332-339.
    [22]Tang Y H,Sun X H,Au F C K,et al.Microstructure and field-emission characteristics of boron-doped Si nanoparticle chains [J].Appl Phys Lett,2001,79(11):1673-1675.
    [23]Menon M,Andriotis A N,Froudakis GStructure and stability of Ni-encapsulated Si nanotube[J].NanoLett,2002,2(4):301-304.
    [24]Singh A K,Briere T M,Kumar V,et al.Magnetism in transition-metal-doped silicon nanotubes[J].Phys Rev Lett,2003,91 (14):146802-1-146802-4.
    [25]Dillon A C,Jones K M,Bekkedahl T A et al.Storage of hydrogen in single-walled carbon nanotubes[J].Nature,1997,386(27):377-379
    [26]Lan J.H., Cheng, D.J., Cao, D.P., and Wang, W.C. Silicon Nanotube as a Promising Candidate for Hydrogen Storage:From the First Principle Calculations to Grand Canonical Monte Carlo Simulations [J]. J. Phys. Chem. C,2008,112:5598-5604.
    [27]Duan X F, Wang J F, Lieber C M. Synthesis and optical properties of gallium arsenide nanowires [J].Appl Phys Lett,2000,76 (9):1116-1118.
    [28]Seifert G, Kohler T, Hajnal Z, et al. Tubular structures of germanium [J]. Solid State Communications,2001,119(12):653-657.
    [29]Seifert G, Kohler T, Urbassek H M,. et al. Tubular structures of silicon[J].Phys. Rev. B,2001,63(19):193409-193412
    [30]Pradhan P, Ray A K.A Hybrid Density Functional Study of Armchair Si and Ge Nanotubes[J] Journal of Computational and Theoretical Nanoscience,2005,8(2): 66-70.
    [31]Singh A K,Kumar V, and Kawazoe Y. Design of a very thin direct-band-gap semiconductor nanotubes of germanium with metal encapsulation[J].Phys Rev B,2005,71(7):075312-075316.
    [32]Singh A K, Kumar V, and Kawazoe Y. Metal encapsulated nanotubes of germanium with metal dependent electronic properties[J].Eur Phys J D,2005,34(1-3):295-298.
    [33]Mei Y F,Siu G G,Li Z M,et al.Polycrystalline tubular nanostructures of germanium[J]. Journal of Crystal Growth,2005,285(1-2):59-65.
    [34]Singh A K, Kumar V, Bfiere TM. et al. Cluster Assembled Metal Encapsulated Thin Nanotubes of Silicon [J]. Nano. Lett.,2002,2:1243-1248.
    [35]Less R S,Kim H J,Fischer J E,et al.Conductivity enhancement in single-walled carbon nanotube bundles doped with K and Br[J].Nature,1997,388(6998):255-257.
    [36]Zhou O, Fleming R M, Murphy D W, et al.Defects in Carbon Nanostructures [J]. Science, 1994,263(5154):1744-1747.
    [37]Gricorian L,Sumanaserkera G U,Loper A L,et al.Transport properties of alkali-metal-doped single-wall carbon nanotubes [J].Phys Rev B,1998,58(8):4195-4198.
    [38]Lee R S, Kim H J, Fischer J E, et al.Transport properties of a potassium-doped single-wall carbnon-nanotube rope [J].Phys Rev B,2000,61(7):4526-4529.
    [39]Schmidt O G and Eberl K. Nature,2001,410:168-172.
    [40]Migas D B and Borisenko V E. Structural, electronic, and optical properties of 001-oriented SiGe nanowires [J].Phys. Rev. B,2007,76:035440.
    [41]Musin R N and Wang X Q. Structural and electronic properties of epitaxial core-shell nanowire heterostructures [J].Phys. Rev. B,2005,71:155318.
    [42]Zang J, Huang M and Liu F. Mechanism for nanotube formation from self-bending nanofilms driven by atomic-scale surface-stress imbalance [J]. Phys. Rev. Lett.,2007,98: 146102.
    [43]Rathi S J and Ray A K. On the existence and stability of single walled SiGe nanotubes [J]. Chem:Phys. Lett.,2008,466:79-83.
    [44]Schmidt O G, Eberl K. Thin solid films roll up into nanotubes[J].Nature,2001,410(11): 168-169.
    [45]Songmuang R, Jin-Phillipp N Y, Mendach S, et al. Single rolled-up SiGe/Si microtubes: structure and thermal stability[J].Appl Phys Lett,2006,88(6):021913-1-021913-3.
    [46]Robertson DH, Brenner D W, and Mintmire J W. Energeties of nanoseale graphitie tubules [J]. Phys.Rev.B,1992,45:12592-12595.
    [47]Barnard A S and Russo S P. Structure and Energetic of single-walled armchair and zigzag silicon nanombes [J]. J. Phys. Chem.B,2003,107:7577-7581.
    [48]Wu X, Xu Z, and Zeng X C. Single-Walled MoTe2 Nanotubes [J]. Nano. Lett.,2007, 7(10):2987-2992.
    [49]Alam K M and Ray A K. Hybrid density functional study of armchair SiC nanotubes [J]. Phys. Rev. B,2008,77:035436.
    [50]Fagan S B, Mota R, Baierle R J, Paiva G, Silva A, Fazzio A. Stability investigation and thermal behavior of a hypothetical silicon nanotube[J]. Journal of Molecular Structure, 2001,539:101-106.
    [51]Yakobson B, Brabee C J and Bernhole J. Nanomechanics of carbon tubes:instabilities beyond linear response [J]. Phycial Review Letters,1997,76:2511-2514.
    [52]Yakobson B, Campbell M P, Brabec C J and Bernhole J. High strain rate fracture and c-chain unraveling in carbon nanotubes [J]. Computational Materials Science,1997,8: 341-348.
    [53]Iijima S, Brabee C, Maiti A and Bernholc J. Structural flexibility of carbon nanotubes[J]. Journal of Chemical Physics,1996,104:2089-2092.
    [54]Comwell C F and Wille L T. Elastic properties of single-walled carbon nanotubes in compression [J]. Solid State Communications,1997,101:555-558.
    [55]Yao N and Lordi V. Young'modulus of single-walled carbon nanotubes [J]. Applied Physics,1998,84:1939-1943.
    [56]Sinnott S B, Shenderova O A, Wllite C T and Brenner D W. Meehanieal Properties of nanotubule fibers and composites determined from theoretical calculations and simulations [J].Carbon,1998,36:1-9.
    [1]Hohenberg R and Kohn W.Inhomogeneous Electron Gas [J]. Phys. Rev. B,1964,136:864.
    [2]Caperley D M, and Ald B J. Ground State of the Electron Gas by a Stochastic Method [J]. Phys. Rev. Lett., 1980,45:566.
    [3]Perdew J P, and Wang Y. Accurate and simple analytic representation of the electron-gas correlation energy [J]. Phys.Rev.B,1992,45:13244.
    [4]Perdew J P, and Wang Y. Generalized gradient approximation for the exchange-correlation hole of a many-electron system [J].Phys.Rev.B,1996,54:16533.
    [5]Perdew J P, Burke S, and Emzethof M. Generalized Gradient Approximation Made Simple [J]. Phys. Rev. Lett.,1996,77:3865.
    [6]Bagno P, Jepsen O, and Gunnarsson O.Ground-state properties of third-row elements with nonlocal density functionals [J]. Phys. Rev. B,1989,40:1997.
    [7]Dufek P, Blaha P, Sliwko V, and Sehwarz K.Generalized-gradient-approximation description of band splittings in transition-metal oxides and fluorides [J].Phys. Rev. B, 1994,49:10170.
    [8]Fagan S B, Mota R, Baierle R J, Paiva G, Silva A, Fazzio A. Stability investigation and thermal behavior of a hypothetical silicon nanotube[J]. Journal of Molecular Structure, 2001,539:101-106.
    [9]Verlet L. Computer "Experiments" on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules [J]. Phys.Rev. B,1967,159:98.
    [10]Honeyeutt R W. Methods in Comp. Phys.,1970,9:136.
    [11]Swope W C, Anderson H C, Berens P H, Wilson K R. simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: Application to small water clusters [J]. J. Chem. Phys.,1982,76:637.
    [12]Wang J L, Ding F, Shen W F, Li T X. Thermal behavior of CuCo bimetallic clusters [J]. Solid. State. Commun.,2001,119:13-18.
    Sankaranarayanan SKRS, Bhethanabotla V R, Joseph B. Molecular dynamics simulation tudy of the melting of Pd-Pt nanoclusters [J]. Phys. Rev. B,2005,71:195415.
    [14]Tersoff J. Modeling solid-state chemistry:Interatomic potentials for multicomponent systems [J]. Phys. Rev. B,1989,39(8):5566-5568.
    [15]Tersoff J. New empirical approach for the structure and energy of covalent systems [J].Phys. Rev. B,1988,37:6991.
    [16]Tersoff J. Empirical interatomic potential for silicon with improved elastic properties [J].Phys. Rev. B,1988,38:9902.
    [1]Seifert G, Kohler Th., Urbassek H M, Hernandez E, and Frauenheim Th. Tubular structures of silicon [J]. Phys. Rev. B,2001,63:193409.
    [2]Crescenzi M D, Castrucci P, and Scarselli M. Experimental imaging of silicon nanotubes [J]. Appl. Phys. Lett.,2005,86:231901.
    [3]Tang Y H, Pei L Z, Chen Y W, and Guo C. Self-assembled silicon nanotubes under supercritically hydrothermal conditions [J]. Phys. Rev. Lett.,2005,95:116102.
    [4]Barnard AS, and Russo S.P. Structure and energetics of single-walled armchair and zigzag silicon nanotubes [J]..Phys. Chem. B,2003,107:7577-7581.
    [5]Zhang R Q, Lee H L and Li W K. Investigation of possible structures of silicon nanotubes via density-functional tight-binding molecular dynamics simulations and ab-initio calculations [J]. J. Phys.Chem. B,2005,109:8605-8612.
    [6]Fagan S B, Mota R, Baierle R J, Paiva G, Silva A, Fazzio A. Stability investigation and thermal behavior of a hypothetical silicon nanotube[J]. Journal of Molecular Structure, 2001,539:101-106.
    [7]Alam K M and Ray A K. Hybrid density functional study of armchair SiC nanotubes [J]. Phys. Rev. B,2008,77:035436.
    [8]Wu X, Xu Z, and Zeng X C. Single-Walled MoTe2 Nanotubes [J]. Nano. Lett.,2007, 7(10):2987-2992.
    [9]Rathi S J and Ray A K. On the existence and stability of single walled SiGe nanotubes [J]. Chem. Phys. Lett.,2008,466:79-83.
    [10]Alam K M and Ray A K. On the electronic and geometric structures of armchair GeC nanotubes:a hybrid density functional study [J]. Nanotechnology,2008,19:335706.
    [1]Yang C C, Armellin J and Li S. Determinants of Thermal Conductivity and Diffusivity in Nanostructural Semiconductors [J]. J. Phys. Chem. B,2008,112:1482.
    [2]Collins P G, Arnold M S and Avouris P. Thermal Evolution of a Platinum Cluster Encapsulated in Carbon Nanotubes [J]. Science,2001,292:706.
    [3]Huang J Y, Chen S, Wang Z Q, Kempa K, Wang Y M, Jo S H,Chen G, Dresselhaus M S and Ren Z F. Nature,2006,439:281.
    [4]Li D and Xia Y N. Nanomaterials:Welding and patterning in a flash [J].Nature Mater., 2004,3:753.
    [5]Rathi S J and Ray A K. On the existence and stability of single walled SiGe nanotubes [J]. Chem. Phys. Lett.,2008,466:79-83.
    [6]Cheng D, Wang W and Huang S. Thermal Evolution of a Platinum Cluster Encapsulated in Carbon Nanotubes [J]. J. Phys. Chem. C,2007,111:1631.
    [7]Fagan S B, Mota R, Baierle R J, Paiva G, Silva A, Fazzio A. Stability investigation and thermal behavior of a hypothetical silicon nanotube[J]. Journal of Molecular Structure, 2001,539:101-106.
    [8]Chang T, Hou J and Guo X. Reversible mechanical bistability of single-walled carbon nanotubes under axial strain [J].Appl. Phys. Lett.,2006,88:211906.
    [9]Chang T C. Dominoes in Carbon Nanotubes [J].Phys. Rev. Lett.,2008,101:175501.
    [10]Gong X, Li J, Lu H, Wan R, Li J, Hu J and Fang H. A charge-driven molecular water pump [J]. Nature Nanotechnology,2007,2:709.
    [1]Andrews R, Jacques D, Rao A M, Rantell T, Derbyshire F, Chen Y, Chen J and Haddon R C. Nanotube composite carbon fibers [J]. Applied Physics Letters,1999,75(9):1329-1331.
    [2]Thostenson E T, Ren Z F and Chou T W. Advances in these science and technology of carbon nanotubes and their composites:a review [J]. Composite Science of Technology, 2001,61:1899-1912.
    [3]Mamedov A A, Kotov N A, Prato M, Guldi D M, Wieksted J P and Hirseh A. Molecular design of strong single-wall carbon nanotube/polyelectrolyte multilayer composites [J]. Nature Materials,2002,1:190-194.
    [4]Peigney A, Flahaut E, Laurent C, Chastel F and Rousset A. Aligned carbon nanotubes in ceramic-matrix nanocomposites prepared by high-temperature extrusion [J]. Chemical Physics Letters,2002,352:20-25.
    [5]Tans S J, Versehueren ARM and Dekker C. Room-temperature transistor based on a single carbon nanotube [J]. Nature (London),1998,393:49-52.
    [6]Rueckes T, Kim K, Joselevie H E, Tseng G Y, Cheung C L and Lieber C M. Carbon nanotube-based nonvolatile random access memory for molecular computing [J]. Science, 2000,289:94-7.
    [7]Srivastava D, Brenner D W, Sehall J D, Ausman K D, Yu M F and Ruoff R S. Predictions of enhance chemieal reactivity at regions of locale on formational strain on carbon nanotubes:kinky chemistry [J]. The Journal of Physieal Chemistry B,1999, 103:4330-4337.
    [8]Kong J, Franklin N, Zhou C, Chapline M G, Peng S, Cho K and Dai H. Nanotube molecular wires as chemieal sensors [J]. Science,2000,287:622-625.
    [9]Koratkar N, Wei B Q, Ajayan P M. Carbon nanotube films for damping applications [J]. Advanced Materials,2002,14:997-1000.
    [10]Koratkar N A, Wei B, Ajayan P M. Multifunctional structural reinforcement featuring carbon nanotube films [J]. Composites Science and Technology,2003,63(11):1525-1531.
    [11]Huang Y, Duan X F, Wei Q, Lieber C M. Directed assembly of one-dimensional nanostructures into functional networks [J]. Science,2001,291:630-633.
    [12]Modi A, Koratkar N, Lass E, Wei B Q, Ajayan P M. Miniaturized gas ionization sensors using carbon nanotube [J]. Nature,2003,424:171-174.
    Dai H, Hafher J H, Rinzler A G, Colbert D T and Smalley R E. Nanotubes as nanoprobes in scanning probe microscopy [J]. Nature (London),1996,384:147-150.
    [14]Wong S S, Harper J D, Lansbury P, and Lieber C M. Carbon nanotube tips:High-resolution probes for imaging biological systems [J]. Journal of the American chemical Society,1998,120:603-604.
    [15]Baughman R H, Cui C X, Zakhidov A A, Iqbal Z, Barisei J N, Spinks G M, Wallaee G G, Mazzoldi A, DeRossi D, Rinzler A G, Jasehinski O, Roth S, Carbon nanotube actuators [J]. Science,1999,284:1340-1344.
    [16]Baughman R H, Zakhldov A A, deheer W A. Carbon nanotubes-the route toward applications [J]. Science,2002,297:787-792.
    [17]Yakobson B I and Avourisp. Nanomechanics, carbon nanotubes:synthesis, structure, Properties and applications, edited by Dresselhaus M S., Dresselhaus G and Avouris P. Springer Verlag, NewYork,2001,287-329.
    [18]Thostensona E T, Renb Z, ChouTW. Advances in the science and technology of carbon nanotubes and the composites:a review [J]. Composite Sciences and Technology,2001, 61:1899-1912.
    [19]Srivastava D, Menon M and Cho K. Computational nanotechnology with carbon nanotubes and fullerenes [J]. Computing in Science & Engineering,2001,3:42-55.
    [20]Jeng Y R, Tsai P C, Fang T H. Effects of temperature, strain rate, and vacancies on tensile and fatigue behaviors of silicon-based nanotubes [J]. Phys. Rev. B,2005,71:085411.
    [21]Jeong W K and Ho J H. Hypothetical silicon nanotubes under axial compression [J]. Nanotechnology,2003,14:402-408.
    [22]Wu Y, Huang M, Wang F, Huang X, Rosenblatt S, Huang L, Yan H, Brien S, Hone J, and Heinz T, Nano. Lett.,2008,8:4158.
    [23]Quitoriano N J, Belov M, Evoy S, and Kamins T I. Nano. Lett.,2009,9:1511.
    [24]Perisanu S, Gouttenoire V, Vincent P, Ayari A, Choueib M, Bechelany M, Cornu D, and Purcell S T. Phys. Rev. B,2008,77:165434.
    [25]Crescenzi M, Castrucci P, Scarcelli M, Diociauti M, Chaudhari P S, Balasubramanian C, Bhave T M, and Bhoraskar S V. Appl. Phys. Lett.,2007,86:231901.
    [26]Wei C, Cho K, and Srivastava D. Tensile strength of carbon nanotubes under realistic temperature and strain rate [J]. Phys. Rev. B,2003,67:115407.
    [27]Nardelli M B, Yakobson B I, and Bernholc J. Brittle and Ductile Behavior in Carbon Nanotubes [J]. Phys. Rev. Lett.,1998,81:4656.
    [28]Wu X, Xu Z, and Zeng X C. Single-Walled MoTe2Nanotubes [J]. Nano. Lett.,2007, 7(10):2987-2992.
    [29]Baumeier B, Kruger P, and Pollmann J. Structural, elastic, and electronic properties of SiC, BN, and BeO nanotubes [J]. Phys. Rev. B,2007,76:085407.
    [30]Yakobson B I, Barbec C, and Bernholc J. Nanomechanics of Carbon Tubes:Instabilities beyond Linear Response [J]. Phys. Rev. Lett.,1996,76:2511.
    [31]Fagan S B, Mota R, Baierle R J, Paiva G, Silva A, Fazzio A. Stability investigation and thermal behavior of a hypothetical silicon nanotube[J]. Journal of Molecular Structure, 2001,539:101-106.
    [32]Wortman J J and Evans R A. Young's Modulus, Shear Modulus, and Poisson's Ratio in Silicon and Germanium [J]. J. Appl. Phys.,1965,36:153.
    [1]Toshima N, Shiraishi Y, Matsushita T, Mukai H, etal. Self-organization of metal nanoparticles and its application to synthesis of Pd/Ag/Rh trimetallic nanoparticle catalysts with triple core/shell structures [J]. International Journal of Nanoscience,2002,1:397-401.
    [2]Zhang X, Zhang F, Chan K. Preparation of Pt-Ru-Co trimetallic nanoparticles and their electro catalytic properties [J]. Catal. Commun,2004,5:749-753.
    [3]Polak M, Rubinovieh L. Prediction of compositional ordering and separation in alloy nanoclusters [J]. Surf. Sci.,2005,584:41-48.
    [4]Rubinovieh L, Polak M. Site-specific segregation and compositional ordering in Ni-based ternary alloy nanoclusters computed by the free-energy eoncentration expansion method [J]. Phys. Rev. B,2004,69:155405.
    [5]Aguado A, Lopez J M. Melting-like transition in a ternary Alkali Nanoalloy [J]. J. Chem.Theory ComPut.,2005, 1(2):299-306.
    [6]Wright D C, Gallant R F, Spangberg L. Correlation of corrosion behavior and cytotoxieity in Au-Cu-Ag ternary alloys [J]. J. Biomed. Mater. Res.,1982,16(4):509-517.
    [7]Kurniawan H, Suliyanti MM, Lie TJ, Kagawn K, et al. Application of Primary Plasma standardization to Nd-YAG laser-indueed shoek wave Plasma spectrometry for quantitative analysis of high concentration Au-Ag-Cu alloy [J].Spectrochim. Acta Part B, 2001,56(8):1407-1417.
    [8]Agrawal V V, Mahalaksmi P, Kulkami G U, Rao CNR. Nanocrystalline Films of Au-Ag, Au-Cu and Au-Ag-Cu Alloys Formedat the Organie-Aqueous Interface [J]. Langmuir, 2006,22:1846-1851.
    [9]Chatterjee K. Howe J M, Johnson W C, Murayama M. Static and in situ TEM investigation of phase relationships, phase dissolution, and interface motion in Ag-An-Cu alloy nanoparticles[J].Acta Mater.,2004,52:2923-2935.
    [10]Cheng D, Liu X, Cao D, Wang W. Surface segregation of Ag-Cu-Au trimetallic clusters [J]. Nanotechnology,2007,18:475702.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700