含缺陷复合材料蜂窝夹层结构力学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
复合材料夹层结构由于制造工艺和本身材料性能特点,使得其构件在制造和使用的过程中不可避免的带有缺陷和损伤,尤其是面芯结合界面容易发生开胶而造成分层缺陷,导致结构的静载强度减小,疲劳寿命降低。本文采取理论分析与试验相结合的方法对含缺陷蜂窝夹层结构模拟件的屈曲问题、静强度、疲劳寿命和低速冲击试验技术进行了较系统的研究,在以下几个方面取得重要进展和技术突破:
     运用Von-Karman大挠度应力-应变关系,利用Rayleith-Ritz能量法,建立了含面芯分层缺陷的夹层板计算模型,结合夹层板刚度矩阵推导出子板的临界屈曲载荷计算方程。该方程可预测蜂窝夹层结构在受到压缩时发生屈曲失稳的临界应力,其计算结果与试验结果吻合。
     采用静压缩试验的方法研究了不同形状缺陷对夹层结构静强度的影响,提出了缺陷宽度是导致结构失效主要原因的观点,建立了缺陷宽度比系数η与静压缩强度的近似表达式。
     对蜂窝夹层结构的疲劳试验方法进行了研究,根据无缺陷蜂窝夹层结构疲劳试验结果,建立了无缺陷蜂窝夹层结构的疲劳寿命方程。在此基础上,提出利用含缺陷蜂窝夹层结构静强度修正系数ε对无缺陷蜂窝夹层结构的疲劳寿命方程进行修正的假设,建立了含缺陷蜂窝夹层结构疲劳寿命方程的工程方法,该方法得到相关试验的验证。
     试验研制了一种简单、可靠、重复性好、具备实时数据采集功能的FS冲击试验系统,利用该系统能够较好地再现蜂窝夹层结构在生产和使用中受到低能冲击损伤过程及其产生的各种缺陷,从而为进一步研究低能冲击损伤过程、损伤机理和破坏模式初步建立了一种冲击损伤试验技术。
In recent years, the study of sandwich composite materials with debonds is hot. The material characteristic and its machining process make it inevitable for sandwich composite materials to have debonds. As the glued core/face interface is the weak part, the delamination often takes place, which will degrade the static intensity and fatigue life of sandwich composite materials. In order to investigate sandwich mechanicals'capability with different shapes of debonds, a series of examination such as the static compressive test, fatigue life test and impact test were carried out through simulating the delamination in core/face interface in sandwich composite, the following is the results:
     A calculated model about core/face debonds sandwich composite, which can forecast the critical stress in flexure state, is established by applying Von-Karman theory in huge flexibility relation and Rayleith-Ritz energy method. We found that this model is reliable by comparing the calculated results and the data of tests.
     By analyzing the results of the static compressive test on honeycomb sandwich with different shapes of debonds, we found that the major reason for the invalidation of sandwich structure is the size of debonds, which are vertical to the direction of load. And modulusηis imported to represent the injure degree.
     An equation about fatigue life is established based on the results of the fatigue test on honeycomb sandwich composite with debonds. The equation modified by modulesεcan prognosticate the fatigue life of honeycomb sandwich composite with debonds.
     The destroy form and mechanism is analyzed after the low speed impact test on the honeycomb sandwich composite at different energy level. It can be seen that the impact can destroy the upper panel but not influence the lower panel, and the interface between panels with less angle can afford much stronger impact.
引文
[1]胡保全,牛晋川.先进复合材料[M].北京:国防工业出版社,2006:1页
    [2]颜鸣嗥.现代飞机主要用材料[J].航空材料,1980,4:1-7页
    [3]李德俊.90年代复合材料机体结构工艺的发展[J].航空制造工程,92,8:23-25页
    [4]周祖福.复合材料学[M].武汉工业出版社,1995:9-10页
    [5]M J Robinson.运载火箭用的先进复合材料结构[J].飞行器与运载火箭,1992,6:17P
    [6]H G.Allen, sandwich constructions Today and Tomorrow, sandwich construction[J], Res Mechanica,1983,8(1):29-38
    [7]张广平.复合材料夹心板及其应用[J].纤维复合材料,2000,2:26-29页
    [8]李勇.直九用Nomex蜂窝研究[J],航空材料学报,1996,3:47-54页
    [9]Chai H, Babcock C A, Knauss W G. One dimensional modeling of failure in laminated Plates by elamlnation buckling. Int. [J]. of Solids Structures, 1981,17(11):1069-1083 P
    [10]Somers M, Weller T, Abramovich H. Bucking and postbuckling behaviour of sandwich structure in the presence of a delamination[M]. Technion, Israel Institute of Technology, Haiifa,1989:644P
    [11]Somers M, Weller T, Abramovich H. Effeet of elamination. Location on Posthuckling behavior of sandwich structures[M]. Technion, Israel Institute of Technology, Haiifa,1989:647P
    [12]Somers M. The buckling and Postbuckling behavior of sandwich beams in the Presence[M]. Technion, Israel Institute of Technology, Haiifa,1990
    [13]Somers M, Weller T, Abramovich H. Influence of Predetermined delami nations on buckling and Postbuckling behavior of composite sandwich beams. Composite struetures,1991,17:259-329P
    [14]Brock D. Elemetary Engineering Fracture Mechanics[M]. Noordhoff, Groningen,1974
    [15]Hellan K.Introduction to Fracture Mechanics[M]. Mcgraw.Hill, SingaPore, 1985
    [16]Hwu C, Hu J S. Buckling and Postbuckling of delaminated composite sandwich beams[J]. of AIAA,1992,30(7):1901-1909P
    [17]Vizzini A J, Lagace P A. The buckling of a delamination sublamlnate on an elastic foundation[J]. of Composite Materials,1987,21:1106-1 117P
    [18]Reddy A R K, Paianinathan R. Buckling of laminated skew Plates[J]. Thin-walled Struct,1995,22(4):241-59P
    [19]NISAII, User's Manual[J], EMRC Troy,1996
    [20]吴涤,郦正能,寇长河.蜂窝夹心叠层板的低速冲击损伤分析[J].北京航空航天大学学报,1999,25(1):45-48
    [21]彭俊,刘元镛.低速冲击下复合材料层压板的损伤过程模拟.西北工业大学学报.2002(2)
    [22]Reissner, E. Finite deflection of sandwich plates.J.of Aerospace science.1948,15(7):435-440
    [23]Weissman-Berman D, Petrie G L, Wang M H. Flexual response of foam cored sandwich panels[J].The Society of Naval Architects and Marine Engineers(SNAME), New York,1988
    [24]徐永锋,张志民,王俊奎.复合材料夹层板面芯二维分层屈曲研究[J].复合材料学报,1997,14(4):101-107
    [25]Meyer-Piening H R.Remarks on higher order sandwich stress and defletion analysis[J].In:olsson K A. Reichare R P, editors. Sandwich Construction, Proeeedings of the First Inemational Conference Sandwich Construction, Stockholm,1989,107-127
    [26]Didenko N I, Sansonov A M. Optimization of elastic Reissner plates and three-layer plates under complex loading, Prikl Mekh[J]. English transl, Sov Appl Mech,1989,24,712-717
    [27]Gordaninejad F, Bert C W. Bending of sandwich beams with thick facings[J]. Advances in composite materials and Structure. ASME, NY, 1989,113-118
    [28]Kamiya N, Sawaki Y, Nakamura Y. Nonlinear bending analyses of heated sandwich plates and shells by the boundary element methed[J]. Res Mechanica,1983,8(1):29-38
    [29]Malhotra S K, Babu BJC. A study on Grp skin/foam core sandwich structures, Composites[J].1983,14(4):383-386
    [30]Hadi B K, Matthews F L. Predicting the buckling load of anisotropic sandwich Panels:an approach including shear deformation of the faces[J].Composite Structures,1998,42(3):245-251
    [31]Birman V, Simitses G J. Theory of cylindrical sandwich Shells with dissimilar facings subjected to thermomechanioal loads[J]. J.ofAIAA,2000, 38(2):362-67
    [32]Muc A, Zuchara P. Bucking and failure analysis of FRP faced sandwich plates[J]. Composite Structure,1999,48(1-3):145-150
    [33]Badu C S, Kant T. Two shear deformable finite element modes for bucking analysis of skew fibre-reinforced composite and sandwich panel[J]. Composite Structure,1999,46(2):115-124
    [34]Kant T, Babu C S. Thermal bucking analysis of skew fibre-reinfoced composite and sandwich plates using shear defomable finite element models [J]. Composite Structure,2000,49(1):77-85
    [35]师俊平,刘协会,陈宜享.复合材料夹层板壳振动分析的高阶剪切变形理论[J].复合材料学报,1997,14(4):108-113
    [36]Frosting Y, Baruch M. High order bucking analysis of sandwich beams with transversely flexible core[J]. J.of Eng Mech. ASCE,1993,119(3): 476-495
    [37]Burton W S, Noor A K. Three-dimensional solution for themomechanical stresses in sandwich panels and shells[J]. J of Eng Mech. ASCE,1994, 120(10):2044-071
    [38]Chamis C C, Aiello R A, Murthy P L N. Fiber composite sandwich thermostructural behavior:omputational simulation[J].J.of Composite Thech Res,1988,10(3):93-99
    [39]Chamis C C, Aiello R A, Murthy P L N.Composite sandwich themostructural behavior:computational simulation[J].Proc 27th Struct. Structural Dyn and Mat Conf, San Antonio TX May 19-21,1986, Technical Papers, Part,370-381
    [40]Elspass W, Flemming M, Analysis of precision sandwich structure under themal loading[J], ICAS-90-4.8.1, Stockholm, S, Sept9-14,1990,2: 1513-1518
    [41]Thomsen O T. Theoretical and experimental investigation of local bending effects in sandwich plates[J]. Composite Structures,1995,30:85-102
    [42]Francis Aviles and Leif A. Carlsson. Three-dimensional Finite Element Buckling Analysis of Debonded Sandwich Panels [J].Journal of Composite Materials,2006,40:993-1008
    [43]Paik J K, Thayamballi A K, Kim G S. The strength characteristics of aluminum honeycomb sandwich panels [J]. Thin-walled Structures, 1999,35:205-231
    [44]Gdoutos E E, Daniel I M, Wang K A. Compression facing wrinkling of composite sandwich structures [J]. Mechanics of Materials,2003,35:511-522
    [45]泮世东,吴林志,孙雨果.含面芯界面缺陷的蜂窝夹芯板侧向压缩破坏模式[J].复合材料学报.2007,24(6):121-127页
    [46]李跃宇,邹振民,樊蔚勋.含脱层的蜂窝夹芯板结构的弯曲试验研究[J].玻璃钢/复合材料,1998,2:16-17页
    [47]陈小权主编.复合材料修理与维护.1992年
    [48]沈真主编.复合材料飞机结构耐久性/损伤容限设计指南.北京:航空工业出版社,1995年
    [49]张彦中,宁荣昌.CFRP层板的落重冲击分层损伤研究.航空材料学报.1996(6):58-62页
    [50]张双寅.复合材料设计的原理与实践.应用基础与工程科学学报.1998(9):279-286页
    [51]程小全,寇长河,郦正能.复合材料蜂窝夹芯板低速冲击后的压缩.北京航空航天大学学报,1998,24(5):551-554
    [52]Prandy J, Boyd J, Recker H, Altstadt V.Effect of absorbed energy on the CAI performance for composite materials. Int. SAMPE Symp and Exhibition,1991,36(1):901-911
    [53]Cvitkovich M K, Jackson W C.Compressive failure mechanisms in composite Sandwich structures.J.of the Ameriean Helieopter Society, 1999,44(4):260-268
    [54]Kim C G, Jun E J.Impact resistance of composite laminated sandwich Plates.J. of Composite Materials,1992,26(5):2247-2261
    [55]Moody R C, Harris JS, Vizzini A J. Width effects on the compression strength of composite sandwich test specimens after barely visible impact damage. Proceedings of the 1999 AIAA/ASME/ASCEHS/ASC Structures, Structural Dynamies, and Materials Conference and Eihibit, APr12-APr15 1999,3:1984-1992
    [56]Mouritz A P, Thomson R S.Compression, flexure and shear properties of a sandwich composite containing defects. Composite Structures,1999,44(2): 263-278
    [57]Kassapoglou C, Abbott R.A correlation parameter for Predicting the compressive strength of composite sandwich Panels after low speed impact. AIAA-88-2294,1988
    [58]Wang J. Prediction of post-impact compressive strength of composite laminates using an inhomogeneity model. J. of Composite Materials.1999, 33(24):2227-2247

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700