有机电致发光二极管阳极的表面改性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有机电致发光二极管(OLED)显示技术被认为是最具发展前景的下一代平板显示技术之一。目前,人们研究的热点集中在提高器件的性能和稳定性方面。有机电致发光器件的性能和载流子的注入有着密切地关系。研究表明为了实现空穴的有效注入,阳极的功函数必须与邻近的有机材料的最高占有轨道(HOMO)相匹配。而通常使用的阳极材料ITO与典型的空穴传输材料的HOMO能级并不匹配。对ITO进行表面改性是实现载流子平衡注入的有效手段。
     柔性有机电致发光二极管(FOLED)具有可弯曲、重量轻、便于携带等优势,是OLED发展的一个重要方向。但在聚合物衬底上制备的ITO薄膜在弯曲时容易碎裂和剥离,从而造成器件失效。
     因此,研究制备工艺相对简单能够替代ITO薄膜的透明导电薄膜就显得非常必要。针对上述问题,我们进行了如下研究工作:
     1.利用循环伏安法(CV),以[Fe(CN)6]4-/3-氧化还原对为探针离子,研究了4-氟苯硫醇分子在金电极表面的自组装行为。结果表明:在室温条件下自组装0.5h即可以在电极表面形成稳定的单分子膜。自组装24h可以在电极表面形成致密的单分子层,表面覆盖度约为95%。
     2.研究了自组装单分子膜修饰的金属银膜作为有机电致发光器件的空穴注入层。利用四探针(Four Point Probe)、紫外可见光谱(UV-vis)、扫描电镜(SEM)、X-射线光电子能谱(XPS)、原子力显微镜(AFM)等测试手段研究了自组装膜的加入对于ITO性能的影响。制备了器件结构为ITO/Ag/SAM/NPB/ Alq3/LiF/Al的经典双层结构器件。研究了器件的性能并与传统的器件进行了对比。考察了金属薄膜厚度与透光率、表面方口电阻的关系;衬底的表面粗糙度与透光率和表面方口电阻的关系;配合原子力显微镜优化了其厚度。考察了银膜厚度的变化对器件性能的影响。研究结果表明:在ITO表面制备自组装单分子膜修饰的5 nm厚的金属银膜,可以在保持原有阳极透明性的基础上,增强空穴的注入,改善界面的形貌,进而提高器件性能。在此基础上,制备了ITO/Ag/SAM/m-MTDATA/NPB/Alq3/LiF/Al器件。器件的启亮电压4V,最大电流效率6.9 cd/A,最大亮度为34680 cd/m2 (12 V);高于以ITO为阳极的对比器件25300 cd/m2 (12 V)。该内容的探索为后面的柔性器件的制备摸索了条件。
     3.研究了自组装单分子膜修饰的金属银膜作为柔性有机电致发光器件的阳极。考察了金属薄膜厚度与透光率、表面方口电阻的关系;采用原子力显微镜观察了衬底的表面粗糙度。制备了柔性底发射和柔性顶发射器件。柔性底发射器件的启亮电压为4V,7V时最大电流效率达到5.6 cd/A,8 V时器件最大亮度达到27000 cd/m2。柔性顶发射器件的启亮电压低于4V,在6.5 V亮度达到了27760 cd/m2,6 V时效率达到最大为7.38 cd/A。
Organic light emitting diodes (OLEDs) have gained great interest due to their potential application in future flat panel display technology. OLED performance, operating voltage and efficiency, is critically affected by carrier injection. For efficient hole injection into OLED devices, the work function of the anode must be aligned with the highest energy occupied molecular orbital (HOMO) of the adjacent organic film. Indium tin oxide (ITO) is generally used as anode materials in OLEDs. However, its work function is not aligned with the typical hole transport layer (HTL) materials. More attentions have been paid to the modification of ITO anode to achieve an effective and balanced injection.
     Organic light emitting device fabricated on flexible substrate have the ability to be light weight, extremely rugged, conformable and flexible thus enabling new display product design. However, a number of important issues must first be resolved. However, the use of plastic substrates is restricted by its low processing temperature and high heat-induced shrinkage and high gas permeability. In particular, Indium tin oxide fabricated on plastics substrates tends to be crash when bending or mechanical strain. So, there is a great need for finding a more mechanically robust flexible tans parent conductor to replace the Indium tin oxide as anode of flexible device. Some research work was conduct to resolve these problems.
     In this work, a self-assembled monolayer (SAM) of 4-fluorothiophenol is employed to modify the Ag film on the surface of ITO surface. X-ray photoelectron spectroscopy (XPS), Four Point Probe, atomic force microscope (AFM), and UV-vis transmittance spectra were used to characterize the modified anode. Organic light emitting device with the structure of ITO/Ag(x nm)/SAM/α-naphthylphenylbiphenyl diamine (NPB, 60 nm)/ tris-(8-hydroxyquinoline) aluminum (Alq3, 60 nm) /LiF(0.7nm) /Al(100nm) was fabricated. Current density-voltage-luminance characteristics of the devices were investigated using the modified anode and the bare ITO. The effect of Ag layer thickness on the device performance is also investigated. The result revealed that SAM modified ultra-thin Ag film is an effective buffer layer to improve OLED performance. The enhancements are attributed to enhanced hole injection and smooth surface between anode and the organic material, which lead to the more balance of the carriers in emitting zone, then increases the current efficiency. The Ag thickness of 5 nm is chosen as an acceptable compromise between substrate transparency and the device performance. Based on this research, Organic light emitting device with the structure of ITO/Ag(5nm)/SAM/4, 4’, 4’’-tris(3-methylphenylphenylamino) triphenylamine (m-MTDATA)/α-naphthylphenylbiphenyl diamine (NPB)/ tris-(8-hydroxyquinoline) aluminum (Alq3) /LiF) /Al was fabricated. With the presence of the self-assembled monolayer-modified Ag films, the luminance of the device reaches 34680 cd/m2 at 12 V at the current density of 550 mA/cm2, which corresponds to an efficiency of 6.9 cd/A. However, the control device using bare ITO as anode was 25300 cd/m2 with current density of 433 mA/cm2 at the same bias.
     Organic light emitting device fabricated on flexible PET substrate with a self-assembled monolayer of 4-fluorothiophenol modified the Ag film as anode is also investigated. The thickness of Ag film on the transmittance and Sheet resistance Rs was investigated by UV-vis transmittance spectra and Four Point Probe. Atomic force microscope was used to measure the surface parameters. Flexible bottom-emitting and top-emitting devices with a self-assembled monolayer of 4-fluorothiophenol modified the Ag film as anode were fabricated. A luminance of 27000 cd/m2 at 8 V, which corresponds to an efficiency of 5.6 cd/A was achieved for Flexible bottom-emitting device. However, the luminance of flexible top-emitting devices was 27760 cd/m2 at the bias of 6.5V, corresponding to an efficiency of 7.38 cd/A.
引文
[1] Tang C W, Vanslyke S A. Organic electroluminescent diodes [J].Appl. Phys. Lett., 1987, 51,913-915.
    [2] Gustufsson G, Cao Y, Treacy G M, et al.Flexible light-emitting diodes made from soluble conducting polymers [J]. Nature, 1992, 357, 477-479.
    [3] Cao Y, Treacy G M, Smith P, et al. Solution-cast films of polyaniline: Optical-quality transparent electrodes [J]. Appl. Phys. Lett., 1992, 60, 2711-2713.
    [4]李世涛,乔学亮,陈建国.透明导电薄膜的研究现状及应用[J].激光与光电子学进展, 2003, 40(7):53 -59 .
    [5]姜巙昌,胡勇. ITO透明导电玻璃的应用前景及工业化生产[J].真空,1995,12(4):1-8 .
    [6]Gustafsson G, Cao Y, Treacy G M, et al. Flexible light emitting diodes made from soluble conducting polymers [J].Nature, 1992, 357,477-479
    [7]Carter S A,Angelopoulos M, Karg S,et al. Polymeric anodes for improved polymer light-emitting diode performance [J]. Appl. Phys. Lett., 1997,70, 2067-2069.
    [8]Bender M. Dependence of film composition and thicknesses on optical and electrical properties of ITO-metal-ITO multilayers [J]. Thin Solid Films, 1998,326,67-71.
    [9]李扬,王立铎,常春,等。氧化铟锡/银/氧化铟锡多层膜作为阳极的柔性有机电致发光器件[J]。科学通报,2004,49(9),850-853.
    [10]Liu xuanjie,Cai xun,Mao Jianfang.ZnS/Ag/ZnS nano muti 1ayer films for transparent electrodes in flat display applicationi [J]. Applied Surface Science,2001,183,103-110.
    [11]Zhijun Wu,Shufen Chen,Huishan Yang, et al.Top-emitting organic light emitting devices based on silicon substrate using Ag electrode [J].Semicond.Sci.Technol.,2004, 19,1138–1140.
    [12] Liao L S, Klubek K P, Tang C W.High-efficiency tandem organic light-emitting diodes [J].Appl. Phys. Lett.2004, 84(2):167-169.
    [13]刘煊杰。用于平面显示器透明电极的ZnS/Ag/ZnS(D/M/D)纳米多层膜[D].上海交大硕士论文,2000
    [14] Lai-Wan Chong, Yuh-Lang Lee, Ten-Chin Wen. Self-assembled monolayer modified Ag anode for top-emitting polymer light emitting diodes [J]. Appl. Phys. Lett., 2006, 89, 3513-3515.
    [15] Colin D Bain, E. Barry Troughton, Yu Tai Tao, et al. Formation of monolayer films by the spontaneous assembly of organic thiols from solution onto gold [J].J. Am. Chem. Soc., 1989, 111(1):321-335.
    [16]Buck M, Eisert F, Grunze M. Wavelength dependent second harmonic generation: A new spectroscopic tool for the study of interfaces [J]. Ges. Bunsen. Phys. Chem., 1993, 97, 399-401.
    [17] Buck M, Eisert F, Fischer J, et al. Investigation of self-organizing thiol films by optical second harmonic generation and X-ray photoelectron spectroscopy [J]. Appl. Phys., 1991. A53, 552-556.
    [18] Brust M, Walker M, Bethell D, et al.Synthesis of thiol derivatised gold nanoparticles in a two phase liquid/liquid system [J] J. Chem.Soc. Chem. Commun., 1994, 801-802.
    [19] Chailapakul O, Sun L, Xu C, et al. Interactions between organized, surfaceconfined monolayers and vapor-phase probe molecules. 7. Comparison of self-assembling n-alkanethiol monolayers deposited on gold from Liquid and Vapor Phases [J]. J. Am. Chem. Soc., 1993, 115, 12459-12467.
    [20] Hickman J J, Ofer D, Zou C, et al. Selective functionalization of gold microstructures with ferrocenyl derivatives via reaction with thiols or disulfides: Characterization by electrochemistry and Auger electron spectroscopy [J]. J. Am. Chem. Soc., 1991, 113, 1128-1132.
    [21]Schlenoff J B, Li M, Ly H. Stability and self-exchange in alkanethiol monolayers [J]. J. Am. Chem. Soc., 1995, 117, 12528-12536.
    [22] Dubois L H, Zegarski BR, Nuzzo RG. Molecular ordering of organosulfur compounds on Au(111) and Au(100): Adsorption from solution and in ultrahigh vacuum [J]. J. Chem. Phys., 1993, 98, 678-688.
    [23] Sellers H, Uleman A, Shnidman Y, et al. Structure and binding of alkanethiolates on gold and silver surfaces: implications for self-assembled monolayers [J]. J. Am. Chem. Soc., 1993, 115, 9389-9401.
    [24]Osada T, Kugler Th, Broms P, et al. Polymer-based Light-emitting devices: Investigations on the role of the Indium-tin oxide (ITO) eletrode [J].Synth. Met., 1998, 96, 77-80.
    [25]姜浩,徐晓华,孙鑫,等。聚合物中光激发在电场作用下的转化[J]。物理学报,1999, 48,2327-2333.
    [26]Fujita S, Sakamoto T, Ueda K, et al. Surface treatment of indium-tin-oxide substrate and its effects on initial nucleation process of diamine films [J]. Jpn. J. Appl. Phys., 1997, 36, 350-353.
    [27]朱履冰.表面与界面物理[M].天津:天津大学出版社, 1972.
    [28]Milliron D J, Hill I G, Shen C, et al. Surface oxidation activates indium tin oxide for hole injection [J]. J. Appl. Phys., 2000, 87, 572-576.
    [29]Le Q T, Forsythe E W, Nüesch F, et al. Interface formation between NPB and processed indium tin oxide [J].Thin Solid Films, 2000, 363, 42-46.
    [30]Msaon M G, Hung L S, Tang C W, et al. Characteriztion of treated indium-tin-oxide surfaces used in electroluminescent devices [J]. J. Appl. Phys., 1999, 86, 1668-1692.
    [31]Kim J S, Granstrom M, Friend R H, et al. Indium-tin-oxide treatments for single and double-layer polymeric light-emitting diodes: The relation between the anode physical chemical, morphological properties and the device performance [J]. J Appl Phys., 1998, 84, 6859-6870.
    [32]Steuber S, Staudigel J, Stossel M, et al. Reduced operating voltage of organic electroluminescent devices by plasma treatment of the indium tin oxide anode [J]. Appl.Phys.Lett., 1999, 74, 3558-3560.
    [33]Huei-Tong Lu, Meiso Yokoyama. Plasma preparation on indium-tin-oxide anode surface for organic light emitting diodes [J]. Journal of crystal growth, 2004, 260, 186-190.
    [34]Morgan D V, Aliyu Y H, Bunce R W. Annealing effects on opto-electronic properties of sputtered and themally evaporated indium-tin-oxide films [J].Thin Solid Films, 1998, 312, 268-272.
    [35]Chan I M, Cheng W C, Hong F C. Enhanced performance of organic light-emitting devices by atmospheric plasma treatment of indium tin oxide surfaces [J] Appl.Phys.Lett. , 2002, 80, 13-15.
    [36]He P, Wang S D, Wong W K, et al.Vibrational analysis of oxygen-plasma treated indium tin oxide [J]. Chemical Physics Letters, 2003, 370, 795-798.
    [37]Destruel P, Bock H, Seguy I, et al. Influence of indium tin oxide treatment using UV-ozone and argon plasma on the photovoltaic parameters of devices based on organic discotic materials [J].Polymer International, 2006, 55, 601-607.
    [38]Yan C, Zharnikov M, Golzhauser A, et al. Preparation and characterization of self-assembledmonolayers on indium tin oxide [J]. Langmuir, 2000, 16, 6208-6215.
    [39]Nüesch F, Rothberg L J, Forsythe E W, et al. A photoelectron spectroscopy study on the indium tin oxide treatment by acids and bases [J]. Appl.Phys.Lett.,1999, 74, 880-882.
    [40]Kuosaka Y, Tada N, Ohmori Y, et al. Improvement of electrode/organic layer interfaces by the insertion of monolayer-like aluminum oxide film [J].Jpn. J. Appl. Phys., 1998, 37, 872-875.
    [41]Jiang H, Zhou U, Ooi BSK, et al. Improvement of organic light-emitting diodes performance by the insertion of a Si3N4 layer [J].Thin Solid Films, 2000, 363, 25-28.
    [42]Deng Z B, Ding X M, Lee S T, et al. Enhanced brightness and efficiency in organic electroluminescent devices using SiO2 buffer layers [J]. Appl. Phys. Lett., 1999, 74, 2227-2229.
    [43]Lai-Wan Chong, Yuh-Lang Lee, Ten-Chin Wen.Self-assembled monolayer-modified Ag anode for top-emitting polymer light-emitting diodes [J]. Appl. Phys. Lett., 2006, 89, 3513-3516.
    [44]Su W M, Li W L, Hong Z R, et al. Improved electroluminescent efficiency of organic light emitting devices by co-doping N,N’-dimethyl-quinacridone and Coumarin6 in tris-(8-hydroxyquinoline) aluminum [J]. Appl. Phys. Lett., 2005,87, 3501-3504.
    [45]Kawabe Y, Morrell M M, Jabbour G E, et al. A numeical study of operational characteristics of organic light-emitting diodes [J].Journal of Applied Physics, 1998,84, 5306-5314.
    [46]Kim E, Jung S. Effects of polymeric hole transporting layer on the stability of organic light emitting device [J]. Journal of the Korean Physical Society, 2004, 45, 1361-1365.
    [47]D’Andrade B W, Forrest S R, Chwang A B.Operational stability of electrophosphorescent devices containing p-and n-doped transport layers [J]. Appl. Phys. Lett. , 2003, 83, 3858-3860.
    [48]Liu Z G, Pinto J L.Organic light emitting diodes with lithium contained Alq3 as electron injection layer [J].Chemical Research in Chinese Universities, 2002, 18, 121-123.
    [49]Ramasesha S, Mazumdar S,Tandon K, et al. Electron correlation effects in electron–hole recombination and triplet–triplet scattering in organic light emitting diodes [J]. Synthetic Metals, 2003, 139(3):917-920.
    [50]Li Y M, Chen P. Adaptive finite volume simulation of electrical characteristics of organic light emitting diodes [J].Lecture Notes in Computer Science,2005, 3516, 300-308.
    [51]Crone B K, Campbell I H, Davids P S, et al. Charge injection and transport in single-layer organic light-emitting diodes[J]. Appl. Phys. Letts. , 1998, 73, 3162-3164.
    [52]Crone B K, Davids P S, Campbell I H, et al. Device model investigation of single layer organic light emitting diodes [J]. Journal of Applied Physics, 1998, 84, 833-842.
    [53]Ting Z, Xu Z, Chen X H, et al. Two mechanisms of the color-tunable organic electroluminescence by the voltage applied [J].Spectroscopy and Spectral Analysis, 2002, 22, 891-894.
    [54]Wang Y Z, Sun R G, Meghdadi F, et al. Multicolor multilayer light-emitting devices based on pyridine-containing conjugated polymers and para-sexiphenyl oligomer [J]. Appl.Phys. Lett., 1999, 74, 3613-3615.
    [55]Kusano H, Hosaka S, Shiraishi N, et al. Multi-color emission of PVCZ-based multilayered electroluminescent devices [J].Synthetic Metals, 1997, 91, 337-339.
    [56]Strukelj M, Jordan R H, Dodabalapur A. Organic multilayer white light emitting diodes [J]. J. Am.Chem. Soc. , 1996, 118, 1213-1214.
    [57]Choohe V E, Shi S, Curless J, et al.Organic light-emitting diode with a bipolar transport layer [J]. Appl. Phys. Lett., 1995, 75, 172-174.
    [58]Kido J, Kimura M, Nagai K. Multilayer white light-emitting organic eletroluminescent device [J]. Science, 1995, 267, 1332-1334.
    [59]Casu M B, Imperia P, Schrader S, et al.Ultraviolet photoelectron spectroscopy on new heterocyclic materials for multilayer organic light emitting diodes [J]. Synthetic Metals, 2001, 124(1):79-81.
    [60]Chang C C, Hwang S W, Chen C H, et al. High-efficiency organic electrolu- minescent device with multiple emitting units [J]. Jpn. J. Appl. Phys., 2004,43, 6418-6422.
    [61]Wu C C, Lin Y T, Chiang H H, et al. Highly bright blue organic light-emitting devices using spirobifluorene-cored conjugated compounds [J]. Appl. Phys. Lett., 2002 , 81, 577-579.
    [62]Hosokawa C, Higashi H, Nakamura H, et al. Highly efficient blue electroluminescence from a distyrene emitting layer with a new dopant [J]. Appl. Phys.Lett. , 1995, 67, 3853-3855.
    [63]Liao C H, Lee M T, Tsai C H, et al. Highly efficient blue organic light- emitting devices incorporating a composite hole transport layer [J]. Appl. Phys.Lett. , 2005,86, 3507-3510.
    [64] Burrows P E, Graff G L, Gross M E, et al. Gas Permeation and Lifetime Tests On Polymer-Based Barrier Coatings [C]. SPIE Annual Meeting, Invited Paper. 2003.8.30
    [65]田民波.薄膜科学与技术手册[M].北京:机械工业出版社,1991.
    [66]Chih-I Wu, Guan-Ru Lee, Tun-Wen Pi. Energy structure and reactions at the Al/LiF/Alq3 interface studied by synchrotron-radiation photoemission spectroscopy [J]. Appl.Phys.Lett.,2005,87, 2108-2111
    [67] Hung L S, Tang C W,.Mason M G, et al. Application of an ultrathin LiF /Al bilayer in organic surface-emitting diodes [J]. Appl.Phys.Lett., 2001, 78, 544-546.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700