Al_2O_3/Mo_5Si_3复合材料的制备及腐蚀性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Mo_5Si_3在Mo-Si系中具有最高熔点、最宽的成分范围、良好的高温抗氧化性能和抗蠕变性能而成为近年来研究的热点。但是其室温脆性严重阻碍了它的广泛应用。目前,合金化和复合化是改善Mo_5Si_3室温脆性的常用方法。同时,Mo_5Si_3因具有高的共价键组成及良好的化学稳定性而可望具有好的腐蚀性能。本研究基于原位复合化的思想,以MoO3粉、Mo粉、Si粉和Al粉为原料,采用机械化学还原法制备了具有纳米晶结构的Al_2O_3/Mo_5Si_3复合粉体,并结合热压烧结方法制备了Mo_5Si_3及20%Al_2O_3/Mo_5Si_3复合材料。利用X射线衍射仪、激光粒度分析仪、扫描电子显微镜、光学金相显微镜和能谱仪等对复合材料在制备过程中的结构演变、组织形貌及微区成分进行分析和表征,并对复合材料的力学性能和耐腐蚀性能进行研究,结果显示:
     原料粉体在球磨10h后,发生机械化学反应生成了20%Al_2O_3/Mo_5Si_3复合粉体,反应速度较快,以类似自蔓延的爆炸模式进行。随球磨时间的延长,复合粉体的晶粒尺寸减小,显微应变增大,二者呈逆变关系。球磨100h后,Al_2O_3和Mo_5Si_3的晶粒尺寸分别为38.3nm和39.8nm,具有纳米晶结构。粉体细化主要发生在球磨初期,球磨100h后粉体粒度曲线呈亚微米和微米的双峰分布,颗粒尺寸较小,在1~3μm之间。
     热压烧结制备的20%Al_2O_3/Mo_5Si_3复合材料主要物相为Al_2O_3、Mo_5Si_3和极少量的Mo3Si。Al_2O_3与基体材料Mo_5Si_3之间未发生化学反应,复合材料组元之间具有较好的热稳定性。Al_2O_3的加入细化基体材料组织,钉扎了晶界和位错,强韧化基体;20%Al_2O_3/Mo_5Si_3复合材料具有较好的综合力学性能。其显微硬度、抗压强度、弯曲强度及断裂韧性分别为1409HV、1419MPa、346MPa和5.48 MPa·m~(1/2),较纯的Mo_5Si_3试样有了较大提高。随强韧相Al_2O_3的加入,复合材料断裂模式由穿晶断裂转变为沿晶-穿晶的混合断裂。
     Mo_5Si_3和20%Al_2O_3/Mo_5Si_3复合材料具有较好的耐H_2SO_4和HCl溶液腐蚀性,其耐腐蚀性远好于传统耐蚀材料304不锈钢。在H_2SO_4和HCl溶液中浸泡100h后,参比试样304不锈钢的腐蚀失重则高达131.1mg/cm~2,为Mo_5Si_3和20%Al_2O_3/Mo_5Si_3复合材料腐蚀失重的100多倍。在NaOH溶液中,Mo_5Si_3表面的SiO2钝化膜与溶液中的NaOH发生反应,生成Na_2SiO_3,破坏钝化膜的完整性,耐蚀性较差。加入强韧性Al_2O_3后,20%Al_2O_3/Mo_5Si_3复合材料的耐腐蚀性明显提高,耐腐蚀性与304不锈钢相当。
     试验材料具有好的耐腐蚀性,其腐蚀机理为:复合材料组成元素Mo、Si等具有强的钝化能力,能在材料表面形成MoO_2、SiO_2及Al_2O_3钝化膜,阻止基体被腐蚀。此外,试验材料具有高的化学稳定性,能有效抵抗腐蚀溶液离子的侵蚀,具有好的耐腐蚀性。
Mo_5Si_3 has become a focus of material in recent years for the highest melting point, the most wide composition range,good oxidation resistance and creep resistance in Mo-Si system. However, frangibility at room temperature has hindered its widespread application seriously. At present, alloying and composite are commonly used methods to improve Mo_5Si_3 room temperature frangibility. Meanwhile,due to its unique chemical composition and strong bonds with large covalent component, Mo_5Si_3 is anticipated to be a novel corrosion resistant candidate material.The study based on the idea of in situ composite, The Al_2O_3/Mo_5Si_3 composite powder with the structure of nanocrystalline were synthesized by mechanochemistry reduction with MoO3,Mo,Si and Alpowders as raw materials. We have analyzed and characterized the structural evolution, microstructure, micro area composition of preparing composites process by x-ray diffractometer, laser particle size analyzer, scanning electron microscope, optical microscope etc. Moreover we have researched the mechanical properties and corrosion properties of the composites, the resaults show that:
     After the ball-milling running for ten hours, The raw materials powder has happened the mechanochemistry reaction and generated 20%Al_2O_3/Mo_5Si_3 composite powder, the velocity of reaction is much faster, and process in the way which is similar as self-propagating explosion mode, with the time of ball-milling prolonging, the crystal grain size reduced and the microstain increased, the relation between them is contravariant, after the ball-milling running for 100h, the crystal grain sizes of Al_2O_3 and Mo_5Si_3 respectively are 38.3nm and 39.8nm, they all possessed nano-crystalline structure. The refinement mainly occurs in the early ball-milling stage, after the ball-milling running for 100h, the distribution plot for particle size presents bimetal character of sub-micro zone and micro zone, the particle size is much smaller and between 1-3μm.
     Main phases of 20%Al_2O_3/Mo_5Si_3 composite materials which prepared by hot pressing sintered were Cu, Al_2O_3, Mo_5Si_3 and a very small amount of Mo3Si. No chemical reaction occurred between Al_2O_3 and the matrix material Mo_5Si_3, composite -component has better thermal stability. The addition of Al_2O_3 refined and toughened the matrix as well as anchored the dislocation and grain boundary. 20%Al_2O_3/Mo_5Si_3 composite powder has the best the over all mechanical properties. The microhardness, pressive strength, bending strength as well as the fracture toughness were 1409HV、1419MPa、346MPa and 5.48 MPa·m~(1/2) respectively, which have been increased greatly when compared to the pure Mo_5Si_3 sample. The addition of Al_2O_3 also converted the fracture mode from intracrystalline to the combination of fracture and intergranular fractures. The addition of Al_2O_3 also converted the fracture mode from intracrystalline to the combination of fracture and intergranular fractures
     Mo_5Si_3 and Al_2O_3/Mo_5Si_3 composites have excellent corrosion properties in H2SO4 and HCl solution, their corrosion properties are much higher than 304 stainless steel. After 100 hours immersing in H2SO4 and HCl solution, corrosion weight loss of the reference sample 304 stainless steel is up to 131.1mg/cm~2 which is higher 100 times than Mo_5Si_3 and Al_2O_3/Mo_5Si_3 composites. In NaOH solution, because the SiO_2 passive film of Mo_5Si_3 surface and NaOH have reacted to produce Na_2SiO_3, that destroyed the integrity of passive film, the corrosion resistance ability of composites is bad. When adding tough Al_2O_3, the corrosion resistance ability of Al_2O_3/Mo_5Si_3 become excellent, and corrosion resistance ability is similar with 304 stainless steeil.
     The test materials have excellent corrosion resistance ability, and the corrotion mechanism is that: the composition elements Mo,Si etc of composites have strong passive ability, which can form passive film MoO_2, SiO_2 and Al_2O_3 in the surface of materials to hinder the matrix corroded. In addition, test materials have strong chemical stability that can resistant corrosion by solution ions effectively. Thus the composite have excellent corrosion resistance ability.
引文
[1]聂小武,鲁世强等.Laves相铬化物高温抗氧化性能的研究[J].金属热处理,2006,31(9):30-32
    [2]张明军,郭喜平.新型铌铬基共晶自生复合材料的研究进展[J].稀有金属与硬质合金.2007,35(1)48-52
    [3]Koch C C.Intermetallic matrix composites prepared by mechanical Alloying-a review[J].Materials Science and Engineering,1998,A244:39-48
    [4]Lu Qingyi,Hu junqing.Benzene-themal co-reduction reaction for Nanocrystalline intermetallics FeSi and NiAl[J].solid State Ionics,1999,124:317-321
    [5]陈国良,林均品.有序金属间化合物结构材料物理金属学基础[M].北京:冶金工业出版社,1999,10-11
    [6]Chen K C,Allen S M,Livingston J D.Factors affecting the room-temperature mechanical properties of TiCr_2-base Laves phase alloys[J].Materials Science and Engineer,1998,A242:162-173
    [7]Shah D M,Berczik D L,et al,Appraisal of other silicides as structural materials[J]. Materials Science and Engineer,1992,A155:45-47
    [8]陈健,郑启,唐亚俊等.NiAl基金属间化合物多晶和单晶合金的力学性能研究[J].航空材料学报,1996,16(3):1-10
    [9]张迎九,谢佑卿,李为民等.Ni_3Al德拜温度及物理性质[J].中国有色金属学报,1996,(4):114-118
    [10]刘文胜,顾松青.TiAl合金的结构特征与物理常数[J].材料导报,2000,14(9):19-21
    [11]张蕾蕾,陈达,林栋梁.TiAl金属间化合物研究现状及发展趋势[J].材料开发与应用, 1995,10(5):44-47
    [12]房威.钛铝金属间化合物及应用[J].材料开发与应用,1994,9(4):47-48
    [13]Mehl M J,Osbum J E.Alloy phase stability and design[J].Meterials Research Society,1991,85(3):277-283
    [14]武英,杨德庄.Ti_3Al基金属间化合物变形行为研究进展[J].宇航材料工艺,1997(3):5-13
    [15]万晓景,郭建亭.高性能金属间化合物结构材料的关键基础性问题[J].中国科学基金,2000,14(2)117-121
    [16]严衍生,施忠良,刘俊友.铁铝金属间化合物.上海[M]:上海交通大学出版社,1996,1-3
    [17]孙祖庆,黄原定,毛为民等.Fe_3Al基金属间化合物合金强韧化途径探索[J].金属学报,1993,29(8)A354-358
    [18]梁广川,刘文西.FeAl合金研究进展评述[J].材料导报,1999,13(2):25-26
    [19]刘毅,郦定强,林栋梁.金属间化合物FeAl超塑性变形中的位错特征[J].金属学报,1996,32(3)225-229
    [20]刘毅,郦定强,林栋梁等.高温变形FeAl金属间化合物中的位错特征[J].金属学报, 1995,31(1):24-27
    [21]杨晓华,吕涛,丁华东.金属间化合物的增韧机理[J].稀有金属材料与工程,1996, 25(4):1-4
    [22]A Yamauchi et al, Synthesis of Mo-Si-B in.situ composites hy mechanical alloying[J].J Alloys and comp , Intermetallics 18(2006)1022-1026
    [23]朱日彰,卢亚轩.耐热钢和高温合金[M].北京,化学工业出版社,1995,1-314
    [24]Subramanian,P.R.,Mendiratta,M.G.,D.M.Dimiduk,Development of Nb-based advanced intermetallic alioys for structural appiications[J].JOM,1996,48(1),33-38
    [25]D.M.Shah,D.L.Anton,and D.P.Pope.In-situ refractory intermetallic-based composites[J].Mater.Sci.Eng.1995,A192/193,658-672
    [26]马勤,阎秉钧,康沫狂.金属硅化物的应用与发展[J].稀有金属材料与工程,1999,28(1):10-13
    [27]张德尧.硅化物高温结构材料的主要进展[J].稀有金属快报,3(2001):17-18
    [28]马勤,康沫狂.高温结构硅化物研究的新进展[J].材料工程,1997(7):3-6
    [29]P.R.Subramanian,M.G.Mendiratta,and D.M.Dimiduk.Advancedintermetallic alloys beyond gamma titanium aluminides[J].Mater.Sci.Eng.1997,A239-240,1-13
    [30]Thom A J,Akinc M.Effect of ternary additions on the oxidation resistance of Ti5Si3[J].Advanced Ceramics for Structural and Tribological Applications,2003, 619-627
    [31]鲁世强,黄伯云,贺跃军等.Laves相合金的物理冶金特性[J].材料导报,2003, 17(1):11-14
    [32]T.Nakano,Y.Nakai,S.Maeda.Microstructure of duplex-phase NbSi_2(C40)/MoSi_2 (C11b) crystals containing a single set of lamellae[J].Acta Materialia,2002,50(7), 1781-1795
    [33]F.G.wei,Y.Kimura,Y.Mishima,Characterization of C11b/C40 lamellae in a MoSi2- 15mol%TaSi2 alloy[J].Intermetallics,2001,9(8):661-670
    [34]金燕苹,洪涛,郑灵仪等.SiC晶须强韧化MoSi_2复合材料[J].材料研究学报,1994,8(2):183-187
    [35]周宏明,易丹青,石章智.MoSi_2基高温结构材料的研究进展[J].材料导报,2006,20(7):404-408
    [36]来忠红,朱景川,王丽艳,尹钟大.原位复合Mo-Si化合物材料的相组成和力学性能[J].材料科学与工艺. 2003, 11(3):248-253
    [37]叶长青,姜传海,周健威,吴建生.Mo3Si-Mo_5Si_3共晶硅化物的氧化[J].上海交通大学学报,2004,38(7):1148-1151
    [38]张厚安,刘心宇,陈平,唐果宁.稀土和Mo_5Si_3强韧化MoSi_2材料的磨粒磨损特性[J].中国有色金属学报,2002,12(1):136-139
    [39]宋春燕,贵永亮,胡宾生,石焱金.属硅化物及其复合材料的研究进展[J].材料导报,2009,23(12):101-103
    [40]陈辉,马勤,宋秋香.难熔(Mo_(1-x)Nb_x)_5Si3合金的制备与组织性能[J].特种铸造及有色合金.2009,29(5):399-401
    [41]宋秋香,马勤,陈辉.热压制备Mo-Nb-Si系新型高温金属硅化物合金[J].粉末冶金技术,2010,28(6):430-433
    [42]马勤,李和平等.合金元素W、B对MoSi_2发热体物理化学性能的影响[J].工业炉, 2004, 26(3):4-7
    [43]唐仁正,李明威,黎文献.机械合金化制备MoSi_2和Mo_5Si_3[J].中南工业大学学报,1995, 26(3):362-364
    [44] Bewlay B P, Sutliff J A, Jackson M R, et al. Microstructural and Crystallographic Rela- tionships in Directionally Solidified Nb-Cr2Nb and Cr-Cr2Nb Eutectics, [J].Acta Metallurgica et Materialia,1994,42(8):2869-2878
    [45] Bewlay B P, Lipsitt H A, Jackson M R. Solidification processing of high temperature intermetallic eutectic-based alloys[J].Materials Science and Engineering,1995,A192-193: 534-543
    [46]齐义辉,郭建亭,崔传勇.定向凝固NiAl- Fe- Nb金属间化合物的显微组织和类超塑性行为[J].中国有色金属学报,2002,12(2): 245-249
    [47] Verin A S,Verin M A.Intermetallids Ni_3Al and Fe_3Al with Directional Structure as Future Materials[J]. Anti-Corrosion Methods and Materials,2001,48(5): 298-303
    [48]赵海云,王华明.激光熔覆过渡金属硅化物Laves相增强高温耐磨抗氧化涂层组织与性能研究[J].应用激光,2002,22(2):89-92
    [49]韩梅,骆宇时.热等静压对DD3的单晶高温合金组织与性能的影响[J].材料工程, 2008, 8:40-43
    [50] Ishiyama S,Buchkremer H P,Stover D.The Characterization ofHIP and RHIP Consolidated NiAl Intermetallic Compounds Containing Chromium Particles [J]. Journal of the Japan Institute of Metals, 2004,68(9):831-837
    [51] Gobran H A,Llic N,Mucklich F.Effects of Particle Size and Pressure on the Reactive Sintering of RuAl Intermetallic Compound[J]. Intermetallics,2004,12(5):555-562
    [52]郜剑英,王刚等.Mo(Si,Al)2的自蔓延高温燃烧合成[J].中国钼业,2004,28(3):25-28
    [53]郑仕远,李荣缇等.自蔓延燃烧技术法材料合成技术[J].山东陶瓷, 1999,22(4):3-11
    [54]Ovcharenko V E,Lapshin O V.Intermetallide Ni_3Al SHS under Pressure[J].Fizika Goreniyai Vzryva,2002,38: 71~75
    [55]艾桃桃,王芬,陈平.金属间化合物的制备与应用[J].稀有金属快报,2006,25(1):5-12
    [56]郭建亭,周兰章,李谷松.纳米金属间化合物NiAl的机械合金化合成及性能[J].金属学报, 1999,35(8):846-850
    [57]鲁世强,黄伯云,贺跃辉.机械合金化对Laves相Cr_2Nb固相热反应合成的影响[J].航空学报,2003,24(6):568-572
    [58]何玉定,曲选辉,黄伯云.机械活化热压合成Laves相TiCr_2及其力学性能的研究[J].稀有金属,2003,(3):303-306
    [59] Geng Jie , Tsakiropoulos Panos, Shao Guosheng. A study of the effects of Hf and Sn additions on the microstructure of Nbss/Nb5Si3 based in situ composites[J]. Intermetallics, 2007,15: 69-76
    [60]何玉定.合金元素对Laves相TiCr_2力学性能的影响[J].中国有色金属学报,1998, 8 (4):569-572
    [61]曲选辉,何定玉,黄伯云.Laves相铬化物的研究[J].高技术通讯,1996,(12):27-30
    [62]郝元恺,肖加余.高性能复合材料学[M].化学工业出版社,2004
    [63]邹欣伟,马勤,贾建刚.Laves相高温结构硅化物的研究进展[J].材料导报,2008, 22(5):23-27
    [64]Suzuki Y,Sekino T,Niihara K.Effects of ZrO_2 Addition on Microstructure and Mechanical Properties of MoSi2[J].Scrip Metallet Mater,1995;33(11):69~74
    [65]]M.BESTERCI,B.BALLOKOVA,P.HVIZDOS.Creep behaviour of MoSi_2-HfO_2 composites. Journal of Materials Science[J]. 2005,40(11):3869-3871
    [66]吴春芬,方莹,李镇,孙怀涛,葛鹏鹏.机械合金化制备纳米晶铁-铜合金粉体[J].机械工程材料,2010,34(5):72-75
    [67] R. Maric, K.N. Ishihara, P.H. Shingu. Structural changes during low energy ball milling in the Al-Ni system[J]. Mater. Sci. Lett, 1996,15:1180-1184
    [68]柳林,秦勇.球磨能量对Mo-Si混合粉末机械合金化的影响[J].金属学报,1996, 32(4):423-428
    [69]陈云.钼硅金属间化合物复合材料的制备及应用[J].中国钼业,2003,27(1):29-31
    [70]金格瑞W.D等著(美),材料科学与工程[M].宇航出版社,1988,11:354-357
    [71]曹昱,易丹青,殷磊等.Er对Mo_5Si_3基合金组织与性能的影响[J].稀有金属材料与工程, 2004,33 (11):1170 -1173
    [72] STROM E, ZHANG J, ERIKSSON S, et al. The influence of alloying elements on phase constitution and microstructure of Mo3M2Si3 (M=Cr, Ti, Nb, Ni, or Co)[J]. Materials Science and Engineering,2002,A329-331: 289-294
    [73]郝元恺,肖加余.高性能复合材料学[M].化学工业出版社,2004
    [74]胡忠武,张延杰.铌-硅基自生复合材料的新发展[J].稀有金属快报,2003, (10):17-19
    [75]聂耀庄,谢右卿,彭红建等.Zr_5Si_3及Zr_3Ti_2Si_3弹性性质与热学性质[J].中国有色金属学报,2007,17(9):1495-1500
    [76]杨晓华,吕涛,丁华东.金属间化合物的增韧机理[J].稀有金属材料与工程,1996, 25(4):1-4

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700